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ON QUANTUM COMPLEX FLOWS

THIERRY PAUL

Abstract. We study the propagation of quantum Töplitz observables through quantized com-
plex linear canonical transformation of one degree of freedom systems. We associate to such a
propagated observable a non local “Töplitz” expression involving off diagonal terms. We study
the link of this constrauction with the usual Weyl symbolic paradigm.
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1. Introduction and main result

Complex quantum Hamiltonians have (re)gained a lot of interest these last years, see
e.g. the book [L10] and all the references quoted there. It seems that, at the contrary,
quantization of complex symplectic flows didn’t get the interest it deserves as it did at
the period of the birth of Fourier integral operators, see [MS74] for example. Inside this
category, representation of linear complex symplectic flows, namely the complex symplec-
tic group and its corresponding complex metaplectic representation has also lost most of
interest since the golden years of “group theoretical methods in physics”, see [G75].

Let us remark that, since complex numbers are (according to us) necessary to the for-
mulation of quantum mechanics, considering the Schrödinger equation on a Hilbert space
H with complex (e.g. bounded) Hamiltonian H does not create any intrinsic a priori dif-
ficulty, a property that classical mechanics (on a real symplectic phase space P) doesn’t
share with its quantum counterpart. The quantum flow is still given by e�itH{~ which exists
(of course it is not anymore unitary) for all time for example when H is bounded. e�itH{~

defines for any t P R a bounded operator on H, at the contrary of the Lie exponential L�th

associated to the symbol h of H which doesn’t apply on P because the Hamiltonian vector
field associated to h is not tangent to P anymore.
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2 THIERRY PAUL

This complex setting is not the only one leading to to a situation where quantum mechan-
ics is well defined while its underlying classical counterpart is not. Little regular potentials
(or more generally Hamiltonians) generating vector fields below Cauchy-Lipschitz regu-
larity condition are also examples of perfectively well defined quantum dynamics having
a classical counterpart ill-defined, at least in the standard sense of this word. Another
situation deals with classical chaotic systems, and the semiclassical approximation of its
quantum counterpart in the case where the Planck constant ~ vanishes and the time evo-
lution diverges, the two limits being taken at the same time and being correlated. This
twofold limit correspond to the classical (in the sense of ~ Ñ 0) limit of the quantum flow
taken at time infinite and could be naively though being the classical dynamics at time
t � 8, which doesn’t exist, especially for chaotic systems.

We have been studied these singular (with respect to the classical underlying dynamics)
situations in a series of articles dealing with the semiclassical approximation of the quantum
dynamics. In [AP13] was shown on examples potentials giving rise to BV (and not more)
vector field how quantum initial conditions of the Schrödinger equation select between the
several1 possible classical trajectories the one obtained at the classical limit (“superposition
of them are also reachable). In [AFFGP11, FLP12] is shown in the general BH case how the
Di Perna-Lions [DPL88] classical flow associated to these singular Hamiltonians is recovered
at the classical limit, see [P13] for a (short) review of results concerning singular potentials.
Long time semiclassical “chaotic” evolution was first apprehended in [P08], where splitting
and reconstruction of evolved coherent states was shown to happen around hyperbolic fixed
points of the classical dynamics, and is studied more systematically in [P12] where we show
that the limit ~ Ñ 0, tÑ 8 leads to non standard classical limit : the phase space - locus
where the symbol of the evolved observable is defined - becomes a noncomuutative space
(space of leaves of the invariant foliation of the classical flow). Finally in [P16] we studied
“quantum” observables constructed in the framework of topological quantum fields theory
involving even more singular (below continuous) naive symbols. A change of paradigm
dealing with operator valued symbols is introduced in order to define the “right” symbol
(and the right underlying phase-space).

In all these papers, the phase space (and therefore the dynamics) obtained by taking
the classical limit ~ Ñ 0 has had to be changed from the (standar symplectig manifold)
expected ones: [P08, AP13] the limit dynamics becomes probabilistic (or ubiquitous), in
[AFFGP11, FLP12] the limit flow is only defined almost everywhere and in [P12, P16]
the phase space becomes a noncommutative space. Moreover in [P12, P16], though it is
the standard quantum dynamics which is studied, new types of quantizations were needed
both in a form of, say, non local Töplitz quantization. The goal of the present little paper
is to show how the standard quantization of complex linear canonical transformations
can be understood in terms of real flows (actually two) and a genuine change of type of
quantization.

1due to ill-definiteness of the dynamics not satisfying Cauchy-Lipschitz condition
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We will study conjugation of quantum observables given by the Töplitz (anti-Wick)
construction by complex metaplectic operators. In order to avoid heavy notation, we will
be, in most of the paper, concern with the one degree of freedom case: a two dimensional
phase space that will be, for simplicity, C.

More precisely we consider operators of the form

H �
»
C
hβpzq|ψβz yxψβz |

dzdz

2π~
.

where the family of coherent states ψβz is defined, for =β ¡ 0, by

ψβz ��
e�

βpx�z�q
2

2~ ei
z�x
~

pπ~{βq 1
4

Note that the standard Töplitz quantization correspond to β � 1, but β will show to be a
true dynamical variable, so we need to consider it as a degree of freedom. the link between
different hβp�q leading to the same operator H (in particular the standard case) is given
below, in Appendix B, Lemma 17. One has»

C
hβpzq|ψβz yxψβz |

dzdz

2π~
�
»
C
hβ1pzq|ψβ1z yxψβ

1

z |
dzdz

2π~
ðñ hβ � e

� ~
4
pβ�β1q∆x�

~
4
p 1
β
� 1
β1
q∆ξhβ1 ,

(1.1)
for <pβ � β1q   0. <p 1

β
� 1

β1
q   0.

An easy computation shows that, when hβpzq :� 1, H � Id for any value of β.

We consider the operator UpSq�1HUpSq, conjugated of H by the operator UpSq where
S is a complex 2 � 2 matrix of determinant one and U is the metaplectic representation.
More precisely UpSq is the operator of integral kernel given by

Upx, yq � 1?
b2π~

e�
i

2b~pdx2�2xy�ay2q b � 0

(1.2)

� 1?
a
δ
�x
a
� y

	
ei

c
a
x2

2 b � 0

In order to show of (1.2) can be derived, let us recall that one way to define the metapletic
representation is through the formula

S

�
x

�i~Bx



�
�

UpSqxUpSq�1

UpSqp�i~BxqUpSq�1



. (1.3)

Writing that UpSq is unitary by UpSq�1 � UpSq�, that is U�1px, yq � Upy, xq we get for

S �
�
a b
c d



, an equation whose solution is (1.2), of course modulo a global phase.
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It is well known and easy to derive after (1.3) that, when S is real the Weyl symbol of
UpSqHUpSq�1 is the push-forward of the Weyl symbol of H by S. namely

σWeyl
UpSqHUpSq�1

�
q

p



� σWeyl

H

�
S�1

�
q

p




. (1.4)

An easy computation, see Lemma 18 below, shows that this implies the following result.

UpSqHUpSq�1 �
»
hβSpβqpS�1zq|ψβz yxψβz |

dzdz

2π~
with βSpβq � iS � p�iβq,

where S � z � az�b
cz�d

.
Of course this formula doesn’t make any sense when S is not real any more for general

symbols h. But we will see that there is a general “off-diagonal” Töplitz representation of
the form

UpSqHUpSq�1 � CS

»
hβSpβqpT�1

S pzqq|ψβS�1S
zS yxψβ1Sz |dzdz

2π~
.

The main result of the present short note is the following theorem.
Notation: through the all paper we will denote by z� P R and z� P R the real and

imaginary parts of z P C, i.e. z � z� � iz� and Sc the matrix complex conjugate to S.

Theorem 1 (Off-diagonal Töplitz representation). Let ψβz � e�
βpx�z�q

2

2~ ei
z�x
~

pπ~{βq
1
4

, β� ¡ 0 and

H �
»
hpzq|ψβz yxψβz |

dzdz

2π~
.

Then, for S �
�
a b
c d



P SLp2,Zq satisfying

pad� cbq� � βpdb� caqq� ¡ 0, p�q

UpSq�1HUpSq �
»
hβSc pβqpβTSczq

e
QSpzq

~ q

Dβ

S
Dβ
S�1

|ψβS�1Sc pβq

βTS�1Sc pzq
yxψβz |

dzdz

2π~β
,
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where, for all S 1 �
�
a1 b1

c1 d1



P SLp2,Zq,

βS1pβq � �c1 � id1β

b1β � ia1
� iS 1�1 � p�iβq

βTS1pq � ipq � qS
1 � ipS

1

defined through

βS1pβqqS1 � ipS
1 � βS1pβqqS1 � ipS1 ,

�
qS1

pS1



:� S 1

�
q

p




hβ1pzq is given by (B.1)

Dβ
S1 � pβ�{pβS1q�q 1

4

pb1β � ia1q1{2
and

δ �
�

b

bβ � id
� b

bβ � id

�
ppT�1

S
zq� � iβpT�1

S
zq�q2

2QSpzq � pTS�1T�1
S
zq2�βS�1 � 2pT�1

S
zq2�β � z2

�βS � δ.

Note that, in particular

T�1
S

� 1

pβSq�β|bβ � id|2
� ppd� ibβqβSq� �pd� ibβq�
�ppd� ibβqβSβq� ppd� ibβqβq�



, (1.5)

TS�1T�1
S

� 1

pβSq�pβS�1q�β|bβ � id|4
� ppd2 � b2β2qβSβq� ppd2 � b2β2qβq�
ppd2 � b2β2qβS�1βSβq� ppd2 � b2β2qβS�1βq�



.

(1.6)

Remark 2. We could have thought to try to use UpSq�1HUpSqψβz for H pseudo, but this
creates Op~8q terms in competition with the large, as ~ Ñ 0, terms of the norm of UpSqψβz .

The main result of ths paper shows that, associated to the complex mapping (flow) S
are ssociated two real (non f;low) mappings.

An example. a � d � 1, b � 0, c � �it (quantum multiplication by e�tx
2{2) treated in

Appendix 3. we have

βSpβq � β � t,

�
qS
pS



�
�

β�
β��t

0

0 1


�
q
p



, C � �tβ

β � t
� q2

2
, for β ¡ 0

we get (β ¡ 0)

UpSq�1HUpSq �
»
h

�
β � t

β
q, p



e
t2pβ�tq
βpβ�tq

q2

~ |ψβ�t
pβ�t
β�t

q,pq
yxψβ�tz | dzdz

2π~β
,

We computed in Section 3 several simple examples.
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2. Proof of Theorem 1

Lemma 3. Let S �
�
a b
c d



P SLp2,Rq � Spnp2,Rq. We define U � UpSq the operator

on L2pRq defined through its integral kernel

Upx, yq � 1?
b2π~

e�
i

2b~pdx2�2xy�ay2q b � 0

� 1?
a
δpx
a
� yqei ca x

2

2 b � 0

(remark that U is continuous as an opertaor as bÑ 0. Then U is unitary and

UpSq�1

�
Q
P



UpSq � S

�
Q
P




Lemma 4. Let, for β P C, <β ¡ 0 and pq, pq P R2 the coherent state ψβq,p defined by

ψβq,ppxq :�
�
<β
π~


 1
4

e�
β
2~ px�qq

2

ei
px
~ .

Let S �
�
a b
c d



P SLp2,Rq � Spnp2,Cq and let U � UpSq be defined through its integral

kernel

Upx, yq � 1?
b2π~

e�
i

2b~pdx2�2xy�ay2q b � 0

� 1?
a
δpx
a
� yqe�i ca x

2

2 b � 0

Then (when it exists, that is when <pia
b
� βq ¡ 0 or b � 0)

UpSqψβq,p � De
C
~ ψβSqS ,pS
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where, denoting z� � <z, z� � =Z,

βS � 1 � idrbβ � ias
b2β � iab

� �c� idβ

bβ � ia��β� �1
β� 0


�
q
p



�

�ppbβ � iaqβSq� �pbβ � iaq�
ppbβ � iaqβSq� pbβ � iaq�


�
qS
pS



õ for pβSq� � 0 since |bβ � ia| � 0�

qS
pS



� 1

pβSq�|bβ � ia|2
� pbβ � iaq�
�pβSpbβ � iaqq�

pbβ � iaq�
pβSpbβ � iaqq�


��β� �1
β� 0


�
q
p



�
qS
pS



� 1

pβSq�|bβ � ia|2 �
� ppa� ibβqβqq� pa� ibβq�
ppa� ibβqβSβqq� ppa� ibβqβSq�


�
q
p




� 1

pβSq�

�p β
a�ibβ

q� p 1
a�ibβ

q�
p βSβ
a�ibβ

q� p βS
a�ibβ

q�

��
q
p




C � 1

2
pβSq2

S � βq2 � b

bβ � ia
pβq � ipq2q

D � Dβ
S � pβ�{pβSq�q 1

4

pbβ � iaq 1
2

Note that, as mentioned already, this is uniform as b Ñ 0 as, as b Ñ 0, d Ñ 1
a
� 0 and

therefore βS Ñ i c
a
� β

a2 . One get�
qS
pS



� 1

pβSq�|a|2
� paβq� a�

paβSβq� pβSaq�

�

q
p




We will also denote �
qS

pS



� S

�
q
p



Note that one has the following

Lemma 5.

βSqS � ipS � i

bβ � ia
pβq � ipq � βSq

S � ipS.

3. Examples

 a � d � 1, b � 0, c � �it (quantum multiplication by e�tx
2{2)

βS � β � t,

�
qS
pS



�
�

β�
β��t

0

0 1


�
q
p



, C � �tβ

β � t
� q2

2
, for β ¡ 0

For β � 1 we have

βS � 1 � t,

�
qS
pS



�
�

1
1�t

0
0 1


�
q
p



, C � � t

1 � t
� q2

2
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 a � d � 1, b � it (complex free evolution)

βS � β

tβ � 1
,

�
qS
pS



�
�

1 0
0 1

1�tβ


�
q
p



, C � �tβ2

tβ � 1
� q2

2
, for β ¡ 0

 a � d�1 � eit, b � c � 0 (complex dilation) (write β � |β|e�2is)

βS � βe�2it,

�
qS
pS



� 1

cos 2pt� sq
�

cos pt� 2sq sin t
|β|

|β| sin t cos pt� 2sq

�

q
p



, C �

When β � 1 we get�
qS
pS



� 1

cos 2t

�
cos t sin t
sin t cos t


�
q
p



, C �

 S �
�

cosh t i sinh t
�i sinh t cosh t



(complex time harmonic oscillator)

(we take β ¡ 0)

βS � sinh t� β cosh t

cosh t� β sinh t
,

�
qS
pS



�
�

β
sinh t�β cosh t

o

0 β
cosh t�β sinh t

��
q
p



,

C � β2

�
1

psinh t� β cosh tqpcosh t� β sinh tq � 1



q2

2

When β � 1 we get

βS � 1,

�
qS
pS



� e�t

�
q
p



, C � pe�2t � 1qq

2

2

4. More features

4.1. Link with Weyl.

Theorem 6. Let H with Töplitz symbol h. Let us denote by σ~
H the Weyl symbol of H

(note that σ~
H is an entire function). Then

σ~
UpSq�1HUpSq � σ~ � S

and

σ0
UpSq�1HUpSqpq, pq �

»
ĥpξ, xqe�ipqSξ�pSxqdxdξ.
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4.2. Flows on extended phase-space. Consider on the extended phase space C � C �
tpz, βqu the mapping

ΦS : pβ, zq ÞÑ pβSpβq, T βS zq.
.

Theorem 7.

ΦSS1 � ΦSΦS1 .

4.3. Passing shocks.

Proposition 8. Let us suppose that bβ� ia � 0 (note that it is enough to change the value
of β for this condition to be satisfied. Then

@z P C, UpSqψβz P D1pRq.

Theorem 9. Let S �
�
a b
c d



, bβ � id � 0 � dβ � ic, then UpS�1qHUpSq is a bounded

operator L2pRq Ñ D1pRq and is given by the formula in Theorem 1.

Coming back to the example a � d � 1, b � 0, c � �it (quantum multiplication by

e�tx
2{2), we get, at t � β,

UpSq�1HUpSq �
»
h p2q, pq eCz~ |ψ0

pq,0qyxψ2β
z | dzdz

2π~β
,

where we denote @q, ψ0
pq,0qpxq � 1.

Appendix A. More Lemmas

Lemma 10. Let S �
�
a b
c d



. Note that S�1 �

�
d �b
�c a



.

UpSq� � UpSq with S :�
�
d �b
�c a




UpSq�1 � UpS�1q
Note that

SS 1 � S 1S.

Moreover

Lemma 11.

pβSq� � β
pad� bcq� � βpab� cdq�

|bβ � ia|2

pβSq� � β
pad� cbq� � βpdb� caq�

|bβ � id|2

pβS�1q� � β
pad� bcq� � βpdb� caq�

|bβ � id|2
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βS�1 � βS � 2β

b2β2 � d2

βS�1 � βS � �2iβ

b2β2 � d2

Let us define �
qS
pS



:� βTS

�
q
p



Lemma 12.

DetβTS � β�

βT
�1
S

� 1

pβSq�β|bβ � id|2
� ppd� ibβqβSq� �pd� ibβq�
�ppd� ibβqβSβq� ppd� ibβqβq�



and

βTpSq�1 � 1

pβS�1q�|bβ � id|2
� ppd� ibβqβq� pd� ibβq�
ppd� ibβqβS�1βq� ppd� ibβqβS�1q�



Lemma 13.

qS
�1 � βS�1pβqqS�1 � βSpβqqS � ippS�1 � pSqq

βS�1pβq � βSpβq
� zS�1 � zS

βS�1pβq � βSpβq

pS
�1 � βSpβqpS�1 � βS�1pβqpS � iβSpβqβS�1pβqpqS�1 � qSq

βSpβq � βS�1pβq � �ipβSzS�1 � βS�1pβqzSq
βSpβq � βS�1pβq

Proposition 14. βT
�1
S

and βTS�1 determine S and β.

Proof. T�1
S

determine bβ � id and etc, and TS�1 determine bβ � id and etc. Moreover one
has ad� bc � 1. Thos gives five equalities for five unknowns. �

Proposition 15.

βTS�1βT
�1
S

� 1

pβSq�pβS�1q�β|b� id|4
� ppd2 � b2β2qβSβq� pd2 � b2β2q�
ppd2 � b2β2qβS�1βSβq� ppd2 � b2β2qβS�1βq�




Moreover denoting βT
�1
S

�
q
p



�
�
q1

p1



and βTS�1βT

�1
S

�
q
p



� TS�1

�
q1

p1



�
�
q”
p”



, we have

βq1 � ip1 � pd� ibβqpβSq � ipq
õ

βq1 � ip1 � pic� dβqq � ipd� ibβqp

βS�1q” � ip” � 1

d� ibβ
pβq1 � ip1q

� d� ibβ

d� ibβ
pβSq � ipq

õ
pc� iaβqq” � ip�bβ � idqp” � pc� iaβqq � ip�b� idqp.
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We deduce that

β1TS1βTS � βTS1S, β1 � βSpβq
β1T

�1
S1 βT

�1
S � β1T

�1
SS1 , β � βS1pβ1q

β1T
�1
S1 βTS � βTpS1q�1S, βS1pβ1q � βSpβq
βSpβS1q � βSS1

β � βS�1pβSq
βT

�1
S � βSpβqTS�1

Note that, when β ¡ 0, q1 � pβSq�
β
q and p1 � p� pβSq�q.

Appendix B. Weyl

Lemma 16.

σ
|ψβz¡ ψ

β1

z1
|

Weyl px, ξq �d
2
a
β�β1�

β � β1
1

~
e
� ββ1

2pβ�β1q~
pq�q1�2xq2

e
� 1

2pβ�β1q~
pp�p1�2ξq2

eirpp�p
1qx�pp�p1�2ξqpβpx�qq�β1px�q1qq{pβ�β1q~s

In particular when z � z1, β � β1 ¡ 0,

σ
|ψβz¡ ψ

β
z |

Weyl px, ξq � 1

π~
e�

βpq�xq2

~ e�
pp�ξq2

β~

Corollary 17. »
hβpzq|ψβz yxψβz |dz �

»
hβ1pzq|ψβ1z yxψβ

1

z |dz.

if and only if

hβ1px, ξq � e
~β

1�β
ββ1

∆x
4
�~pβ�β1q

∆ξ
4 hpx, ξq, β1�   β�,

β1�
|β1|2  

β�
|β|2 . (B.1)

Proof. From Lemma 16 we get that

e
~
β

∆x
4
�~β

∆ξ
4 hpx, ξq � e

~
β1

∆x
4
�~β1

∆ξ
4 hβ1px, ξq.

�

Lemma 18.

Proof. �
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Appendix C. Miscellaneous

u�v� � u�v� � puvq�
u�v� � u�v

� � puvq�
u�v� � u�v� � puvq�

e�
β
2~ px�zq

2

ei
z1x
~ � e�

β
2~ px�qq

2

ei
px
~ e�

z2�q2

2~ , βq � ip � βz � iz1

»
e�β

x2

2 eipxdx � p2π{βq 1
2 e�

p2

2β

xψβ1z1 |ψβz y � pββ1q1{4
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