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BANDWIDTH SELECTION FOR THE WOLVERTON-WAGNER
ESTIMATOR

FABIENNE COMTE* AND NICOLAS MARIE**

Abstract. For n independent random variables having the same Hölder con-
tinuous density, this paper deals with controls of the Wolverton-Wagner’s
estimator MSE and MISE. Then, for a bandwidth hn(β), estimators of β
are obtained by a Goldenshluger-Lepski type method and a Lacour-Massart-
Rivoirard type method. Some numerical experiments are provided for this last
method.

Contents

1. Introduction 1
2. Bounds on the MSE and the MISE of Wolverton-Wagner’s estimator 3
3. Goldenshluger-Lepski’s method for Wolverton-Wagner’s estimator 5
4. The Lacour-Massart-Rivoirard (LMR) estimator 7
4.1. Estimator and main result 7
4.2. Simulation experiments 7
4.3. Back to recursivity 11
5. Concluding remarks 12
6. Proof of Proposition 4.2 13
6.1. Steps of the proof 13
6.2. Proof of Lemma 6.1 16
6.3. Proof of Lemma 6.2 18
6.4. Proof of Lemma 6.3 19
References 20

MSC2010: 62G07

1. Introduction

Consider n ∈ N∗ independent random variables X1, . . . , Xn having the same
probability distribution of density f with respect to Lebesgue’s measure.

The usual Parzen [10] - Rosenblatt [11] kernel estimator of f is defined by

f̂n,h(x) :=
1

nh

n∑
k=1

K

(
Xk − x
h

)
; x ∈ R,

where h > 0 and K : R → R+ is a kernel. In 1969, Wolverton and Wagner
introduced in [14] a variant of f̂n,h(x) defined by

(1) f̂n,hn(x) :=
1

n

n∑
k=1

1

hk
K

(
Xk − x
hk

)
,

Key words and phrases. Wolverton-Wagner estimator ; Density estimation ; Model selection ;
Goldenshluger-Lepski method ; Lacour-Massart-Rivoirard method.
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where hn = (h1, . . . , hn) and 0 < hn < · · · < h1. Thanks to its recursive form, this
type of estimator is well-suited to online treatment of data: by denoting hn+1 =
(h1, . . . , hn, hn+1),

f̂n+1,hn+1
(x) =

n

n+ 1
f̂n,hn(x) +

1

(n+ 1)hn+1
K

(
Xn+1 − x
hn+1

)
.

Thus, up-dating the estimator when new observations are available is easy and fast.

We can mention here that several variants or generalizations of the Wolverton
and Wagner (WW) estimator have been proposed: see Yamato [15], Wegman and
Davies [13], Hall and Patil [5]. They were studied from almost sure convergence
point of view, or asymptotic rates of convergence under fixed regularity assump-
tions. We choose to focus on Wolverton and Wagner estimator but our results and
discussions may be applied to these.

Theoretical developments concerning either classical Parzen-Rosenblatt or WW re-
cursive kernels estimators occurred recently following different and independent
roads.
On the one hand, several recent works are dedicated to efficient and data-driven
bandwidth selection, see Goldenshluger and Lespki [4] and several companion pa-
pers by these authors, or Lacour et al. [7] who proposed a modification of the
method. The original Goldenshluger and Lepski (GL) method was difficult to im-
plement because it turned out to be numerically consuming and with calibration
difficulties, see Comte and Rebafka [3]. This is why the improvement proposed in
Lacour et al. [7] has both theoretical and practical interest.
On the other hand, the increase of computer speed and of data sets sizes made fast
up-dating of estimators mandatory. The theoretical developments in this context
are in the field of stochastic algorithms (see e.g. Mokkadem et al. [9]) or in view
of specific applications (see Bercu et al. [2]).

Bandwidths have to be chosen for WW estimators as for Parzen-Rosenblatt ones,
and this choice is crucial to obtain good performances. This is why we propose to
extend to this context general risk study as described in Tsybakov [12] and the GL
method as improved by Lacour et al. [7]. More precisely, considering for instance
hk = k−γ for a parameter γ > 0 in formula (1), we study adaptive selection of
γ. We prove risk bounds for the Mean Integrated Squares Error (MISE) of the
resulting estimator f̂n,ĥn where ĥn = (ĥ1, . . . , ĥn) and ĥk = k−γ̃ .
Amiri [1] proved that for f with regularity 2 and an adequate choice of the band-
width, Parzen-Rosenblatt’s estimator had asymptotical smaller risk than the WW
estimator. We propose an empirical finite sample study of this question, together
with an interesting insight on the gain brought by higher order kernels.
Now, clearly, plugging γ̃n = γ̃(X1, . . . , Xn) in the estimator makes the recursivity
fail. Therefore, an adequate strategy is required, either with initial estimation of γ
on the first n-sample and recursive up-dating relying on this "frozen" value on the
following N -sample,or with adequate matrix updating for γ̃n+1? selection. This is
what is experimented in our final section, and empirically illustrated and discussed.

This paper provides in Section 2 controls of the MSE and of the MISE of the esti-
mator f̂n,hn under general regularity conditions on f . Then, in Section 3, the well-
known Goldenshluger-Lepski’s bandwidth selection method for Parzen-Rosenblatt’s
estimator is extended to Wolverton-Wagner’s estimator. Lastly, an estimator in the
spirit of Lacour et al. [7] is studied from both theoretical and practical point of
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view in Section 4. In particular, a recursive global strategy is proposed. Concluding
remarks are given in Section 5. Section 6 deals with the proof of Proposition 4.2
which provides a suitable control of the MISE of the adaptative estimator obtained
via the LMR-type selection method. All the other proofs are relegated in a supple-
mentary material document.

Notations:
(1) Consider α ∈ (0, 1). The space of α-Hölder continuous functions from T

into R is denoted by Cα(T) and equipped with the α-Hölder semi-norm
‖.‖α defined by

‖ϕ‖α := sup
x,y∈T:x 6=y

|ϕ(y)− ϕ(x)|
|y − x|α

; ∀ϕ ∈ Cα(T).

(2) Let β, L > 0, and T an interval of R. The Hölder class Σ(β, L) on T is the
set of functions ϕ : T → R such that ϕ(`), where ` := bβc, is the greatest
integer less than or equal to β, exists and satisfies ‖ϕ‖β−` 6 L.

(3) Let β, L > 0. The Nikol’ski class H(β, L) is the set of function ϕ : R → R
such that ϕ(`) exists and satisfies[∫ ∞

−∞

(
ϕ(`)(x+ t)− ϕ(`)(x)

)2

dx

]1/2

6 L|t|β−`, ∀t ∈ R.

(4) For every square integrable function f, g : R → R, ‖f‖22 =
∫ +∞
−∞ f2(x)dx,

〈f, g〉 =
∫ +∞
−∞ f(x)g(x)dx, and

(f ∗ g)(x) :=

∫ ∞
−∞

f(x− y)g(y)dy ; x ∈ R.

(5) Kε := (1/ε)K(·/ε) for every ε > 0.
The definitions of Σ(β, L) and H(β, L) can be found in Tsybakov (2009, Chapter
1).

2. Bounds on the MSE and the MISE of Wolverton-Wagner’s
estimator

Consider β > 0 and l := bβc. Throughout this section, the map K fulfills the
following assumption.

Assumption 2.1. The map y ∈ R 7→ yiK(y) is integrable for every i ∈ {0, 1, . . . , l},∫ ∞
−∞

K(y)dy = 1,

∫ ∞
−∞

K2(y)dy < +∞,
∫ ∞
−∞
|z|β |K(z)|dz := Cβ(K) < +∞,

and
∫ ∞
−∞

yiK(y)dy = 0, ∀i ∈ {1, . . . , l}.

Let us establish a control of the MSE of Wolverton-Wagner’s estimator under the
following condition on f .

Assumption 2.2. The map f belongs to the Hölder ball Σ(β, L).

Proposition 2.3. Under Assumptions 2.1 and 2.2, there exists a constant c > 0,
such that for all x ∈ T

E(|f̂n,hn(x)− f(x)|2) 6
c

n2

∣∣∣∣∣
n∑
k=1

hβk
l!

∣∣∣∣∣
2

+
n∑
k=1

1

hk

 ,

where c depends on β, L, ‖K‖2 and Cβ(K) (but not on n and h1, . . . , hn).
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Now, let us establish a control of the MISE of Wolverton-Wagner’s estimator under
Nikolski’s condition on f .

Assumption 2.4. The map f belongs to the Nikol’ski ball H(β, L).

Proposition 2.5. Under Assumptions 2.1 and 2.4, there exists a constant c > 0,
such that ∫ ∞

−∞
E(|f̂n,hn(x)− f(x)|2)dx 6

c

n2

∣∣∣∣∣
n∑
k=1

hβk
(l − 1)!

∣∣∣∣∣
2

+

n∑
k=1

1

hk

 ,

where c depends on β, L, ‖K‖2 and Cβ(K) (but not on n and h1, . . . , hn).

Remark. Assumptions 2.1, 2.2 and 2.4 are standard for density estimation, see
Tsybakov [12]. Moreover, if we set hk = h, we recover the results stated in Section
1.2.1 for Proposition 2.3 and in Theorem 1.3 for Proposition 2.5 in Tsybakov ([12]
(that is a squared bias term of order h2β and a variance term of order 1/(nh)).

The estimator is consistent if the risk tends to zero when n grows to infinity, that

is if (1/n2)
∣∣∣∑n

k=1 h
β
k

∣∣∣2 and (1/n2)
∑n
k=1

1
hk

tend to 0 when n tends to infinity.
Let us consider

hk = k−γ ; k ∈ {1, . . . , n}
and, for this collection of bandwidths, set

(2) Bn(γ) :=
1

n2

∣∣∣∣∣
n∑
k=1

hβk

∣∣∣∣∣
2

and Vn(γ) :=
1

n2

n∑
k=1

1

hk

with γ ∈ (0, 1) (otherwise Bn(γ) or Vn(γ) cannot tend to zero). Then

(3) Bn(γ) = O

(
1

n2

)
if γβ > 1 and Bn(γ) = O

(
1

n2γβ

)
if γβ < 1

with the intermediate case

Bn(γ) = O

(
log(n)

n2

)
if γβ = 1.

Indeed, if γβ < 1, then

Bn(γ) =

∣∣∣∣∣ 1n
n∑
k=1

k−γβ

∣∣∣∣∣
2

= n−2γβ

∣∣∣∣∣ 1n
n∑
k=1

(
k

n

)−γβ∣∣∣∣∣
2

∼ n−2γβ

(1− γβ)2
.

On the other hand,

(4) Vn(γ) = O(nγ−1).

As a consequence, we have the following result:

Corollary 2.6. Under Assumptions 2.1 and 2.4, choosing

hk = k−γ ; k ∈ {0, 1, . . . , n}, with γ =
1

2β + 1

yields the rate

sup
{f∈H(β,L),f>0,

∫
f=1}

∫ ∞
−∞

E(|f̂n,hn(x)− f(x)|2)dx 6 cn−
2β

2β+1 ,

where c = c(β, L,K) is a positive constant depending on L, β and the kernel K, but
not on n.
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Clearly, this is the optimal rate in the minimax sense, see Goldenshluger and Lepski
[4] and the references therein. The bounds are uniform on the set of densities
belonging to the ball H(β, L).

Proof. Consider
ϕn(γ) := n−2γβ + nγ−1.

Then,
∂ϕn(γ)

∂γ
= log(n)(−2βe−2γβ log(n) + e(γ−1) log(n)).

Moreover, ∂γϕn(γ) = 0 if and only if,

γ =
1

2β + 1
+

log(2β)

log(n)(1 + 2β)
∼ 1

2β + 1
.

Therefore, γ = 1/(2β + 1) makes the upper bound on the risk minimal. �

3. Goldenshluger-Lepski’s method for Wolverton-Wagner’s estimator

This section provides an extension of the well-known Goldenshluger-Lepski’s
bandwidth selection method for Parzen-Rosenblatt’s estimator toWolverton-Wagner’s
estimator.

Throughout this section, assume that

hk = hk(γ) ; ∀k ∈ {1, . . . , n},

where γ ∈ [0, 1] and the maps h1(.), . . . , hn(.) from [0, 1] into (0,∞) fulfill the
following assumption.

Assumption 3.1. For every γ′ ∈ [0, 1],

0 < hn(γ′) < · · · < h1(γ′).

Moreover, hn(.) is decreasing and one to one from [0, 1] into (0, 1].

For instance, one can take as above hk(γ′) := k−γ
′
for every k ∈ {1, . . . , n} and

γ′ ∈ [0, 1].

Consider
hn(γ) := (h1(γ), . . . , hn(γ))

and the set Γn := {γ1, . . . , γN(n)} ⊂ [0, 1], where N(n) ∈ {1, . . . , n} and

0 < γ1 < · · · < γN(n) 6 h
−1
n (1/n).

Consider also

f̂n,γ,γ′(x) :=
1

n

n∑
k=1

(Khk(γ′) ∗Khk(γ))(Xk − x),

where γ′ ∈ [0, 1].

A way to extend the Goldenshluger-Lepski bandwidth selection method toWolverton-
Wagner’s estimator is to solve the minimization problem

(5) min
γ∈Γn

(An(γ) + Vn(γ)),

where

An(γ) := sup
γ′∈Γn

(‖f̂n,hn(γ′) − f̂n,γ,γ′‖22 − Vn(γ′))+, Vn(γ′) := υ
‖K‖22‖K‖21
n hn(γ′)
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with υ > 0 not depending on n and

1

hn(γ′)
:=

1

n

n∑
k=1

1

hk(γ′)
.

In the sequel, the map hn(.) fulfills the following assumption.

Assumption 3.2. For every c > 0 and r ∈ {1/2, 1},

sup
n∈N∗

∑
γ′∈Γn

exp(−c/hn(γ′)r) <∞.

Example. Consider

hk(γ′) = k−γ
′

; ∀k ∈ {1, . . . , n}, ∀γ′ ∈ [0, 1]

and

(6) Γn =

{(
i

[log(n)]

)1/2

; i ∈ {1, . . . , [log(n)]}

}
,

where [x] denotes the interger part of x. For every γ′ ∈ Γn,

1

hn(γ′)
=

1

n

n∑
k=1

1

hk(γ′)
= nγ

′−1
n∑
k=1

(
k

n

)γ′

> nγ
′−2

n∑
k=1

k >
nγ
′

2
>

1

2
exp(log(n)1/2).

Then, for any c > 0 and r ∈ {1/2, 1},

sup
n∈N∗

∑
γ′∈Γn

exp(−c/hn(γ′)r) 6 sup
n∈N∗

log(n) exp
(
− c

2r
exp(r log(n)1/2)

)
<∞.

Proposition 3.3. Under Assumptions 3.1 and 3.2, if f is bounded and γ̂n is a
solution of the minimization problem (5), then there exists a constant υ0 such that,
for υ > υ0,

E(‖f̂n,hn(γ̂n) − f‖22) 6 c0 inf
γ∈Γn

Vn(γ) +
1

n2

∣∣∣∣∣
n∑
k=1

‖f −Khk(γ) ∗ f‖2

∣∣∣∣∣
2
+

c1
n
,

where c0 is a numerical constant (c0 = 18 suits) and c1 is a constant depending on
K and ‖f‖∞ (but not on n).
If in addition Assumptions 2.1 and 2.4 hold, then

(7) E(‖f̂n,hn(γ̂n) − f‖22) 6 c

{
inf
γ∈Γn

(Bn(γ) + Vn(γ)) +
1

n

}
where Bn(γ) and Vn(γ) are defined in (2), (3) and (4).

Note that the proof leads to the value κ0 = 24, which would be too large in practice.

Remark. By Corollary 2.6, the infimum in bound (7) has the order of the optimal
rate, and is reached automatically by the data driven estimator. This result is more
precise than the heuristics associated with cross-validation.
We mentioned previously that the optimal theoretical choice for γ under Assump-
tions 2.1 and 2.4 is γ = 1/(2β+1). Here, the selected γ should be at nearest of this
value, e.g. if Γn is as in (6), distant from less than 1/

√
log(n) of the good choice.

We may therefore consider that γ̂n provides an estimate of 1/(2β + 1) and thus an
estimate of the regularity β of f (at least for huge values of n).
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4. The Lacour-Massart-Rivoirard (LMR) estimator

4.1. Estimator and main result. The Goldenshluger-Lepski method has been
acknowledged as being difficult to implement, due to the square grid in γ, γ′ required
to compute intermediate versions of the criterion and to the lack of intuition in the
choice of the constant υ which should be calibrated from preliminary simulation
experiments. This is the reason why Lacour et al. [7] investigated and proposed a
simplified criterion relying on deviation inequalities for U -statistics due to Houdré
and Reynaud-Bouret [6]. This inequality applies in our more complicated context
and Lacour-Massart-Rivoirard’s result can be extended here as follows.

Let us recall that Kε(·) := (1/ε)K(·/ε) for every ε > 0 and set

fn,γ(x) := E(f̂hn(γ)(x)) =
1

n

n∑
k=1

(Khk(γ) ∗ f)(x).

Let γmax be the maximal proposal in Γn and consider

Crit(γ) := ‖f̂n,hn(γ) − f̂n,hn(γmax)‖22 + pen(γ)

with

pen(γ) :=
2

n2

n∑
k=1

〈Khk(γmax),Khk(γ)〉2.

Then, we define
γ̃n ∈ arg min

γ∈Γn
Crit(γ).

In the sequel, K, f and hn fulfill the following assumption.

Assumption 4.1. The kernel K is symmetric, K(0) > 0,∫ ∞
−∞

K(y)dy = 1,
‖K‖∞‖K‖1
nhn(γmax)

6 1

and ‖f‖∞ <∞.

Proposition 4.2. Consider λ ∈ [1,∞[ and ε ∈ (0, 1). Under Assumption 4.1,
there exists three deterministic constants c1, c2, c3 > 0, not depending on n, λ and
γ, such that with probability larger than 1− c1|Γn|e−λ,

‖f̂n,hn(γ̃n) − f‖22 6 (1 + ε) min
γ∈Γn

‖f̂n,hn(γ) − f‖22

+
c2
ε
‖fn,γmax − f‖22 +

c3
ε

(
λ2

n
+

λ3

n2hn(γmax)

)
.

Remark. The term ‖fn,γmax − f‖22 is negligible because it is a pure bias term for
smallest bandwidth (e.g., under Assumption 2.4, it has order n−2βγmax , see (3), and
thus o(1/n) if γmax is near of 1 and β > 1/2). The terms following are of order
O(1/n) and are always negligible compared to nonparametric rates in our setting.
Therefore, the bound given in Proposition 4.2 says that the MISE of the adaptive
estimator has the order of the best estimator of the collection, up to a multplicative
factor larger than 1. This is the method we implement in the next section: it is
faster than GL method and with no constant to calibrate in the penalty.

4.2. Simulation experiments. We consider basic densities with different types
and orders of regularity:

• X  N (0, 1), density f1,
• a mixed gaussian X  0.5N (−2, 1) + 0.5N (2, 1), density fm,1,
• X  β(3, 3), density f2,
• a mixed beta X  0.5(β(3, 3)− 1) + 0.5β(3, 3), density fm,2,
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LMR for WW Original LMR
n = K1 K3 K5 K7 K1 K3 K5 K7 ks

f1 250 0.442 0.318 0.285 0.256 0.412 0.315 0.290 0.268 0.285
(0.252) (0.213) (0.193) (0.162) (0.241) (0.214) (0.205) (0.193) (0.174)

1000 0.144 0.091 0.080 0.075 0.133 0.088 0.079 0.076 0.101
(0.079) (0.065) (0.061) (0.059) (0.076) (0.064) (0.062) (0.061) (0.059)

fm,1 250 0.400 0.316 0.287 0.255 0.387 0.327 0.291 0.256 1.115
(0.204) (0.189) (0.176) (0.162) (0.208) (0.202) (0.179) (0.170) (0.150)

1000 0.141 0.101 0.090 0.084 0.135 0.101 0.094 0.091 0.585
(0.0623) (0.051) (0.049) (0.046) (0.062) (0.053) (0.051) (0.050) (0.076)

f2 250 3.586 2.141 1.840 1.709 1.865 1.343 1.221 1.178 1.272
(1.403) (1.230) (1.155) (1.116) (1.108) (0.930) (0.884) (0.885) (0.789)

1000 1.056 0.646 0.555 0.515 0.602 0.429 0.382 0.372 0.506
(0.394) (0.306) (0.283) (0.270) (0.312) (0.270) (0.250) (0.235) (0.282)

fm,2 250 3.071 2.040 1.778 1.654 1.825 1.362 1.217 1.157 8.912
(0.851) (0.743) (0.706) (0.681) (0.655) (0.584) (0.605) (0.565) (0.909)

1000 0.905 0.593 0.508 0.476 0.657 0.438 0.389 0.358 4.876
(0.246) (0.201) (0.187) (0.182) (0.257) (0.188) (0.159) (0.163) (0.367)

f3 250 0.449 0.358 0.340 0.326 0.419 0.356 0.343 0.327 0.298
(0.263) (0.236) (0.221) (0.198) (0.259) (0.241) (0.224) (0.201) (0.202)

1000 0.174 0.132 0.124 0.121 0.162 0.130 0.126 0.126 0.125
(0.085) (0.071) (0.067) (0.065) (0.081) (0.071) (0.071) (0.076) (0.065)

fm,3 250 1.257 1.129 1.106 1.103 1.140 1.117 1.138 1.162 4.089
(0.597) (0.555) (0.537) (0.532) (0.564) (0.562) (0.568) (0.576) (0.355)

1000 0.491 0.448 0.444 0.446 0.449 0.441 0.454 0.466 3.172
(0.171) (0.158) (0.158) (0.160) (0.168) (0.174) (0.189) (0.204) (0.201)

f4 250 0.683 0.642 0.642 0.649 0.663 0.680 0.706 0.708 0.519
(0.353) (0.318) (0.301) (0.294) (0.347) (0.343) (0.339) (0.322) (0.260)

1000 0.281 0.254 0.254 0.258 0.273 0.268 0.278 0.284 0.242
(0.135) (0.122) (0.120) (0.122) (0.141) (0.147) (0.163) (0.172) (0.105)

Table 1. 100 × MISE with 100 × std in parenthesis, computed
over 200 simulations.

• X  γ(5, 5)/10, density f3,
• a mixed gamma X  0.4.γ(2, 1/3) + 0.6γ(7, 6)/10, density fm,3,
• X  f4 with f4(x) = e−|x|, a Laplace density.

The densities f1 and fm,1 have infinite regularity, f2 and fm,2 should rather have
regularity of order less than 2, f3 and fm,3 less than 4, and f4 less than 1. This
choice should allow to study the influence of the order of the kernel.

Denoting by nj(x) the density of a centered Gaussian random variable with variance
equal to j, we consider the following kernels:

• a Gaussian kernel, K1(x) = e−x
2/2/
√

2π which is of order 1,
• a Gaussian-type kernel of order 3, K3(x) = 2n1(x)− n2(x),
• a Gaussian-type kernel of order 5, K5(x) = 3n1(x)− 3n2(x) + n3(x),
• a Gaussian-type kernel of order 7, K7(x) = 4n1(x)−6n2(x)+4n3(x)−n4(x).
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With all these kernels, the penalty terms are computed analytically and without
approximation. Indeed, for ni,h(x) = (1/h)ni(x/h), it holds that

〈ni,h1
, nj,h2

〉2 =

∫ ∞
−∞

ni,h1
(x)nj,h2

(x)dx =
1√
2π
× 1√

ih2
1 + jh2

2

.

We compute the variable bandwidth estimator as described in Section 4 and select
γ̃n in a collection of M = 40 equispaced values between 0 and 0.5 while the band-
width associated with observation i is hi(γ) = i−γ . We also compute the original
estimator of Lacour et al. [7] with bandwidth h which does not depend on the
observation and is selected among M = 40 values in the set {k/M ; k = 1, . . . ,M}.

For comparison, we give the performance of the Matlab density estimator obtained
from ksdensity function (denoted by ks in Table 1), which entails a different band-
width selection method and relies on a gaussian kernel.

We compute the integrated L2-risk associated with all the final estimators, evalu-
ated at P = 100 equispaced points in the range [a, b] of the observations, averaged
over R = 200 repetitions:

1

R

R∑
j=1

b− a
P

P∑
`=1

(f̂
(j)

ĥ(j)
(x`)− f(x`))

2, x` = a+ `
b− a
P

,

where f̂ (j)

ĥ(j)
is the estimator computed for path j. Results are gathered in Table 1

and deserve some comments. As expected, when increasing n from 250 to 1000,
the resulting MSEs decrease and seem to be more improved in LMR methods of
both types than for ks estimator. Increasing the order of the kernel systematically
improves the results, except for the lowest regularity density f4, which is at best
with K3, but it is interesting to note that taking higher order kernel is always a
good strategy: if a loss occurs, it is negligible while the improvement, when it hap-
pens, is in all cases significant. Estimator ks fails for all mixed densities fm,1, fm,2
and fm,3 and provides rather bad results in these cases, for both sample sizes. For
the other densities (f1, f2, f3, f4), the results obtained with kernel K7 and LMR
method are better than with ks for f1 (Gaussian case), and of comparable order
in all other cases. Now if we compare the LMR and WW-LMR results both with
kernel K7, we conclude that the WW-LMR method wins in 10 cases out of 14, but
not significantly.

The first line of Figure 1 illustrates in the left picture the way Matlab estima-
tor fails for mixed densities (here the mixed Gaussian fm,1) by probably selecting
a too large bandwidth, here n = 1000. The two LMR estimators are almost con-
founded. The middle and right pictures present the M = 40 estimators among
which the LMR procedure makes the selection, for the same path: we observe
that the collection of proposals are rather different. The second line of Figure 1
presents the same type of results for density f2, and sample size n = 250. Figure
2 shows beams of 30 final estimators for sample size n = 250, for the three esti-
mators LMR-WW withK7, LMR withK7 and ks, showing very similar behaviours.

A last remark corresponding to numerical results we do not report in detail is
the following. For most densities, the value of γ selected by the LMR strategy
decreases, and the value of h increases, when the order of the kernel increases.
Exceptions are densities with lower regularity (the beta f2, mixed beta f2,m and
Laplace f4 densities) for which the last value of selected h with K7 is less than
the one selected with K5. This illustrates the fact that, asymptotically, if β is the
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Figure 1. Left: The three estimators (dotted blue LMR-WW,
green dash-dotted LMR, black dashed ks, the true in bold red.
Middle: the 40 proposals for LMR-WW. Right: the 40 proposals
for LMR. First line n = 1000, density f1,m, second line n = 250,
density f2. In all cases, kernel K7.
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Figure 2. Beams of 30 estimators in dotted green of density f1 for
n = 250 and kernel K7, and the true in bold red. Left: LMR-WW
estimator. Middle: LMR estimator. Right: ks estimator.

regularity index of the density and ` the order of the kernel, the optimal choice is
for h of order n−1/(2 min(β,`)+1) and for γ, 1/(2 min(β, `) + 1). This point is further
investigated hereafter.
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n 250 1000 2000 4000
f1 0.017 0.044 0.054 0.059

(0.023) (0.016) (0.012) (0.019)

f2 0.331 0.304 0.291 0.281
(0.020) (0.014) (0.011) (0.013)

f3 0.026 0.067 0.076 0.084
(0.027) (0.020) (0.017) (0.018)

f4 0.070 0.120 0.136 0.146
(0.040) (0.039) (0.039) (0.043)

Table 2. Mean (and std) of γ̃n for different values of n and func-
tions f1, . . . , f4, 200 repetitions

Function f1 Function f2 Function f3 Function f4

WW Update WW Update WW Update WW Update

0.146 0.112 0.879 0.414 0.188 0.131 0.393 0.303
(0.105) (0.082) (0.502) (0.214) (0.115) (0.076) (0.186) (0.146)

Table 3. Comparison of 100 × MISE (with 100× std in paren-
thesis) for the estimators: adaptive LMR-WW, and updated recru-
sively WW with "frozen" γ, first sample n0 = 500, update sample
with n1 = 500 additional observations

4.3. Back to recursivity. However, one may wonder how to keep these ideas com-
patible with recursive procedures and online updating of the kernel estimator.

A first possibility is to consider that the adaptive bandwidth, whatever its type,
can be selected on a preliminary sample and then, "frozen" to this selected value.
The estimator may then be recursively updated with this frozen value, and the
procedure would exploit all the observations. We compute the mean over 200 repe-
titions of the selected values γ̃n for n observations, with increasing values of n, for
the functions f1, . . . , f4 defined in Section 4.2. We can see in Table 2 that, if there
is a convergence towards a value, it is very slow. Indeed, keeping in mind the value
1/(2 min(β, `) +1) for γ, we may expect γ̃n to tend to 1/15 = 0.67 for f1, 1/5 = 0.2
for f2, 1/9 = 0.11 for f3 and a quantity less that 1/5 = 0.2 for f4. We provide in
Table 3 the results obtained for densities f1, . . . , f4 and sample size 1000 splitted in
two parts: n0 = 500 observations used for the selection of γ̃n0

and n1 = 500 updates
of the resulting estimator with the "frozen" value γ̃n0

. We compute the MISE for
the first step and final estimator, which relies on n = n0 + n1 observations. The
results are given in Table 3. We can see an improvement when going from n0 to n
observations, but the results are deteriorated compared with what is obtained with
n = n0 + n1 = 1000 in Table 1.

This is why our idea is to exploit the recursive formula to select the γ-parameter
at each step. The price to pay is to store a matrix instead of storing a vector,
but the matrix size is fixed. In particular, we assume here that the collection of
proposed values for γ is of constant size M and then denoted by Γ instead of Γn
as previously. Thus, for one given sample, the procedure is fast and the storage
size under control. Precisely, adding an observation leads to update the matrix
Fn = (f̂n,hn(γ(j))(xk))16j6M,16k6K for Γ = {γ(1), . . . , γ(M)} and {x1, . . . , xK} the
set of points at which the function is estimated. This is the collection of values
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Figure 3. Selected γ̃n from n = 50 to n = 1000 for densities f1

(black dotted), f2 (red line), f3 (green dashed) and f4 (blue dash-
dotted) for the left picture, fm,1 (black dotted), fm,2 (red line),
fm,3 (green dashed) on the right picture.

used to select γ̃n. Then, we have

Fn+1 =
n

n+ 1
Fn +

1

n+ 1

(
1

hn+1(γ(j))
K

(
Xn+1 − xk
hn+1(γ(j))

))
16j6M,16k6K

,

and we can select γ̃n+1. The resulting estimator is already computed since it is one
of the collection. At each stage, the M ×K matrix is stored to be updated, and
the selection procedure has entries the matrix, the value of n and the domain of
observations, and gives as output the selected value of γ ∈ Γ and the corresponding
functional estimator, which corresponds to a line of the matrix. Finally, note that
even if the size of the collection of proposed values for γ doesn’t depend on n here,
the bandwidth hn(γ) still depends of n and decrease down to zero when n goes to
infinity.
We show in Figure 3 the 950 selected values of γ̃n for n = 50 to n = 1000, for one
path of a random sample with density f1, . . . , f4 on the left and fm,1, fm,2, fm,3 on
the right plot. We consider M = 50 and K = 100. We observe on this example a
stabilization of the selected value when n1 + n0 gets near of 1000 observations.

5. Concluding remarks

Our study illustrates that bandwidth selection is an important step for kernel
functional estimation, and recent methods are really powerful whatever the type of
density to recover.
Our simulations show also that, even if it implies non necessarily nonnegative ker-
nels and thus density estimators, increasing the order of the kernel improves the
estimation both in the theory and in practice. Also, we proved that variable band-
width for WW-type estimators can reach excellent rates, again both in theory and
in practice, provided that adaptive choice of this variable bandwidth is performed.
The orders of practical MISEs show that this WW-strategy provides results of the
same order as the more classical bandwidth methods.
Lastly, we illustrate that recursivity formula can be used for fast online updating
of the whole collection of estimators and the selection of the best one in the sense
of our criterion.
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6. Proof of Proposition 4.2

For this proof, we use the tools and follow the lines given in the proof of Theorem
2 in Lacour et al. [7].

Throughout this section, for every h > 0, we consider fh := f ∗ Kh, where ∗ is
the convolution product and we recall that Kh = 1/hK(·/h). Note that for every
h > 0 and k ∈ {1, . . . , n},

E(Kh(Xk − x)) =

∫ ∞
−∞

Kh(y − x)f(y)dy = fh(x).

We also consider λ ∈ [1,∞[, ε, θ ∈ (0, 1) and γ ∈ Γn.

In order to prove Proposition 4.2, let us first establish the three following lem-
mas providing suitable bounds for key quantities involved in the decomposition
of

‖f̂n,hn(γ̃n) − f‖22.
Throughout this section, the positive constants κi ; i ∈ N∗ are not depending on n,
λ, θ, ε and γ.

6.1. Steps of the proof. The proof relies on three Lemmas, which are stated first.
Lemma 6.1 follows from an exponential inequality for U -statistics, which is applied
here in a non identically distributed context.

Lemma 6.1. Consider the U -statistic

Un(γ, γmax) :=
∑
k 6=l

〈Khk(γ)(Xk − ·)− fhk(γ),Khl(γmax)(Xl − ·)− fhl(γmax)〉2.

There exists a universal constant c > 0 such that with probability larger than 1 −
5.54|Γn|e−λ,

|Un(γ, γmax)|
n2

6
θ‖K‖22
nhn(γ)

+
c

θ

(
‖K‖21‖f‖∞

n
λ2 +

‖K‖1‖K‖∞
n2hn(γmax)

λ3

)
.

Lemmas 6.2 and 6.3 rely on Bernstein’s inequality for non identically distributed
variables.

Lemma 6.2. There exists a deterministic constant c > 0, not depending on n, λ,
θ and γ, such that for every γ′ ∈ Γn, with probability larger than 1− 2e−λ,

Vn(γ, γ′) := 〈f̂n,hn(γ) − fn,γ , fn,γ′ − f〉

satisfies

|Vn(γ, γ′)| 6 θ‖fn,γ′ − f‖22 +
cλ

θn
.

Lemma 6.3. Under Assumption 4.1, there exists two deterministic constants c1, c2 >
0, not depending on n, λ, ε and γ, such that with probability larger than 1 −
c1|Γn|e−λ,

‖fn,γ − f‖22 +
‖K‖22
n hn(γ)

6 (1 + ε)‖f̂n,hn(γ) − f‖22 + c2
(1 + ε)2

ε

(
λ2

n
+

λ3

n2hn(γmax)

)
.

The proof of Proposition 4.2 is dissected in three steps.

Step 1. In this step, a suitable decomposition of

‖f̂n,hn(γ̃n) − f‖22
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is provided. On the one hand,

‖f̂n,hn(γ̃n) − f‖22 + pen(γ̃n) = ‖f̂n,hn(γ̃n) − f̂n,hn(γmax)‖22 + pen(γ̃n)

+‖f̂n,hn(γmax) − f‖22
−2〈f̂n,hn(γmax) − f, f̂n,hn(γmax) − f̂n,hn(γ̃n)〉2.

Since γ̃n ∈ arg minγ∈Γn Crit(γ), for any γ ∈ Γn,

‖f̂n,hn(γ̃n) − f‖22 6 ‖f̂n,hn(γ) − f̂n,hn(γmax)‖22 + pen(γ)

−pen(γ̃n) + ‖f̂n,hn(γmax) − f‖22
−2〈f̂n,hn(γmax) − f, f̂n,hn(γmax) − f̂n,hn(γ̃n)〉2

= ‖f̂n,hn(γ) − f‖22
−[pen(γ̃n)− 2‖f̂n,hn(γmax) − f‖22
+2〈f̂n,hn(γmax) − f, f̂n,hn(γmax) − f̂n,hn(γ̃n)〉2]

+pen(γ)− 2〈f̂n,hn(γmax) − f, f̂n,hn(γ) − f〉2
= ‖f̂n,hn(γ) − f‖22 + pen(γ)− 2ψn(γ)− (pen(γ̃n)− 2ψn(γ̃n))(8)

with

ψn := 〈f̂n,hn(γmax) − f, f̂n,hn(.) − f〉2.

On the other hand,

ψn(γ) = 〈f̂n,hn(γmax) − fn,γmax
, f̂n,hn(γ) − fn,γ〉2 + 〈f̂n,hn(γmax) − fn,γmax

, fn,γ − f〉2
+〈fn,γmax

− f, f̂n,hn(γ) − fn,γ〉2 + 〈fn,γmax
− f, fn,γ − f〉2

= ψ1,n(γ) + ψ2,n(γ) + ψ3,n(γ),

where

ψ1,n(γ) :=
1

n2

n∑
k=1

〈Khk(γ),Khk(γmax)〉2 +
Un(γ, γmax)

n2
,

ψ2,n(γ) :=
1

n2

(
−

n∑
k=1

〈Khk(γ)(Xk − ·), fhk(γmax)〉2

−
n∑
k=1

〈Khk(γmax)(Xk − ·), fhk(γ)〉2 +

n∑
k=1

〈fhk(γ), fhk(γmax)〉2

)
and

ψ3,n(γ) := Vn(γ, γmax) + Vn(γmax, γ) + 〈fn,γ − f, fn,γmax
− f〉2

Step 2. Some bounds for ψn,1(γ), ψn,2(γ) and ψn,3(γ) are provided in this step.

(1) Consider

ψ̃1,n(γ) := ψ1,n(γ)− 1

n2

n∑
k=1

〈Khk(γ),Khk(γmax)〉2.

By Lemma 6.1, with probability larger than 1− 5.54|Γn|e−λ,

|ψ̃1,n(γ)| =
|Un(γ, γmax)|

n2

6
θ‖K‖22
n hn(γ)

+
c

θ

(
‖K‖21‖f‖∞

n
λ2 +

‖K‖∞‖K‖1
n2hn(γmax)

λ3

)
.
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(2) On the one hand, for any γ′ ∈ Γn,

1

n

∣∣∣∣∣
n∑
k=1

〈Khk(γ)(Xk − ·), fhk(γ′)〉2

∣∣∣∣∣ 6 max
k∈{1,...,n}

∫ ∞
−∞
|Khk(γ)(Xk − x)fhk(γ′)(x)|dx

6 ‖K‖1 max
k∈{1,...,n}

‖Khk(γ′) ∗ f‖∞ 6 ‖K‖21‖f‖∞.

On the other hand,

1

n

∣∣∣∣∣
n∑
k=1

〈fhk(γ), fhk(γ′)〉2

∣∣∣∣∣ 6 max
k∈{1,...,n}

∫ ∞
−∞
|fhk(γ)(x)fhk(γ′)(x)|dx

6 max
k∈{1,...,n}

‖Khk(γ) ∗ f‖1‖Khk(γ′) ∗ f‖∞ 6 ‖K‖21‖f‖∞.

Therefore,

‖ψ2,n‖∞ 6
3‖K‖21‖f‖∞

n
.

(3) By applying Lemma 6.2 to Vn(γ, γmax) and Vn(γmax, γ), with probability
larger than 1− 2e−λ,

|ψn,3(γ)| 6 θ

2
(‖fn,γ − f‖22 + ‖fn,γmax − f‖22) +

κ1λ

θn

+
θ

2
‖fn,γ − f‖22 +

1

2θ
‖fn,γmax − f‖22

6 θ‖fn,γ − f‖22 +

(
θ

2
+

1

2θ

)
‖fn,γmax − f‖22 +

κ1λ

θn
.

Step 3. Consider

ψ̃n(γ) := ψn(γ)− 1

n2

n∑
k=1

〈Khk(γ),Khk(γmax)〉2.

By Step 2 and Lemma 6.3, with probability larger than 1− κ2|Γn|e−λ,

|ψ̃n(γ)| 6 θ‖fn,γ − f‖22 +
θ‖K‖22
n hn(γ)

+

(
θ

2
+

1

2θ

)
‖fn,γmax

− f‖22 +
κ3

θ

(
λ2

n
+

λ3

n2hn(γmax)

)
6 2θ‖f̂n,hn(γ) − f‖22

+

(
θ

2
+

1

2θ

)
‖fn,γmax

− f‖22 +
κ4

θ

(
λ2

n
+

λ3

n2hn(γmax)

)
.
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Therefore, choosing θ as in Lemma 6.3 (1/(1− θ) = 1 + ε), by Inequality (8), with
probability larger than 1− κ5|Γn|e−λ,

‖f̂n,hn(γ̃n) − f‖22 6 (1 + ε)‖f̂n,hn(γ) − f‖22 +
κ6

ε
‖fn,γmax

− f‖22

+pen(γ)− 2

n2

n∑
k=1

〈Khk(γ),Khk(γmax)〉2

−

(
pen(γ̃n)− 2

n2

n∑
k=1

〈Khk(γ̃n),Khk(γmax)〉2

)

+
κ7

ε

(
λ2

n
+

λ3

n2hn(γmax)

)
= (1 + ε)‖f̂n,hn(γ) − f‖22 +

κ6

ε
‖fn,γmax

− f‖22

+
κ7

ε

(
λ2

n
+

λ3

n2hn(γmax)

)
.

This concludes the proof. �

6.2. Proof of Lemma 6.1. Consider

∆n := {(k, l) ∈ N2 : 2 6 k 6 n and 1 6 l 6 k − 1}.

The U -statistic satisfies

Un(γ, γmax) =

n∑
k=2

∑
l<k

(Gk,lγ,γmax
(Xk, Xl) +Gk,lγmax,γ(Xk, Xl)),

where
Gk,la,b(α, β) := 〈Khk(a)(α− ·)− fhk(a),Khl(b)(β − ·)− fhl(b)〉2

for every (k, l) ∈ ∆n, a, b ∈ {γ, γmax} and (α, β) ∈ R2.

By Houdré and Reynaud-Bourret [6], Theorem 3.4, there exists a universal con-
stant c > 0 such that

(9) P(|Un(γ, γmax)| > c(C
√
λ+Dλ+Bλ3/2 +Aλ2)) 6 5.54e−λ

where the constants A, B, C and D will be defined and controlled in the sequel.
• The constant A. Consider

A := max
(k,l)∈∆n

sup
(α,β)∈R2

Ak,l(α, β)

with

Ak,l(α, β) := |Gk,lγ,γmax
(α, β) +Gk,lγmax,γ(α, β)| ; ∀(k, l) ∈ ∆n, ∀(α, β) ∈ R2.

For any (k, l) ∈ ∆n and (α, β) ∈ R2,

Ak,l(α, β) 6 |〈Khk(γ)(α− ·)− fhk(γ),Khl(γmax)(β − ·)− fhl(γmax)〉2|
+|〈Khk(γmax)(α− ·)− fhk(γmax),Khl(γ)(β − ·)− fhl(γ)〉2|

6 2(‖Khk(γmax)‖∞ + ‖fhk(γmax)‖∞)(‖K‖1 + ‖fhl(γ)‖1)

6 8
‖K‖1‖K‖∞
hn(γmax)

.

Therefore,
Aλ2

n2
6 8
‖K‖1‖K‖∞
n2hn(γmax)

λ2.
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• The constant B. Consider

B2 := max

{
sup
α,l

l−1∑
k=1

E(|Gk,lγ,γmax
(α,Xl)|2) ; sup

α,l

n∑
k=l+1

E(|Gk,lγmax,γ(α,Xl)|2)

}
.

For any (k, l) ∈ ∆n, a, b ∈ {γ, γmax} and (α, β) ∈ R2,

E(Gk,la,b(α,Xl)
2) = E(〈Khk(a)(α− ·)− fhk(a),Khl(b)(Xl − ·)− fhl(b)〉

2
2)

6 ‖Khk(a)(α− ·)− fhk(a)‖22E(‖Khl(b)(Xl − ·)− fhl(b)‖
2
2)

6 4
‖K‖22
hk(a)

∫ ∞
−∞

E(|Khl(b)(Xl − y)− fhl(b)(y)|2)dy

6 4
‖K‖22
hn(a)

‖Khl(b)‖
2
2 6 4

‖K‖42
hk(a)hl(b)

6 4
‖K‖42

hk(a)hn(b)
.

Then,

B2 6 4
‖K‖42

hn(γmax)

n∑
k=1

1

hk(γ)
.

Therefore,

Bλ3/2

n2
6 2

(
θ

3

)1/2

‖K‖2

√√√√ 1

n2

n∑
k=1

1

hk(γ)
×
(

3

θ

)1/2 ‖K‖2
(n2hn(γmax))1/2

λ3/2

6
θ‖K‖22

3n hn(γ)
+

3

θ
× ‖K‖22
n2hn(γmax)

λ3.

• The constant C. Consider

C2 :=
∑

(k,l)∈∆n

E((Gk,lγ,γmax
(Xk, Xl) +Gk,lγmax,γ(Xk, Xl))

2).

For any (k, l) ∈ ∆n and a, b ∈ {γ, γmax},

E(Gk,la,b(Xk, Xl)
2) = E(〈Khk(a)(Xk − ·)− fhk(a),Khl(b)(Xl − ·)− fhl(b)〉

2
2)

6 κ1(E(〈Khk(a)(Xk − ·),Khl(b)(Xl − ·)〉22)

+‖fhl(b)‖
2
∞‖K‖21 + ‖fhk(a)‖2∞‖K‖21 + ‖fhk(a)‖2∞‖fhl(b)‖

2
1)

6 κ2

(
E

(∣∣∣∣∫ ∞
−∞

Khk(a)(Xk − x)Khl(b)(Xl − x)dx

∣∣∣∣2
)

+ ‖f‖2∞‖K‖41

)
.

Moreover,

E

(∣∣∣∣∫ ∞
−∞

Khk(a)(Xk − x)Khl(b)(Xl − x)dx

∣∣∣∣2
)
6
‖K‖21‖K‖22‖f‖∞

hk(a)
.

Then,

C 6 κ3

√
n‖K‖1‖f‖1/2∞

‖K‖2
√√√√ n∑
k=1

1

hk(γ)
+ ‖K‖1‖f‖1/2∞

 .

Therefore, since λ ∈ [1,∞[,

Cλ1/2

n2
6

θ‖K‖22
3n hn(γ)

+ κ4
‖K‖21‖f‖∞

θn
λ.

• The constant D. Consider

D := sup
(a,b)∈S

n∑
k=2

k−1∑
l=1

E((Gk,lγ,γmax
(Xk, Xl) +Gk,lγmax,γ(Xk, Xl))ak(Xk)bl(Xl)),
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where

S :=

{
(a, b) :

n∑
k=2

E(ak(Xk)2) 6 1 and
n−1∑
l=1

E(bl(Xl)
2) 6 1

}
.

For any (a, b) ∈ S,
n∑
k=2

k−1∑
l=1

E(Gk,lγ,γmax
(Xk, Xl)ak(Xk)bl(Xl)) 6 D2(a, b) sup

x∈R
D1(a, b, x)

with

D1(a, b, x) :=

n∑
k=2

E(|ak(Xk)(Khk(γ)(Xk − x)− fhk(γ)(x))|)

6 E

∣∣∣∣∣
n∑
k=2

ak(Xk)2

∣∣∣∣∣
1/2 ∣∣∣∣∣

n∑
k=1

(Khk(γ)(Xk − x)− fhk(γ)(x))2

∣∣∣∣∣
1/2


6 E

(
n∑
k=2

ak(Xk)2

)1/2 ∣∣∣∣∣
n∑
k=1

E(|Khk(γ)(Xk − x)− fhk(γ)(x)|2)

∣∣∣∣∣
1/2

6

∣∣∣∣∣
n∑
k=1

E(Khk(γ)(Xk − x)2)

∣∣∣∣∣
1/2

6

∣∣∣∣∣
n∑
k=1

‖K‖22‖f‖∞
hk(γ)

∣∣∣∣∣
1/2

and

D2(a, b) :=

n−1∑
l=1

E
(
|bl(Xl)|

∫ ∞
−∞
|Khl(γmax)(Xl − x)− fhl(γmax)(x)|dx

)

6 2‖K‖1
n−1∑
l=1

E(|bl(Xl)|) 6 2‖K‖1
√
n

∣∣∣∣∣
n−1∑
l=1

E(bl(Xl)
2)

∣∣∣∣∣
1/2

6 2
√
n‖K‖1.

Then,

D 6 2
√
n‖f‖1/2∞ ‖K‖1‖K‖2

∣∣∣∣∣
n∑
k=1

1

hk(γ)

∣∣∣∣∣
1/2

.

Therefore,

Dλ

n2
6

θ‖K‖22
3n hn(γ)

+
12

θ
× ‖K‖

2
1‖f‖∞
n

λ2.

Plugging the bounds obtained for A,B,C,D in Inequality (9) gives the announced
result and ends the proof. �

6.3. Proof of Lemma 6.2. For any γ′ ∈ Γn,

Vn(γ, γ′) =
1

n

n∑
k=1

(gγ′(hk(γ), Xk)− E(gγ′(hk(γ), Xk)))

where, for any k ∈ {1, . . . , n},

gγ′(hk(γ), Xk) := 〈Khk(γ)(Xk − ·), fn,γ′ − f〉2.

Indeed,

E(gγ′(hk(γ), Xk)) = 〈E(Khk(γ)(Xk − ·)), fn,γ′ − f〉2 = 〈fhk(γ), fn,γ′ − f〉2.
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In order to apply Bernstein’s inequality to gγ′(h1(γ), X1), . . . , gγ′(hn(γ), Xn), let
us find suitable controls of

cγ′ :=
‖gγ′‖∞

3
and υn(γ, γ′) :=

1

n

n∑
k=1

E(gγ′(hk(γ), Xk)2).

On the one hand,

cγ′ =
1

3
sup

h>0,x∈R
|〈Kh(x− ·), fn,γ′ − f〉2|

6
1

3
sup

h>0,x∈R
‖Kh(x− ·)‖1‖fn,γ′ − f‖∞

6
1

3
‖K‖1 max

k∈{1,...,n}
‖Khk(γ′) ∗ f − f‖∞

6
1

3
‖K‖1(1 + ‖K‖1)‖f‖∞ 6

2

3
‖K‖21‖f‖∞,

as ‖K‖1 > 1. On the other hand,

υn(γ, γ′) =
1

n

n∑
k=1

∫ ∞
−∞

(∫ ∞
−∞

Khk(γ)(y − x)(fn,γ′(x)− f(x))dx

)2

f(y)dy

6 ‖f‖∞ max
k∈{1,...,n}

‖Khk(γ) ∗ (fn,γ′ − f)‖22 6 ‖f‖∞‖K‖21‖fn,γ′ − f‖22.

Then, by Bernstein’s inequality, with probability larger than 1− 2e−λ,

|Vn(γ, γ′)| 6
√

2λ

n
υn(γ, γ′) +

cγ′λ

n

6

√
2λ

n
‖f‖∞‖K‖21‖fn,γ′ − f‖22 +

λ‖K‖1(1 + ‖K‖1)‖f‖∞
3n

6 θ‖fn,γ′ − f‖22 +
cλ

θn
,

with c = 7/6‖f‖∞‖K‖21. This is the announced inequality. �

6.4. Proof of Lemma 6.3. First of all,

‖fn,γ − f‖22 = ‖f̂n,hn(γ) − f‖22 − ‖f̂n,hn(γ) − fn,γ‖22 − 2Vn(γ, γ).

Then, by Lemma 6.2, with probability larger than 1− 2e−λ,

(10) (1− θ)‖fn,γ − f‖22 +
‖K‖22
n hn(γ)

6 ‖f̂n,hn(γ) − f‖22 + Λn(γ) +
κ1λ

θn

where

Λn(γ) :=

∣∣∣∣ ‖K‖22n hn(γ)
− ‖f̂n,hn(γ) − fn,γ‖22

∣∣∣∣
=

∣∣∣∣∣Un(γ, γ)

n2
+
Wn(γ)

n
− 1

n2

n∑
k=1

‖fhk(γ)‖22

∣∣∣∣∣
and

Wn(γ) :=
1

n

n∑
k=1

(Yk(γ)− E(Yk(γ)))

with, for any k ∈ {1, . . . , n},

Yk(γ) := ‖Khk(γ)(Xk − ·)− fhk(γ)‖22
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and

E(Yk(γ)) = E(‖Khk(γ)(Xk − ·)‖22) + ‖fhk(γ)‖22 − 2〈E(Khk(γ)(Xk − ·)), fhk(γ)〉2

=
‖K‖22
hk(γ)

− ‖fhk(γ)‖22.

Since

|Yk(γ)| 6 4‖Khk(γ)‖22 6Mn(γ) := 4
‖K‖22

hn(γmax)

and

E(Yk(γ)2) 6Mn(γ)E(Yk(γ)) 6 4
‖K‖42

hn(γmax)hk(γ)
,

by Bernstein’s inequality, with probability larger than 1− 2e−λ,

|Wn(γ)| 6 2

√
4‖K‖22λ

θnhn(γmax)
× θ

2

‖K‖22
hn(γ)

+
4‖K‖22λ

3nhn(γmax)

6
θ

2

‖K‖22
hn(γ)

+
κ2λ

θnhn(γmax)
.

Moreover, by Jensen’s inequality,

‖fhk(γ)‖22 =

∫ ∞
−∞

(∫ ∞
−∞

f(x+ hk(γ)y)K(y)dy

)2

dx

6 ‖K‖21
∫ ∞
−∞

∫ ∞
−∞

f(x+ hk(γ)y)2 |K(y)|
‖K‖1

dydx 6 ‖f‖∞‖K‖21.

Then, by Lemma 6.1, with probability larger than 1− κ3e
−λ,

Λn(γ) 6 θ
‖K‖22
n hn(γ)

+ κ4

(
λ2

θn
+

λ3

θn2hn(γmax)

)
.

Therefore, by Inequality (10), with probability larger than 1− κ5e
−λ,

‖fn,γ − f‖22 +
‖K‖22
n hn(γ)

6
1

1− θ
‖f̂n,hn(γ) − f‖22 +

κ6

θ(1− θ)

(
λ2

n
+

λ3

n2hn(γmax)

)
.

This is the announced result if we set 1 + ε = 1/(1− θ), which gives 1/[θ(1− θ)] =
(1 + ε)2/ε. �
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