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Analysis of Transonic Flow with Chemical Reactions by the Small Perturbation Method. The One and Two-Dimensional Problem

The present study is concerned with setting up and solving the transonic quasi-onedimensional equations of a flow with chemical reactions. Particular solutions are examined for such a flow when two-dimensional. The equations are written by the method of singular small perturbations around a uniform flow in chemical equilibrium.

Introduction

There are few published studies of transonic flow with relaxation. And yet the problem at issue is an important one, because aerodynamics in increasingly concerned with the hightemperature range where chemical relaxation as well as that of the internal degrees of freedom in molecules occur. The same phenomena are also incident to rocket propulsion where the nozzle throat region in transonic.

As yet there seem to exist but few approaches to the problem of relaxed transonic flows. The complexity of the equations concerned precludes the hodograph method applicable to simple gases; this leaves the computer and the small disturbances method. The mathematical singularity involved make the former difficult to use, although, as will be seen, it does stand in good stead for tackling quasi-one-dimensional flows. That is why we have turned our attention to the method of singular small perturbations, based on the asymptotic expansion theory. The relevant equations were written by L G. Napolitano [START_REF] Napolitano | Transonic approximation for reacting mixtures[END_REF] who confined himself to first-order terms. In a very broad way, his approach can also be applied, as demonstrated below, to the quasi-one-dimensional hypothesis.

The present paper is primarily devoted to solving the equations arrived at this latter case and for two-dimensional plane flows. One dimensional flows present no major problem, for the model is quite straightforward and amenable to correct analysis. This in not the case with two-dimensional flows, as the partial-derivative equations may be non-linear third order ones.

The initial and limit conditions are a matter of all the greater difficulty as the nonuniform asymptotic expansions result in three or four equations instead of a single one to describe the transonic zone. These expansions depend on a dimensionless parameter (Damkölhler's first parameter), which equals the ratio of two lengths (or two times).

The method adopted requires the chosen flow to be disturbed, simple and uniform i.e. chemically in equilibrium. The drawback limiting the inquiry to small disturbances is that this leaves room for near-equilibrium; still the results should be capable of generalisation.

Lastly, analysis is here restricted to the first term of the asymptotic expansion, carrying it on to the following terms would unquestionably yield valuable results.

Quasi-One-Dimensional-Flows

What we are largely concerned will here are processes evolving in the Laval nozzle. Allowing for the initial conditions and a particular nozzle design, it is set out to determine the flow in the geometric throat region.

With the problem posed in these terms, there is known to exist a singular point for the equations at which the flow velocity equals the speed of frozen sound af or Conditions at the singular point marked F, are given in Tables 1 to 4.

Table 1. Transonic equations for adjacent sound velocities Table 2. Transonic flow for non-adjacent sound velocities. Neighbourhood of point E (v=ae).

Table 3. Transonic flow for non-adjacent sound velocities. Zone laying between E and F. Excluding neighbourhood of these points. with s2, which expresses the entropy variation of the relaxing flow. The tables give the orders of magnitude of Damköhler's first parameter D1; it can be shown that [START_REF] Prud'homme | Ecoulements relaxés dans les tuyères[END_REF]:

( )   n O D    + - = 1 1 (13)
where the number n corresponds to the variation in equilibrium of the same entropy and stagnation enthalpy. In the case of a nozzle flow, it is generally true to say that a known D1 as derived from the results of equilibrium calculations. determine the choice of the equation to be used in a giver table.

The most typical instance is the case of Table 1, where D1= O () stands for a frozen flow D1 = O () for an equilibrium flow (except for the second order) and D = O ( 2/3 ) for a relaxed flow properly so called. This last-named case alone provides a suitable model for use in the present study, which is limited the terms of the first order.

The relevant equations are:
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which leads to the following conclusions:

(a) There is a singular point F viz.
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from equations (14 and (18).

(c) Point E, where v=ae corresponds to ( )

1 1 +  - = Z v x (21)
and is not a singular point. (e) Any solution that does not bear out both equation (18) and equation ( 19) presents two extremes, or two points at which x d dv [START_REF] Napolitano | Transonic approximation for reacting mixtures[END_REF] is infinite.

Thus, the given initial condition and the continuous nature of the solution obtained define this solution and the corresponding flow rate uniquely.

A case in point is a solution v1 common to both relaxed and the equilibrium flows. They can be shown to share the following conditions between them:

(1) the nozzle equation is
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, irrespective of the value of x is a particular solution of the relaxed flow.

(3)
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is a particular solution of the relaxed flow (Fig. 1).

The solution common to both flows is accordingly:
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where m and q are two constant numbers, the first of which is positive;
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At point F the conditions are as follows:
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Over and above the particular solution given above, there are of course alternative ones covering different mass flow rates for the same nozzle. 2, there is only one, relating to D1 of order e and of the Ricatti type, whose solution presents certain difficulties. The rest of the equations contained in the tables have equally been analysed [START_REF] Prud'homme | Ecoulements relaxés dans les tuyères[END_REF]; in order, however, to avoid spinning out this study to undue length, the results are not shown here.

Plane Two-Dimensional Flows

The foregoing method is also applicable to plane two-dimensional flows. For the same basic flow and reference values as before, the velocity components u and w are now written as
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and the reduced co-ordinates x and y as 
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Analysis of the first order admits the use of die velocity potential 1  notably
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This yield Tables 5-8. The above equations, which link up the partial derivatives of the velocity potential 1  fall into three types. viz.:

1. Second or third-order linear equations 2. Non-linear equations capable of linearization on passing into the hodograph plane 3. Non-linear equations that are not simplified by transformation in the hodograph plane.

The second-order linear equations correspond to the subsonic or supersonic flow of a simple gas.

The third-order linear equations have been, studied partly by Vicenti [START_REF] Vincenti | Non equilibrium flow over a wavy wall[END_REF], partly by Clarke [START_REF] Clarke | The linearized flow of a dissociating gas[END_REF] for particular limit conditions.

The equations of type 2 correspond to the transonic flow of a simple gas.

We have worked out some particular .solutions for the equations of type 3.The method employed should also enable approximate solutions to be found for them. Writing:
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a partial-derivative equation appears in the form

F(z1, z2, …)=0 (29)
where F is a polynomial of the second degree.

If P denotes the vector of co-ordinates z1, z2… and P0 a particular vector that provides a test of the preceding equation F(P0) = 0, then we can write
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where F1 and F2 are respectively first-and second-degree homogeneous polynomials in (zj -zj0).

Replacing equation F (P) =0 by the linear partial differential equation ( )
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. the tangent hyperplane is substituted a point P0 for the hyper surface F (P) =0.

The exact solutions obtained at the same time bear out the equations
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For example, the equation in 1  (table 5) which corresponds to
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The partial-differential equation F2=0 is written: Where there is a symmetry with respect to axis x O equation (37) yields a solution for the symmetrical nozzle: 
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Conclusion

This paper reviews the problems involved in solving the equations of transonic flow with chemical relaxation.

The quasi-one-dimensional equations are easy to solve, in one instance, we were able to point up, and provide the answer to the problem of the flow rate.

We have found particular solutions for the two-dimensional equations. Lastly, there is the matter of choosing from among the equations derived from the asymptotic expansion method. While, as has been shown, Damköhler's first parameter has provided the means of making such a choice the prevailing non-uniformity may well call for the use of several equations to describe the transonic zone. If so, the solutions of these different equations will have to be tied up, a task that lay the scope of our study.

Nor have we dealt with the problem of flows fully out of chemical equilibrium. Whereas in powers of  are generally adequate for nozzle flows, this is not necessarily so in al cases, as can be demonstrated in respect of simple gases [START_REF] Cole | Expansion procedure and similarity laws for transonic flow[END_REF]. All the same, even these results will help to grapple with a certain number of particular problems.

   , s and  respectively denote the pressure, density, entropy, and the extent of the reaction (or a chemical composition).
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