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Abstract. Parallel robots enjoy enhanced mechanical characteristics that have
to be contrasted with a more complicated design. In particular, their workspace
contains parallel singularities that, when crossed by the robot trajectories, can
dramatically damage them. The computation of singularity free sets of reachable
configurations, called generalized aspects, is therefore a key issue in their design.
A new methodology based on numerical constraint programming is proposed to
compute a certified enclosure of such generalized aspects without any a priori
knowledge of the robot but its kinematic model.
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1 Introduction

Parallel industrial robots [9, 10] present several advantages with respect to serial ones:
They are naturally more rigid, leading to more accurate motions with larger loads, and
allow high speed positioning of their end-effector. These key improvements are con-
trasted by more a complicated design: In particular, the computation and analysis of
parallel robots workspace presents several difficulties. First, one pose of the end-effector
of the robot may be reached by several input commands at the actuated joints (i.e., its
inverse kinematic model has several solutions), and conversely one set of input com-
mands may lead to several poses of its end-effector (i.e., its direct kinematic model has
several solutions). Second, parallel robots generally have parallel singularities, which
can dramatically damage them when crossed during an operation.

The kinematics of a parallel robot are modeled by a system of equations that relate
the position of its end-effector (known as the robot pose) to its commands, called the
kinematic model. Hence computing the pose knowing the commands, or reversely, com-
puting the commands knowing the pose, requires solving a system of equations (called
respectively the direct and inverse kinematic problems). In most situations, the num-
ber of pose parameters, the number of commands and the number of equations are all
equals. Hence, the local relationship between pose and commands is generically a (dif-
ferentiable) bijection. However, in some non-generic situation, pose and commands are
not anymore related by a bijection. This can have a dramatic impact on the robot, e.g.,



potentially destroying it if some commands are enforced with no corresponding pose.
These non-generic situations are called robot singularities and can be of two kinds: Se-
rial or parallel. One central issue in designing parallel robot is to compute connected
sets of singularity free positions and the corresponding commands, so that the robot
can safely move inside those sets. Such a set is called a generalized aspect when it is
maximal with respect to inclusion, i.e. when it is as large as possible.

The certification is a key issue when computing aspects: On the one hand, avoid-
ance of singularities is mandatory. On the other hand, connectivity between solutions
of the kinematic model has to be certified to ensure that the robot can actually move
from a configuration to another. A very few frameworks can provide such certifications,
among which algebraic computations and numerical constraint programming. By en-
hancing the branch and prune algorithm with dedicated certification of solutions and
connectivity between them, a fully automatized method for generalized aspect com-
putation is proposed that does not require any a priori aspect geometric knowledge to
separation the aspects.

A motivating example is presented in Section 2 followed by some preliminaries
about numerical constraint programming and robotics in Section 3. The proposed al-
gorithm for certified aspects computation is presented in Section 4 and compared with
related works in Section 5. Finally, experiments on planar robots with two and three
degrees of freedom are presented in Section 6.

Notations Boldface letters denote vectors. Thus f(x) = 0 denotes a system of equa-
tions f on a vector of variables x: f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0. The
Jacobian matrix of f(x,y) with respect to variables x is denoted fx(x,y). Intervals are
denoted using bracketed symbols, e.g. [x] = [x, x] = {x ∈ R | x ≤ x ≤ x} is an
interval of reals, [x] is an interval vector (or box) and [A] = [aij ] is an interval matrix.
IR denotes the set of intervals and IRn the set of n-dimensional boxes. For an interval
[a], wid[a] = a− a denotes its width, int[a] =]a, a[= {a ∈ R | a < a < a} denotes its
interior, and mid[a] = (a+ a)/2 denotes its midpoint. All these notations are extended
to interval vectors.

2 Motivating Example

Description. Consider the simple PR-RP planar robot depicted on Figure 1 which is
compound of two prismatic joints (gray rectangles) which can slide on two perpendic-
ular axes. These prismatic joints are connected through three rigid bars (black lines)
linked by two revolute joints (circles) which allow free rotations between the rigid bars.
The position of the prismatic joints are respectively denoted by x and q, the command
q corresponding to the vertical axis and the end-effector position x being on the hor-
izontal axis. The left-hand side diagram of Figure 1 shows a nonsingular pose of the
robot (note that there is another symmetric pose associated to the same command).
When q moves vertically, xmoves horizontally, and both are related by a local bijection
hence the non-singularity of this configuration. The right-hand side diagram shows two
singular positions. In the green pose (where the robot’s main rigid bar is horizontal),



Fig. 1. The PR-RP in nonsingular poses (left) and in singular poses (right).

increasing or decreasing the command q entails a decrease of x, hence a locally non-
bijective correspondence between these values. In the red pose (where the robot’s main
rigid bar is vertical), increasing or decreasing the command q would entail a vertical
motion of the end-effector which is impossible due to the robot architecture, hence a
potential damage to the robot structure.

Kinematic model. The kinematic model of this robot is easily derived: The two revolute
joints coordinates are respectively (a, q) and (x, b), where a and b are the architecture
parameters corresponding to the length of the two horizontal and vertical small rigid
bars. Then the main oblique rigid bar enforces the distance between these two points to
be equal to its length l, a third architecture parameter. Hence, the robot kinematic model
is

(x− a)2 + (q − b)2 = l2. (1)

The solution set of the kinematic model, the circle of center (a, b) and radius l, is de-
picted on the left hand side diagram of Figure 2. The direct kinematic problem con-
sists in computing x knowing q, leading in the case of this robot to two solutions
a ±

√
l2 − (q − b)2 if q ∈ [b − l, b + l], no solution otherwise. Similarly, the in-

verse kinematic problem consists in computing q knowing x, leading to two solutions
b±
√
l2 − (x− a)2 provided that x ∈ [a− l, a+ l], no solution otherwise. This simple

robot is typical of parallel robots, which can have several solutions to their direct and
inverse kinematic problems. It is also typical regarding its singularities: It has two serial
singularities where the solution set has a vertical tangent, and two parallel singularities
where the solution set has a horizontal tangent (depicted in green and red on the left
hand side diagram of Figure 2). These four singularities split the solution set into four
singularity free components, called generalized aspects, which determine the singular-
ity free components of the reachable workspace of the robot, obtained by projecting
each aspect onto the x subspace of the robot positions.

Certified Enclosure of Generalized Aspects. The aim of this paper is to use numerical
constraint programming in order to compute some certified enclosures of the different



Fig. 2. Left: The PR-RP kinematic model solutions set. Right: The computed paving.

aspects. The standard branch and prune algorithm is adapted in such a way that solving
the robot kinematic model together with non-sigularity constraints leads to the enclo-
sure depicted on the right-hand side of Figure 2. The solution boxes in gray enjoy three
certificates:

1. For each box ([x], [q]) and each pose x inside [x], there exists a unique command q
inside [q] that satisfies the robot kinematic model.

2. Each box contains no singularity.
3. Each neighbor boxes are proved to contain a common solution.

The first two certificates show that each box is crossed by a single aspect, and that this
aspect covers the whole box projection on the x subspace. The third certificate allows
connecting neighbor boxes proving that they belong to the same aspect. Therefore, the
computed box covering shown on Figure 2 allows separating the four aspects, and pro-
vides, by projection, inner approximations of the reachable workspace of the robot.

3 Preliminaries

3.1 Numerical CSPs

Numerical constraint solving inherits principles and methods from discrete constraint
solving [11] and interval analysis [12]. Indeed, as their variables domains are con-
tinuous subsets of R, it is impossible to enumerate the possible assignments and nu-
meric constraint solvers thus resort to interval computations. As a result, they make
use of interval extensions of the functions involved in the considered constraints: a
function [f ] : IRn → IR is an interval extension of a function f : Rn → R iff
∀[a] ∈ IRn ∀a ∈ [a] f(a) ∈ [f ]([a]). The following subsections recall definitions and
present the classical branch and prune algorithm for numeric constraint solving.

Numerical Constraint Satisfaction Problems A numerical constraint satisfaction
problem (NCSP) is defined as a triple 〈v, [v], c〉 that consists of



Algorithm 1 Branch and prune
Require: NCSP 〈v, ([v]), C〉, precision ε > 0
Ensure: pair of lists of boxes (U ,S)
1: L ← {[v]}, S ← ∅ and U ← ∅
2: while L 6= ∅ do
3: [v]← Extract(L)
4: [v]← PruneC([v])
5: if [v] 6= ∅ then
6: if ProveC([v′]) then
7: S ← S ∪ {[v]}
8: else if wid[v] > ε then
9: L ← L ∪ Branch([v])

10: else
11: U ← U ∪ {[v]}
12: end if
13: end if
14: end while
15: return (U ,S)

– a vector of variables v = (v1, . . . , vn),
– an initial domain, in the form of a box, represented as [v] ∈ IRn, and
– a constraint c(v) := (f(v) = 0 ∧ g(v) ≥ 0), f : Rn → Re and g : Rn → Ri, i.e.,

a conjunction of equations and inequalities.

A solution of a NCSP is an assignment of its variables ṽ ∈ [v] that satisfies its
constraints. The solution set Σ of a NCSP is the region within [v] that satisfies its
constraints, i.e., Σ([v]) := {v ∈ [v] | c(v)}.

The Branch and Prune Algorithm The branch and prune algorithm [7] is the stan-
dard complete solving method for NCSPs. It takes a problem as an input and outputs
two sets of boxes, called respectively the undecided (U) and solution (S) boxes. It inter-
leaves refutation phases, known as the prune operation, that eliminate inconsistent as-
signments, and exploration steps, known as the branch operation, that divide the search
space into parts to be processed recursively, until a prescribed precision ε is reached.
Algorithm 1 shows a generic description of this scheme. It involves four subroutines:
Extract (extraction of the next box to be processed), PruneC (reduction of the do-
mains based on refutation of assignments that cannot satisfy a subset of constraints in
C), ProveC (certification that a box contains a solution of the problem), and Branch
(division of the processed box into subboxes to be further processed). Each of them
has to be instantiated depending on the problem to be solved. The procedure PruneC
obviously depends on the type of constraints involved in the problem (e.g. inequali-
ties, or equalities), as well as on other characteristics of the problem. The procedures
Extract and Branch allows defining the search strategy (e.g. breadth-first, depth-first,
etc.) which may be tuned differently with regards to the problem. The procedure ProveC
actually defines the aim of the branch and prune: Being a solution can take different



meaning depending on the considered problem and the question asked4. For instance,
if the question is to find the real solutions of a well-constrained system of equations,
then it will generally implement a solution existence (and often uniqueness) theorem,
e.g., Miranda, Brouwer or interval Newton [15], that guarantees that the considered box
contains a (unique) real solution; on the other hand, if the question is to compute the
solution set of a conjunction of inequality constraints, then it will usually implement
a solution universality test that guarantees that every real assignment in the considered
box is a solution of the NCSP.

3.2 Robotic

As illustrated in Section 2, a parallel robot architecture leads to its kinematic model
which is a system of equations relating the robot pose x to the commands q:

f(x,q) = 0. (2)

The subspaces restricted to the pose parameters x (resp. command parameters q) is
known as the workspace (resp. joint-space). The projection Σx (resp. Σq) of the solu-
tion set of equation 2 is called the robot reachable workspace (resp. reachable joint-
space). The solution set Σ itself is called the kinematic manifold and lies in what is
known as the (pose-commands) product space. In this paper, we restrict to the most
typical architectures which satisfy dimx = dimq = dim f = n. Then, by the im-
plicit function theorem, this system of equation defines a local bijection between x
and q locally provided that the matrices fx(x,q) and fq(x,q) are non-singular. The
configurations (x,q) that do not satisfy these regularity conditions are called singular
configurations (respectively serial or parallel singularities whether fq(x,q) or fx(x,q)
is singular). Note that these singularity conditions correspond to the horizontal and ver-
tical tangents at singular poses of the robot described in Section 2.

A key issue in robotics is to be able to control a robot avoiding singularities (in
particular reaching a parallel singularity can dramatically damage a robot). This leads
to the definition of generalized aspects [3] as maximal connected sets of nonsingular
configurations (x,q), in which all poses can be reached without crossing any singular-
ity. More formally, a generalized aspect (or in short, aspect) A is a maximal connected
set

{(x,q) ∈ Rn × Rn | f(x,q) = 0,det fx(x,q) 6= 0,det fq(x,q) 6= 0}. (3)

The projection Ax of an aspect A is a maximal singularity-free region in the robot
workspace. Knowing these regions allows roboticians to safely plan robot motions:
Any two poses in Ax are connected by at least one singularity-free path. In addition,
the study of aspects provides important information about robot characteristics, e.g.,
if exists (x,q) and (x,q′) in an aspect A and q 6= q′, i.e., two different commands
yield the same pose in this aspect, then the robot is said to be cuspidal. Cuspidal robots
are interesting because they can change working mode without crossing singularities,
yielding an extra flexibility in their usage.

4 For discrete CSPs, ProveC usually checks the given assignment satisfies the constraint.



4 Description of the Method

The proposed method for the generalized aspect computation relies on solving the fol-
lowing NCSP whose solutions are the nonsingular configurations of the robot:〈

(x,q) , ([x], [q]) , f(x,q) = 0 ∧ det fx(x,q) 6= 0 ∧ det fq(x,q) 6= 0
〉
, (4)

Let Σ([x], [q]) be the solution set of this NCSP. Our method computes a set of boxes
partly covering this solution set, grouped into connected subsets that represent approx-
imations of the aspects of the considered robot. The computed boxes have to satisfy
the specific properties stated in Subsection 4.1. The corresponding branch and prune
instantiation is described in Subsection 4.2. The connection between the output boxes
have to be certified as described in Subsection 4.3.

4.1 From the NCSP Model to the Generalized Aspects Computation

We aim computing a (finite) set of boxes S ⊆ IRn × IRn together with (undirected)
links N ⊆ S2 which satisfy the following three properties:

(P1) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∃!q ∈ [q], f(x,q) = 0;
(P2) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∀q ∈ [q],det fx(x,q) 6= 0 ∧ det fq(x,q) 6= 0;
(P3) ∀

(
([x], [q]), ([x′], [q′])

)
∈ N , ∃(x,q) ∈ ([x], [q]) ∩ ([x′], [q′]), f(x,q) = 0.

Property (P1) allows defining in each box ([x], [q]) ∈ S a function mgi([x],[q]) : [x]→
[q] that associates the unique command q = mgi([x],[q])(x) corresponding to a given
position x ∈ [x]. Property (P2) allows applying the Implicit Function Theorem to prove
that mgi([x],[q]) is differentiable (and hence continuous) inside [x]. Therefore, for a
given box ([x], [q]) ∈ S, the solution set restricted to this box

Σ(([x], [q])) =
{(

x,mgi([x],[q])(x)
)
: x ∈ [x]

}
, (5)

is proved to be connected and singularity free, and is therefore a subset of one general-
ized aspect. These properties are satisfied by the motivating example output shown on
the right-hand side of Figure 2.

Remark 1. Given box ([x], [q]) ∈ S and a position x ∈ [x], the corresponding com-
mand mgi([x],[q])(x) is easily computed using Newton iterations applied to the system
f(x, ·) = 0 with initial iterate mid[q].

Property (P3) basically entails that Σ([x], [q]) and Σ([x′], [q′]) are connected, and
are thus subsets of the same aspect. Finally, defining Sk ⊆ S to be the connected com-
ponents of the undirected graph (S,N ), the solution set enclosed within these boxes⋃

([x],[q])∈Sk

Σ([x], [q]) (6)

is proved to belong to one generalized aspect. The next two subsections show how to
instantiate the branch and prune algorithm in order to achieve these three properties.



4.2 Instantiaton of the Branch and Prune Algorithm

Pruning In our context, implementing the PruneC function as a standard AC3-like
fixed-point propagation of contracting operators enforcing local consistencies like the
Hull [TODO] [] or the Box consistency [TODO] [], or their combination when the
robot model implies multiple occurrences of the pose or command parameters in each
equations, is sufficient. Indeed, this allows an inexpensive refutation of non-solution
boxes. Moreover, stronger consistency can be achieved at no additional cost thanks to
the certification process described below: the Interval-Newton-based operator applied
for certifying that a box covers an aspect can also refute non-solution boxes and allows
pruning with respect to all the constraints simultaneously.

Search Strategy The standard search strategy for NCSPs applies appropriately in our
context. Because boxes are output as soon as they are certfied or have reached a pre-
scribed precision, using a DFS aproach to the Extract function is adequate and avoids
the risk of filling up the memory unlike a BFS or LFS5 approach. The Branch function
typically uses round-robin as a variable selection heuristic (i.e., all domains are split in
cycle) and bisection at midpoint as a split heuristic (i.e., a domain is always split into
two halves).
[TOCHECK] Dual-round-robin?

Solution Test The ProveC procedure of Algorithm 1 has to return true only when
Property (P1) and Property (P2) are verified. The former is related to proving the exis-
tence of solution which is performed using a parametric Newton operator as described
in the following paragraph. The latter require checking the regularity of some interval
matrices as describe in the next paragraph.

Existence proof. The standard way to prove that a box ([x], [q]) satisfies Property (P1)
is to use a parametric Interval Newton existence test (see [4, 6, 5]). Using the Hansen-
Sengupta version of the interval Newton (see e.g. [15]), the following sequence is com-
puted

[qk+1] = [H]([qk]) ∩ [qk] (7)

where [H] is the Hansen-Sengupta operator6 applied to the system f([x], ·) = 0. As
soon as ∅ 6= [qk+1] ⊆ int[qk] is verified, the box ([x], [qk+1]) is proved to satisfy
Property (P1), and hence so does ([x], [q]) since the former is included in the latter.
However, due to the bisection process of Algorithm 1 which has to bisect the domain
[q] for insuring convergence by separating different commands associated to the same
positions7, this test fails in practice in most situations. This issue was overcame in [5]

5 Largest-first search
6 In some presentation of the Hansen-Sengupta operator, the intersection with the previous iter-

ate is included inside [H]. This intersection is emphasized outside [H] in order to be able to
remove it in the following.

7 In [4], only problems where parameters have one solution were tackled, hence allowing suc-
cessfully using the parametric existence test (7).



(in the restricted context of constraints of the form x = f(q)) by removing the inter-
section in (7) in order to allow inflating and shifting [qk] if necessary (performing such
domain shifting and inflation by removing the intersection within a standard paramet-
ric existence test was already used in [6] in a completely different context related to
sensitivity analysis, and in a recently submitted work of the authors dedicated to the
projection of a manifold). An inflation has to be interleaved with the computation of
the Hansen-Sengupta sequence so as to allow the strict inclusion between two iterates,
leading to the computation of the following sequence:

[q̃k] = mid[qk] + τ([qk]−mid[qk]) and [qk+1] = [H]([q̃k]) (8)

Then the condition ∅ 6= [qk+1] ⊆ int[q̃k] also implies Property (P1) and is likely to
succeed as soon as ([x], [q]) is small enough and close enough to some nonsingular
solution, which eventually happens thanks to the bisection process. A typical value for
the parameter is τ = 1.01, which would have to be more accurately tuned for highly
badly conditioned problems, which is not the case of usual robots.

Regularity test. In order to satisfy the regularity constraints, the interval evaluation of
each jacobian fx and fq over the box ([x], [q]) has to be regular. Testing the regularity of
interval matrices is NP-hard, so sufficient conditions are usually used instead. Here, we
use the strong regularity of a square interval matrix [A], which consists in checking that
C[A] is strongly diagonally dominant, where C is usually chosen as an approximate
inverse of the midpoint of [A].

4.3 Connected Component Computation

The paving obtained in S at the end of the instance of the branch and prune algorithm
presented in the previous section provably covers a portion of the aspects of the con-
sidered robot. Otherwise said, the boxes in S satisfy Property (P1) and Property (P2)
(see Section 4.1). In order to distinguish boxes belonging to one specific aspect from
the rest of the paving, we use transitively the relation between linked boxes defined by
Property (P3), i.e., we have to compute connected components with respect to the links
in N (see Section 4.1). This is done in three steps:

1. compute boxes neighborhood relations, i.e., determine when two boxes share at
least one common point;

2. verify aspect connectivity in neighbor boxes, i.e., check Property (P3) to obtainN ;
3. compute connected components with respect to the verified links in N .

Computing Neighborhood Relations Two boxes ([x], [q′]) and ([x], [q′]) are neigh-
bors if and only if they share at least one common point, i.e., ([x], [q])∩([x′], [q′]) 6= ∅.
The neighborhood relations between boxes are obtained during8 the branch and prune

8 Note that the neighboring relations could also be computed from S once the branch and prune
has terminated. This would however be very time consuming to check pairwise intersections,
a naturally quadratic method, due to the probable huge size of S.



computation: after the current box has been pruned (line 4 of Alg. 1), its neighbors are
updated accordingly (it may have lost some neighbors); also, the boxes produced when
splitting the current box (line 9 of Alg. 1) inherit from (some of) the neighbors of the
current box, and are neighbors to one another. One delicate point in managing neighbor-
hood comes from the fact pose or command parameters are often angles whose domains
are restricted to a single period ([0, 2|pi] or [−π, π]); the periodicity of these parame-
ters has to be taken into account: boxes are neighbors when they share a common point
modulo 2π on their periodic dimensions.

Certifying Connectivity Between Neighbors Once the branch and prune algorithm
has produced the paving S and its neighboring information N , a post-process is ap-
plied to filter from N the links that actually do not connect certified boxes. Indeed,
neighborhood as defined above is not sufficient for two boxes to cover the same as-
pect: it could be that two neighbor boxes share no common point that satisfy the robot
kinematic relations f , e.g., if they each cover a portion of two disjoint, but close, as-
pects [TODO] (see Figure ??). Asserting neighborhood requires again a certification
procedure: For any neighbor boxes

(
([x], [q]), ([x′], [q′])

)
∈ N , we verify

∃q ∈ [q] ∩ [q′], f(mid([x] ∩ [x′]),q) = 0. (9)

Indeed, for connectivity to be certified, it is sufficient to prove that the intersection of
neighbor boxes share at least one point from the same aspect. Because neighbor boxes
([x], [q]) and ([x′], [q′]) are in S, they satisfy Property (P1) and Property (P2), i.e.,
∀x ∈ [x] ∩ [x′],∃!q ∈ [q], f(x,q) = 0 and ∃!q′ ∈ [q′], f(x,q′) = 0. We need to
check these unique values q and q′ are actually the same, and belong to [q] ∩ [q′].
Using the certification procedure described in Section 4.2 allows proving Equation 9.

Each link in N is certified this way. If the certification fails for a given link, it
is removed from N . This happens when the certification procedure contracts the box
[q] ∩ [q′] to ∅, in which case the link is in fact disproved, meaning the neighbor boxes
actually enclose disjoint parts of the aspects; it can also happen when the certification
procedure does not succeed in contracting sufficiently the box [q] ∩ [q′], in which case
the link may exist but could not be numerically proved, due for instance to the proximity
of some singular configuration.

Computing Connected Components Given the set N of certified connections be-
tween certified boxes in S, a standard connected component computation algorithm
(e.g. [8]) can be applied in order to obtain a partition of S into boxes covering the same
aspect of the considered robot.

5 Related Work

– Chablat, ROMANSY 18: [1]. Not certified existence nor connectivity. Requires a
priori separation of aspects using additional inequality constraints?

– Algebraic methods (they don’t actually compute generalized aspects, but dextrous
reachable workspace?) : [14, 13, 2]

– Other related works?



6 Experiments

[TODO] Add the didactic introductory example also? Add serial robots also if the paper
has been generalized (e.g., RRR, RP, and maybe redundant ones like RRRR)?

We present experiments on four planar robots with respectively 2 and 3 degrees of
freedom, yielding respectively a 2-/3-manifold.

Robot Models [TODO] Insert a figure with the robot architectures; replace abstract
values by real used architecture parameter values; insert citations for these robots and
the used architectures; decide whether to keep extensive descriptions of robots and their
equations.

Fig. 3. Tested robots: (a) RP-RPR, (b) RRR-RR, (c) 3-RPR, (d) 3-RRR

RP-RPR This robot has two arms, each connecting an anchor point to its end-effector,
each composed of a revolute joint, a prismatic joint and again a revolute joint in se-
quence. The end-effector lies at the shared extremal revolute joint and is described
as a 2D point (x1, x2). The prismatic joint in each arm is actuated, allowing to vary
the arms lengths. The arm lengths are considered to be the command (q1, q2) of the
robot. Given the architecture parameters used in [?], the kinematic equations are:

(x1 −XA)2 + (x2 − Y A)2 − q21 = 0

(x1 −XB)2 + (x2 − Y B)2 − q22 = 0

RRR-RR This robot has two arms, each connecting an anchor point to its end-effector,
each composed of three revolute joints in sequence. The end-effector lies at the
shared extremal revolute joint and is described as a 2D point (x1, x2). The revolute
joint at the anchor in each arm is actuated, allowing to vary the angles of the arms.
The angles with respect to the horizon are considered to be the command (q1, q2)
of the robot. Given the architecture parameters used in [?], the kinematic equations
are:

(x1 −XA− L1 cos(q1))2 + (x2 − Y A− L1 sin(q1))2 − L22 = 0

(x1 −XB − L3 cos(q2))2 + (x2 − Y B − L3 sin(q2))2 − L42 = 0

3-RPR This robot has three arms, each connecting an anchor point to its end-effector,
each composed of a revolute joint, a prismatic joint and again a revolute joint in se-
quence. The end-effector is a triangular platform whose vertices are attached to the
extremal revolute joints of the arms. The position parameters (x1, x2, x3) represent
the coordinates (x1, x2) of one vertex of the platform, and the angle x3 between its
basis and the horizon. The prismatic joint in each arm is actuated, allowing to vary
the arms lengths. The arm lengths are considered to be the command (q1, q2, q3)
of the robot. Given the architecture parameters used in [?], the kinematic equations



are:
(x1 −XA)2 + (x2 − Y A)2 − q21 = 0
(x1 + P1 cos(x3)−XB)2 + (x2 + P1 sin(x3)− Y B)2 − q22 = 0
(x1 + P2 cos(x3 +AL)−XC)2 + (x2 + P2 sin(x3 +AL)− Y C)2 − q23 = 0

3-RRR This robot9 has three arms, each connecting an anchor point to its end-effector,
each composed of three revolute joints in sequence. The end-effector is a triangular
platform whose vertices are attached to the extremal revolute joints of the arms. The
position parameters (x1, x2, x3) represent the coordinates (x1, x2) of one vertex of
the platform, and the angle x3 between its basis and the horizon. The revolute joint
at the anchor of each arm is actuated, allowing to vary the angles of the arms. The
angles with respect to the horizon are considered to be the command (q1, q2, q3) of
the robot. Given the architecture parameters used in [?], the kinematic equations
are:
(x1 −XA− L1 cos(q1))2 + (x2 − Y A− L1 sin(q1))2 − L22 = 0
(x1 + P1 cos(x3)−XB − L3 cos(q2))2 + (x2 + P1 sin(x3)− Y B − L3 sin(q2))2 − L42 = 0
(x1 + P2 cos(x3 +AL)−XC − L5 cos(q3))2 + (x2 + P2 sin(x3 +AL)− Y C − L5 sin(q3))2 − L62 = 0

Results of the method We have computed the aspects of these robots using the method
described in Section 4. Because the computation requires an exponentially growing
time with respect to the prescribed precision, we used a quite rough precision setting
of 0.1 for all computations. [TOCHECK] The importance of the precision 0.01 (in-
stead of 0.1) for the 3-RRR robot, especially if not knowing (even approximately), the
exact number of aspects. [COMMENT] 0.2 is used for 3−RPR and 0.01 is used
for 3−RRR. Indeed, we expect the certification procedure to succeed on quite large
boxes, hence, the proportion of the search-space that remain non-certified should be
small. Our method outputs certified boxes grouped by certified connected components
as explained in Section 4. Hence we can count not only the number of output boxes
but also the number of output certified connected components. Table 1 provides some
figures on our computations. Its columns represent the different robots we consider.
Line ”aspects” provides the theoretically established number of aspects of each robots.
Note that this value is unkonwn for the 3-RRR robot. Lines ”# boxes” and ”# CC” give
respectively the number of boxes and the number of connected components returned by
out method. Line ”time” of the table gives the overall computational time in seconds
of the method, including the post-processes. The experiments were run using a 3.4GHz
Intel Xeon processor with 16GB of RAM. [TODO] The implementation should be ex-
plained?

Remark that despite the quite coarse precision we use, the number of output boxes
can be very large, due to the dimension of the search space we are paving. The number
of connected components is much smaller, but still it is not of the same order as the theo-
retically known number of aspects, implying numerous disjoint connected components
does in fact belong to the same aspect. This is explained by the numerical instability
of the kinematic equations of the robots in the vicinity of the aspect boundaries, which
are singularities of the robot. Indeed, in these regions, the numerical certification pro-

9 The 3-RRR is to hard for the current implementation of the method, so we considered this
robot with a fixed orientation



Table 1. Experimental Results.

PR-RP RP-RPR RRR-RR 3-RPR 3-RRR
# aspects 4 2 10 2 unknown
# boxes 26 1164 69612 7597211 5814482
# CC 4 2 819 1952 13886
# CCfiltered 4 2 10 2 24
time (s) 0.002 0.19 24 6300 4600

cess cannot operate homogeneously resulting in disconnected subsets of certified boxes,
separated either by non-certified boxes or by non-certified links.

This issue is overcome as follows: the region close to the boundary of the aspects
represent in fact a very small proportion of the robot workspace, since the boundaries
are one dimension less than the aspects. As a result, the disjoint connected components
in these regions have a very small volume, several orders of magnitude smaller than
regular components. It is thus possible to filter out these ”spurious” tiny components as
they have no practical use in robotics. Applying this filtering post-process, the number
of obtained connected components, reported at Line ”# CCfiltered” in Table 1, decreases
drastically and reaches just the known theoretically known number of aspects in the case
of the robots we consider. This indicates that the major part of each aspect is indeed
covered with a single large, regular, connected component. The connected components
retained after filtering are depicted in Figure 4. They graphically correspond to the
aspects of the robots for which they are theoretically known (e.g., see [?,?]). [TODO]
Add the bibliographic references to papers displaying aspects of the considered robots
here.

7 Conclusion

[TODO] Limitation: How to choose ε? The algorithm can used in an anytime way, and
stopped after some resource (time or memory limitation) is consumed.
[COMMENT] Future work, for extended version:

– Dual round-robin
– All together⇒ 3-RRR with no fixed orientation
– Handling arms collision avoidance and small uncertainties in geometric model pa-

rameters
– Parallelotope computation proposed in [] could provide some strong improvement

of the proposed method, but require extending their usage to higher dimension and
certifying their projection into the workspace.
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Fig. 4. [TODO] Temporary figures. Projections into the workspace of the computed aspects (after
filtering): (a) RP-RPR, (b) RRR-RR, (c) 3-RPR, (d) 3-RRR
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