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Abstract—

Multi-sensor perception systems are starting to be used in
critical applications, such as in drones and ADAS (Advanced
Driver Assistance Systems). However, complete validation of
complex perception systems is difficult to achieve. In this paper
we examine these systems through the lens of an alternative
dependability method, namely fault tolerance. We apply a formal
analysis on a belief function data fusion mechanism to provide
fault tolerance. By analyzing certain parameters related to the
data fusion process, we show that it is possible to offer fault
tolerance services suitable for multi-sensor perception systems,
including detection, recovery, and fault masking.

I. INTRODUCTION

Perception is a fundamental input in any robotic system.
However, data perceived by robotic systems are often complex
and subject to significant uncertainties and inaccuracies. Multi-
sensor approaches seek to address this problem. In multi-
sensor approaches data are acquired from multiple, comple-
mentary sensors, and redundancy between these sensors is
used to increase the precision of perception. But the greater
the number of sensors and underlying data fusion algorithms,
the greater the likelihood of hardware and software faults
occurring. Moreover, the open environments in which complex
robotic systems operate can create a near-infinite execution
context, which means that validating a multi-sensor approach
might, for example, require thousands of hours’ driving on
roads, with no certainty that every possible situation has been
encountered. Testing is therefore a lengthy, difficult, and costly
operation. One alternative to this kind of exhaustive validation
is to develop fault-tolerant mechanisms. Since it is difficult to
remove all the faults in a system, the idea is instead to limit
the impact of these faults on the system’s operation. In this
paper we show, via a simple theoretical case study, how fault-
tolerant services may be derived from the formal analysis of
data fusion parameters.

The paper is organized as follows: after this introduction,
section II summarizes related works. Section III describes the
architecture that we propose. Section IV presents our study
and details the proposed fault tolerance services. The paper
ends with prospects for future works.

II. FAULT TOLERANCE IN DATA FUSION: RELATED WORKS

To our knowledge, there have been few studies on fault
tolerance in data fusion. The approaches we found in the
literature mostly use the analysis of some internal parameters

to provide fault tolerance. In [7] the authors discussed the
detection of malfunctions through the temporal analysis of the
conflict resulting from the fusion of data sources, based on
Smets’s TBM [9]. They suggested that once it is recognized
that a source is defective, the influence of that source on
the final decision should be weakened. In [4], an algorithm
was proposed for detecting a defective source by analyzing
the reliability of all the sources. This reliability serves as a
discounting factor to weight belief masses given by the sources
before they are combined. Where the conflict is due to a
defective source, the authors analyzed the discounting factor
to detect the erroneous source using a thresholding method.
In [3] a similar approach was proposed by the same authors
in the specific context of possibility theory.

Although these papers present effective solutions, it will be
remarked that they focus only on hardware fault tolerance.
Moreover, they detect and tolerate faults occurring in physical
sensors providing input into data fusion processes that are
difficult to design and validate, and that consequently may
be considered untrustworthy for critical applications. It is our
belief that fault tolerance in data fusion necessarily involves
either trying to tolerate software faults in the data fusion
process, or using formal methods to guarantee that the data
fusion process is sound.

III. FAULT TOLERANCE THROUGH DATA FUSION:
PROPOSED ARCHITECTURE

Our goal in this qualitative study is to analyze certain
parameters from data fusion algorithms (Figure 1) to ensure
fault tolerance services. Our architecture consists of two
identical branches, each comprising two sensors and a fusion
mechanism between those two sensors. In addition, there is a
global fusion algorithm to merge the outputs of the two fusion
mechanisms.
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Fig. 1. Data Fusion Architecture

IV. EXAMINATION OF THE PROBLEM, PROPOSED FAULT
TOLERANCE SERVICES

Our approach consists in formally analyzing the behavior
of a data fusion mechanism based on belief function theory.



We illustrate this approach with an example application taken
from [6], where it was proposed as part of a habitat perception
architecture for communicating with and assisting elderly
persons at home. The application detects whether or not
someone is sitting on a chair. Two sensors are used: a pressure
sensor (P) placed under the seat of the chair, and a camera (C)
installed in front of the chair to detect a seated figure. In this
case study, the sensors output 1 when there is someone on
the chair, and O otherwise. Our analysis is separated into two
parts: first we look at a simple case involving a single branch
of the proposed architecture (the upper branch in Figure 1),
then we study the complete architecture.

A. One branch case

Our data fusion mechanism is based on belief function
theory [5][8]. In this section IV-A we look at a single set
of sensors (camera, pressure) belonging to a single branch
(P1,C1,F1) of our architecture, as depicted in Figure 1.

1) Modeling:

o Frame of discernment Given the binary state assump-
tion, the frame of discernment consists of the binary
hypotheses that either one person is sitting on the chair
(3), or that no-one is sitting on the chair @: Q=
{3,7}. From this Q, we deduce the powerset 2: 2% =
({2113).{3,3).0}.

e Assigning belief masses Considering p;(3) the sensor
output, we have:

1

pi(3) =1 if someone is sitting on a chair
pi(3) =0 otherwise

Each sensor i has a corresponding weakening factor
Plust € [0,1] that in our model represents reliability of
the sensor. The masses assigned to the two hypotheses
J and P are the sensor outputs p;(3) weighted by this
weakening factor pi,, ., as defined in (2).

{ ml({a}) :p;:msr'pi(a) (2)
mi({3}) = pirua-[1 = pi(3)]

The masses m;({3}), m;({#}) being defined, the remain-
ing mass is assigned to Q, which models the ignorance

3. mi({3,31) = 1= ({3} +mi({H})] 3)

e Combining belief masses We combine the masses ob-
tained from sensors P and C using the Dempster rule, as
described in (4), to obtain the global belief on elements
of 2%

K = mp({3})mc({3}) + mp({#})mc({3}), K: Conflict factor
mpac({3}) = "1P({3})-MC({3})+mP({3})»1"5(({133})+MP<{3$})J"C({3})
mpoc({3}) = mp({#}).mc (B +mp({E}).mc({32D) +mp ({3, 81).mc ({(3})

mpoc(Q) = 1 [mpoc({3)) + mpsc( (3]

“
Note that the conflict factor K is O when the two sensors
are in agreement.

e Decision is based on the pignistic probability [10], ob-
tained in this case by equi-distributing the mass of igno-
rance (Q) over the two hypotheses 3, 3. After calculating
this probability, the decision is made according to a
threshold value, strictly greater than 0.5: If BetP(d) >

th, then we decide that there is a person on the chair. If
BetP(3d) < 1 - th, then we decide that no-one is sitting
on the chair.

2) Principle of detection: This work examines the con-

ditions that are required in this architecture’s data fusion
algorithm in order to formally guarantee an error detection
service. In particular, we focus on three factors: the weakening
factors pf . and pS,,, and the decision threshold th. Under
the single fault assumption, our principle of fault detection is
as follows. Where both sensors have the same value, no error is
present in the system and a decision is always reached. Where
the two sensors have different values, there is an error and the
system must not be able to decide either way. Consequently,
when the system reaches at a decision, this means that no error
is present, and when it fails to arrive at a decision, there is an
error. To satisfy this principle, the following four conditions
must hold.

1) In the absence of faults

e Condition 1: Where someone really is sitting on
the chair, we want the system always to decide that
there is someone. This means that the two sensors
(C, P) both output 1 if and only if the pignistic
probability BetP(d) is greater than or equal to the
threshold decision.

{ ﬁg g% : < BetP(3) > th )

e Condition 2: Where no-one is sitting on the chair,
we want the system always to decide that there is no-
one. This means that the two sensors (C, P) output
the same value O if and only if BetP(3) is less than
or equal to 1 - th.

{ [’;zg Zg & BetP(3) < 1—th ©)

2) In the presence of faults

e Condition 3: Where there is someone on the chair
and the two sensors give opposite results, we do not
want the system to reach a decision. This means that
when the sensors have opposite outputs and there
is someone on the chair, the pignistic probability
BetP(3) is between 1 - th and th.

{ pp(3) =1 and pc(3) = 0 with C failed
or = 1—th<BetP(3) <th
pp(3) =0 and pc(3) =1 with P failed
@)

e Condition 4: Where there is no-one on the chair
and the two sensors give opposite results, we do not
want the system to reach a decision. As in condition
3, we obtain:

pp(3) =1 and pc(3) = 0 with P failed
or = 1—th<BetP(3) <th
pp(3) =0 and pc(3) = 1 with C failed

®

3) Detection Service: For faults to be detected in the

system, the four above conditions must be met simultaneously.
In the following figures, we present the pignistic probability
corresponding to the hypotheses 3 and 3, depending on weak-
ening factors pf ., pS..,. to help us investigate the weakening



factors meeting these four conditions. We first consider a
threshold value of 0.8.

In Figure 2, the X axis represents the factor pf. . corre-
sponding to the pressure sensor and the Y axis the factor
pS, assigned to the camera. The gray area represents the
zone where the pignistic probability BerP(3) > 0.8 where both
sensors are outputting 1 and thus meeting the first condition.

Fig. 2. Couples pi,,, satisfying condition 1

Because of the symmetry of our problem, the couple (p© .,
pC,.,) meeting condition 2 are identical to those in figure 2.

Figure 3 show the weakening factors (pf,,, p<,,) that meet
the condition 3: the gray area of this figure is the zone where
0.2 < BetP(3) < 0.8. Tt shows the situation where there is
someone on the chair and the system does not reach a decision
because the sensors are outputting different values. In this
figure the white area on the upper left shows the area where the
camera output decides the result of the fusion: the confidence
accorded to the camera is such that its output determines the
result of the fusion regardless of the pressure sensor output.
Similarly, the area at the bottom right shows the area where
the output of the pressure sensor alone decides the result of
the fusion.

Fig. 3. Couples p!,,, satisfying condition 3

As before, the symmetry of our problem means that the
weakening factors (pf,,, pS,,) meeting the condition 4 are
similar to those meeting condition 3, as shown in figure 3.

Finally, the couples (p’,,, p5.,,) that detect an error for a
threshold value of 0.8 are those that meet the four conditions
above, and therefore the result of the intersection of the
surfaces of figures 2, 3 shown in figure 4.

In the same way that we examined couples (p©,. ., PSus)
for th = 0.8, we can consider other th values, and propose
triplets (p?,,» PS.s th) ensuring the detection service.

B. Complete Architecture

We saw in section IV-A how to ensure error detection with
a single set of competitive sensors. To provide other services,

Fig. 4. Detection Service for th = 0.8

such as system recovery or error masking, duplication of the
hardware sensors is required. In the following section we study
a complete data fusion architecture (Figure 1).

1) Modeling: In this architecture, the frame of discernment
is the same as in the simple case, and the belief masses
corresponding to the hypotheses are the results of both fusion
blocks F; and F;. These results are combined at the global
fusion block GF using Demspter’s rule as in equation 4, taking
as input mp; and mp,.

2) Detection service: As in the simple case, we need to
satisfy the four conditions above. For a threshold value of 0.8,
Figure 5 shows the couples (p’,,, pS,) that meet the first
condition, that is the couples for which the system correctly
decides that there is someone on the chair when all the sensors
are outputting 1 and no sensors have failed.

‘trust

Fig. 5. Couples pi,,, satisfying condition 1

Since the problems are similar, the couples (p%..» PSusr)
that meet the second condition are identical to those meeting
the first condition, as shown in figure 5, but here we are
interested in the couples for which the system correctly decides
that there is no-one on the chair where all the sensors are
outputting 0 and no sensors have failed.

Figure 6 shows the couples (pf .., p$.,,,) that meet the third
condition, that is to say the couples of weakening factors where
the system is unable to decide that a person is present when
exactly one camera has failed. The case where a pressure
sensor is faulty gives a figure symmetrical to figure 6 with
respect to the first bisector.

Finally, couples (pf,,, pS,s) meeting the fourth condition
are the same as for the third condition, but in this case
they represent the couples of weakening factors for which
the system is unable to decide that a person is not present
when exactly one sensor has failed. In figures 6, we remark
that the white area represents the couples (p ., p$.,.,) Where
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Fig. 6. Couples pi,,,, satisfying condition 3 with one failing camera

the system reaches the correct decision despite an error in
one sensor. Here, however, we are seeking to detect the error
rather than to reach the correct decision, and this area therefore
excludes couples satisfying detection.

As in the simple case, for an error to be detected in the
system the four conditions must be satisfied. The intersection
of the figures shown in Figure 7 gives the couples (p’,,.
pS..) that ensure the detection service.

Fig. 7. Detection service for th = 0.8

3) Recovery service: The recovery service consists in using
redundancy in the system to determine the correct result
despite the presence of an error. To tolerate a hardware error,
the complete architecture in Figure 1 must first detect the
presence of an error, and then determine the correct output.

The detection is performed as before: we choose the param-
eters satisfying the error detection service in Figure 7. Once
the error is detected, and under the assumption of a single
error, we then find which branch (either F; or F;) contains the
defective sensor. When the two branches respect the criteria
of error detection presented in section IV-A2, this is easy:
the branch containing the defective sensor will not be able to
decide, and the other branch will generate the correct output.
The factors (pl,,» pG.s) ensuring the recovery service must
therefore be able to detect an error in the complex case, and
able to detect an error in the simple case. This corresponds to
the intersection of figures 4 and 7, shown in Figure 8.

4) Masking service: The masking service consists in tol-
erating a hardware error without detection. In order to do
s0, two conditions have to be met: first, the system has the
correct behavior where there is no error, which is equivalent
to satisfying the first two conditions in Figure 5; second, the
system delivers the correct result, despite there being a single
error in one of the sensors. This corresponds to the couples
(PP > PSus) Which complement the gray zone in figures 6.

Fig. 8. Recovery service for th = 0.8

From these two constraints we find (pf ., p$,,) for the fault
masking presented in Figure 9.

Fig. 9. Masking service for threshold 0.8

V. CONCLUSION AND PROSPECTS

This paper presents a simple theoretical case study where
data fusion mechanisms directly give rise to fault tolerance
services. We have shown that from the analysis of a data fusion
model and the careful choice of parameters it is possible to
derive services of detection, recovery and fault masking.

In future work, we intend first to incorporate the results
of this approach in a real application as in [1] and to explore
other potential parameters such as combination operators. This
kind of analysis is not always possible in complex cases, and
where it is not possible, other complementary techniques (such
as [1][2]) can be an alternative.
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