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Abstract

Dissections of ascending thoracic aortic aneurysms (ATAA) cause
significant morbidity and mortality worldwide. They occur when a
tear in the intima-media of the aorta permits the penetration of the
blood and the subsequent delamination and separation of the wall in
two layers, forming a false channel. In order to predict computation-
ally the risk of tear formation, stress analyses should be performed
layer-specifically and they should consider internal or residual stresses
which exist in the tissue. In the present paper, we propose a novel
layer–specific damage model based on the constrained mixture theory
(CMT) which intrinsically takes into account these internal stresses
and which can predict appropriately the tear formation. The model
is implemented in finite-element commercial software Abaqus coupled
with user material subroutine (UMAT). Its capability is tested by ap-
plying it to the simulation of different exemplary situations, going
from in vitro bulge-inflation experiments on aortic samples to in vivo
over-pressurizing of patient-specific ATAAs. The simulations reveal
that damage correctly starts from the intimal layer (luminal side) and
propagates across the media as a tear, but never hits the adventitia.
This scenario is typically the first stage of development of an acute
dissection, which is predicted for pressures of about 2.5 times the di-
astolic pressure by the model after calibrating the parameters against
experimental data carried out on collected ATAA samples. Further
validations on a larger cohort of patients should hopefully confirm the
potential of the model in predicting patient-specific damage evolution
and possible risk of dissection during aneurysm growth for clinical
applications.

keywords: layer-specific damage model; constrained mixture theory; resid-
ual stresses; anisotropic behaviour; uni- and biaxial tests; patient specific
over–pressurizing

1 Introduction
Rupture of aortic aneurysms is the cause of significant morbidity and mortal-
ity; it causes the death of 30,000 people in Europe and 15,000 people in the
United States every year [71, 77] including at least 10–20% ascending tho-
racic aortic aneurysms (ATAA). Thanks to many advances in biomechanics,
medical imaging, surgical techniques, genetics and cell biology, it is currently
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known that remodeling of the aortic wall is essential in ATAA before the on-
set of damage and eventual rupture, which occurs when the peak wall stress
exceeds the strength [83].
The aortic wall comprises different layers with specific compositions. The me-
dia harbors smooth muscle cells (SMCs) embedded between lamellas made
mostly of elastin and collagen. The adventitia harbors fibroblasts in a col-
lagenous structure made mostly of bundles of collagen. Their mechanical
behaviour under cyclic uniaxial or biaxial tests shows inelastic effects such
as the Mullins effect, permanent set, deformation-induced anisotropy, and
hysteresis [33]. Many tensile tests have been carried out on human aortas
to explore their mechanical and rupture behavior since the pioneering work
of Mohan and Melvin on flatten dumbbell aortic specimens [60]. Vorp et al.
[83] observed a significant decrease in the tensile strength of ATAA specimens
and concluded that the formation of ATAA was accompanied by weakening
and stiffening of the aortic wall. In contrast, García-Herrera et al. [38] did
not find major differences between the mechanical strength of aneurysms and
healthy tissues in uniaxial tensile tests. They concluded that the age factor is
a significant reason for the variations of rupture stress and stretch. Findings
of Duprey et al. [29] indicated that the aortic wall is significantly anisotropic,
the axial direction being weaker than the circumferential one.
An important aspect of the biomechanical behavior of arteries is the perma-
nent state of biaxial tensile stresses that exist in vivo. Although uniaxial
tensile tests are easier to achieve, they are not the most proper methodology
to evaluate tissue anisotropy and rupture. Biaxial tests are more appropri-
ate to determine if the tissue shows different properties between the axial
and circumferential directions. An appropriate alternative to investigate the
biaxial mechanical behavior of the arterial walls can be bulge inflation tech-
nique [54, 58, 61, 73, 30]. Quasi-static bulge inflation tests of Mohan and
Melvin [61] on 16 healthy descending aortas demonstrated that the rupture
of aortic tissue is always oriented in the circumferential direction. This is
consistent with the results of Marra et al. [58] obtained from inflation tests
on porcine healthy aortic tissues. Inflation tests using ATAA specimens were
recently carried out by Duprey et al. [30] up to rupture. They derived for
all the samples the average Cauchy stress at which the rupture occurred.
Although the implementation of such a setup needs significant expertise, the
application of advanced digital imaging techniques allowed to simultaneously
assess the localized stress in the area that eventually ruptures [30] and the
material parameters for constitutive numerical modeling purposes [25, 24].
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In all these experiments, an important issue was always to be able to localize
the rupture of the tissue from its first initiation, especially when only one
layer of the wall is concerned.
To address such issue, numerical models of arterial walls, based on an ap-
propriate finite element (FE) damage model, can be very helpful. Over the
last decades, many phenomenological and micromechanical models have been
proposed to predict the damage evolution in soft [1, 7, 21, 22, 33] and hard
[32, 41] tissues. The first damage model of soft tissues can be traced back to
the 1970s [17]. More than three decades ago, Simo [75] presented a damage
model for finite deformations. It was basically based on the multiplicative de-
composition of the deformation gradient into a isochoric (volume-preserving)
and a volumetric part in which damage only affects the former. Recently,
damage models with a volumetric-deviatoric decoupling have been introduced
to model the behavior of fibrous soft biological tissues [7, 21, 22, 33]. The
fact that damage is applied only on the deviatoric part of the model means
that, for a completely damaged structure, a volumetric quasi-incompressible
undamaged part will always remain.
Damage models can be categorized in three groups: (i) deterministic models
in which a pseudoelastic strain energy function with a few parameters or
damage variables of continuum damage mechanics is employed to character-
ize the softening/damage effect, either isotropically [32, 81] or anisotropically
[56, 80, 84]; (ii) probabilistic models in which probabilistic damage process
and/or fiber recruitment can be included [43, 74]; (iii) micro–structural–
based damage models of collagen fibers in which the microscopic damage
behavior of individual collagen fibrils is considered and homogenized macro-
scopically [39]. All these formulations can be categorized as non-local [33] or
local [1, 7, 21, 22, 41, 32] damage models. In the non–local methodologies
an integral-type non-local averaging scheme is employed in the constitutive
equations in order to limit the localization phenomena of damage variables
and to overcome the mesh pathology. In contrast, in local approaches it is
needed to introduce the energy dissipation as an element-size-dependent ma-
terial property to solve such issue.
To the best of our knowledge, no numerical model about the inelastic be-
haviour of soft tissues considered layer-specific damage evolution with layer-
specific in situ stresses. These in situ stresses are well evidenced when ar-
teries are excised during a surgical intervention for instance. Due to the
cancellation of in vivo loadings, the artery experiences an elastic recoiling
[19, 49]. The layer-specificity of in situ stresses make internal or residual
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stresses appear in the tissue even when the loading is removed. An effect of
these internal stresses can be observed in arteries with the well–known open
angle experiment [8, 37, 49]. Residual stresses can be observed in most of
soft tissues [57, 87], including myocardium [42, 65, 85] and mitral leaflets
[70]. The intrinsic reason of this specific mechanical behavior of soft tissues
is their composite nature combined with different kinetics of growth and re-
modeling for each micro–constituent. For arteries, the different nature of the
media and the adventitia is at the origin of a layer-specific stress distribution
in vivo.
Our objective here is to develop a damage model based on the constrained
mixture theory (CMT), taking into account the results of layer-specific mechanobi-
ology occurring in the arterial wall. After introducing the model and its
finite-element implementation, we show different simulations of damage ini-
tiation, going from in vitro experiments on aortic samples to over-pressurizing
of a patient-specific ATAA.

2 Materials and Methods

2.1 Constitutive constrained mixture theorem based
formulation

A computational FE model based on the constrained mixture theory [8, 15,
63] is developed to couple the failure of the heterogeneous arterial layers to
the complex evolution of damage occurring at the microscopic structure. For
a continuum body (here mixture), let χ : Ω0 be the general mapping in a
R3 domain. The deformation gradient F between a material point from a
reference configuration X ∈ Ω0 and a position into a deformed configuration
x = χ(X, t) ∈ Ω at time t can be defined as

F(X, t) =
∂χ(X, t)

∂X
(1)

At each layer of the arterial wall, a specific constitutive energy function is
assumed for each constituent with contribution of its own mass fraction. To
define a homeostatic state at physiological pressure and axial stretch (con-
sidered as a clinically and biologically relevant reference configuration), the
concept of constituent-specific deposition stretches is employed. Soft tissues
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are known to be highly deformable, yet they experience negligible volume
changes. For many applications, their behaviour can be described with de-
coupled quasi-incompressible hyperelastic models, damage affecting solely
the deviatoric term [68, 12]. The fact that damage is assumed only in the
deviatoric part of the model means that, for a completely damaged struc-
ture, a volumetric quasi-incompressible contribution will remain undamaged.
Thus, considering Continuum Damage Mechanics (CDM), a damaged mate-
rial is characterized by voids resulting in a loss of the stiffness and strength
of each constituent of the mixture [27, 32]. Moreover, we assume there are
no damage occurring in the SMC contribution. Considering these features
and consistently with the CMT, it is assumed that the strain energy function
(SEF) of the arterial wall is a mass averaged function, consequently, the total
specific Helmholtz free energy function can be written as

W =(1−De)ρeW
e
(I

e
1)+

n∑
i=1

(1−Dci)ρciW
ci
(I

ci
4 )+

ρmW
m
(I

m
4 ) + U(J)

(2)

where superscripts e, ci and m represent respectively the elastin fiber con-
stituent, the constituent made of each of the n possible collagen fiber families
and the SMC constituent, all these constituents constituting the mixture. In
Eq. 2, Dj ∈ [0, 1] is the damage parameter (Dj =0 and Dj =1 indicate un-
damaged and completely damaged constituent, respectively), ρj stands for
mass fraction, W j the deviatoric or volume-preserving part of the free energy
of intact constituents, depending on the first (Ij1) and fourth (Ij4) invariants
of the related constituents of the mixture (j ∈ {e, ci,m}). U(J) is the volu-
metric contribution of the total free energy. The SEF of elastin constituent
is described by a Neo-Hookean strain energy function such as [15, 28, 46]

W
e
(I

e
1) = µe(I

e
1 − 3) (3)

where µe is a stress-like material parameter. The first invariants of the devi-
atoric Cauchy–Green deformation tensor is introduced as

I
e
1 = tr(C

e
)

C
e
= F

eT
F

e (4)
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with the deviatoric part of the deformation gradient in the elastin constituent
and the volume ratio, J , as

F
e
= Je(−1/3)Fe

Fe = FGe
h

Je = det(Fe)

(5)

where Ge
h is the constituent-specific deposition stretch of the elastin con-

stituent with respect to the reference configuration [8, 15].
The mechanical behavior of collagen, including the passive contribution of
SMCs, is respectively described using an exponential expression as in [8, 15,
71, 72]:

W
ci
(I

ci
4 ) =

kci,t
1

2kci,t
2

[
e(k

ci,t
2 (I

ci
4 −1)2) − 1

]
, under tension

W
ci
(I

ci
4 ) =

kci,c
1

2kci,c
2

[
e(k

ci,c
2 (I

ci
4 −1)2) − 1

]
, under compression

(6)

and

W
m
(I

m
4 ) =

km,t
1

2km,t
2

[
e(k

m,t
2 (I

m
4 −1)2) − 1

]
, under tension

W
m
(I

m
4 ) =

km,c
1

2km,c
2

[
e(k

m,c
2 (I

m
4 −1)2) − 1

]
, under compression

(7)

where k1 and k2 with superscripts ci and m are stress-like and dimensionless
material parameters of the collagen and SMCs contributions, respectively.
It is noteworthy that those can take different values when fibers are under
compression or tension denoted by t and c in Eqs. 6 and 7 [10]. I

ci
4 =

Jci (−2/3)Ici
4 and Im

4 = Jm(−2/3)Im
4 which are less than one when fiber is under

compression and greater than one when fiber is under tension. Jci = det(Fci)
and Jm = det(Fm) are corresponding Jacobians. Noting that Ici

4 and Im
4

are the fourth invariants of collagen and SMCs contributions which can be
written as:

Ici
4 = Gci

h
2C : Mci ⊗Mci (8)

Im
4 = Gm

h
2C : Mm ⊗Mm (9)

with
C = FTF (10)
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being the right Cauchy-Green stretch tensor of the arterial wall mixture.
Gci
h and Gm

h are the specific deposition stretches of each collagen fiber fam-
ily and SMCs with respect to the reference configuration, respectively. Mci

and Mci are the unit vectors along the dominant orientation of anisotropy in
the reference configuration for each family of collagen fibers and of SMCs, re-
spectively. For the ith family of collagen fibers Mci = [0 sinαi cosαi], where
αi is the angle of the ith family of collagen fibers with respect to the axial
direction. It is assumed that Mm coincides with the circumferential direction
of the vessel in the reference configuration [8, 15].

The volumetric contribution of the SEF can be described as [71]:

U(J) = κ(J − 1)2 (11)

where κ is the bulk modulus and J = det(F) is the Jacobian.
Referring to Eq. 2 leads to the expression of the second Piola-Kirchhoff stress
tensor as:

S = (1−De)S
e
+

n∑
i=1

(1−Dci)ρciS
ci
+ ρmS

m
+ Svol (12)

where S
j
= 2∂W

j

∂C
is the second Piola-Kirchhoff stress of corresponding un-

damaged constituents of the mixture, (j ∈ {e, ci,m}), and Svol = JpC−1

with p = dU
dJ , the hydrostatic pressure. The Cauchy stress tensor is derived

from the second Piola-Kirchoff stress as [46, 45]

σ = J−1FSFT (13)

The material tangent constitutive tensor implemented in the model is given
by

C =ρe
[
(1−De)Ce − 1

ψe

∂De

∂ψe S
e ⊗ S

e
]
+

n∑
i=1

ρci

[
(1−Dci)Cci − 1

ψci

∂Dci

∂ψci
S

ci ⊗ S
ci
]
+

ρmCm
+ Cvol

(14)

where Cj
= 4∂W

j

∂C
corresponds to the material elasticity tensor of undamaged

(virgin) material. ψ is Simo and Ju [75] energetic norm and ∂Dj

∂ψ
, (j ∈ {e, ci})
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is the derivation of the damage function with respect to the energetic norm
that will be introduced in the next section. The volumetric part of the
constitutive tensor, Cvol, is given by

Cvol = 2p
∂(JC−1)

∂C
+ 2JC−1 ⊗ p

∂p

∂C
(15)

2.2 Constitutive formulation of damage evolution
The damage model here is formulated in agreement with the principles of
CDM applied in many mechanobiological studies [27, 31, 32]. Therefore, it is
assumed that apparent density of damage evolves with mechanical loadings.
So, for the evolution of the damage variable, a linear softening law is employed
as described in [31]

Dj = Gj(ψj) =
1− ψj

0

ψj

1 +Hj

Hj = −ψ
j
0

2

2ωj
;ωj =

Ωj

L0

ψj =

√
2W

j

(16)

where j ∈ {e, ci} while ψj0 is the initial damage threshold and ωj represents
the fracture energy per unit volume which depends on the maximum dissi-
pated fracture energy per unit of area, Ωj, and on the element size in the
reference configuration, L0. The dependence on the element size is aimed at
overcoming the mesh pathology. As damage–localized elements are increas-
ingly damaged the stiffness of their deviatoric part decreases so that they
become largely deformed. The quasi–incompressible character of the hybrid
elements requires that the adjacent band of elements deforms to accommo-
date the narrowing of the highly damaged elements. This, in turn, generates
higher deviatoric stresses in this adjacent row of elements, which results in
damage initiation [64].
Finally, for calculating the tangent constitutive tensor previously defined in
Eq. 14 the derivation of the damage variable with respect to the energetic
norm, ψ, is

∂Gj(ψj)

∂ψj
= − ψj0

2

ψj2(1 +Hj)
(17)
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2.3 Finite–Element implementation
The proposed model is implemented within the commercial FE software
Abaqus [44] through a coupled user material subroutine (UMAT). The algo-
rithm is detailed in Appendix A. A 3D structural mesh made of hexahedral
and/or wedge elements is reconstructed across the wall of the artery. The
mesh is structural, which means that the edge of each element is locally
aligned with the material directions of the artery; radial, circumferential and
axial. For non–perfectly cylindrical geometries, the radial direction is defined
as the outward normal direction to the luminal surface, the axial direction is
defined as the direction parallel to the luminal centerline in the direction of
the blood flow, and the circumferential direction is perpendicular to the two
previously defined directions. It is assumed that each element is a mixture
of elastin, collagen and SMCs with mass fractions varying regionally.
Collagen and SMCs are continuously produced and replaced during lifetime
[55] while elastin is mainly stable after perinatal period for at least a few
decades leading to large multiaxial stretches in the elastin constituent as the
artery enlarges from infancy to adulthood [23, 55]. Deposition stretches of
collagen fibers and SMCs can be experimentally characterized as explained
previously [9, 34]. Therefore, deposition stretches of the SMCs constituent,
Gm
h , and of the collagen constituents, Gci

h , are set to ∼1.1 throughout the
present work.
Assuming cylindrical coordinates, Ge

h = diag[λr λθ λivz ], where incom-
pressibility reads λr = 1

λθλivz
, the axial deposition stretch of elastin, λivz , is

assigned such as being able to induce the usual axial recoil that can be mea-
sured when the artery is excised (this axial stretch may depend on species,
on the type of arteries, on the age, etc [48]). The circumferential component,
λθ, is defined iteratively such that in the first step, it is set to one, λθ = 1.
Therefore, by applying diastolic pressure and taking into account deposition
stretches of collagen and SMCs mentioned above, an FE analysis is performed
for the first step. The deformation gradient of elastin, Fe, is recorded at the
end of each step after convergence and assigned as the deposition stretch
tensor of the elastin component in the next step until it converges to a stable
value. The decision that deposition stretch tensor of the elastin is stable is
made according to average nodal displacements across the arterial wall, U .
So at the end of each step (at convergence of the algorithm), U must be less
than a prescribed tolerance which is set to 1% of the wall thickness in the
present work [63].
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After calibrating the deposition stretch tensor of the elastin component the
reference configuration including in situ residual stress is ready for FE anal-
ysis of the arterial wall to deduce damage initiation and evolution under
different mechanical tests such as tensile, bulge inflation and patient specific
simulations.

2.4 Collecting experimental data and fitting material
parameters

Experimental protocol

An unruptured ATAA specimen was collected from patients undergoing elec-
tive surgery to replace their ATAA with a graft according to a protocol
approved by the Institutional Review Board of the University Hospital Cen-
ter of Saint-Etienne. The ATAA section was placed in saline solution and
stored at 4◦C from collection to testing. Tests were carried out within 48h
after the surgery. A square of 45×45 mm was cut from the ATAA specimen
and clamped in the bulge inflation device. The inflating region was a disc
of diameter equal to 30mm. The luminal surface faced outward and then a
speckle pattern was applied to the lumen by spraying graphite powder. To
inflate the specimen, water was infused into the cavity behind the sample
using a syringe pump driven at 2mL/min. During inflation of the sample, a
digital manometer (WIKA, DG-10) was used to measure the pressure. Two
8-bit CCD cameras equipped with 50mm lenses (resolution: 1624×1236 px),
positioned 50cm apart at an angle of 30◦ with an aperture of f/11, were
used to collect images of the inflating specimen. A commercial Digital Image
Correlation (DIC) system (GOM, 5M LT) was used to process the images
by stereo Digital Image Correlation and obtain the 3D displacement fields
across the surface of the samples. Therefore, the setup enabled us to produce
a sufficient depth of field (15.4mm) to capture the deformation field of the
tissue every 3kPa until the sample ruptured [24]. Curves of pressure versus
peak deflection were plotted in Fig. 1 for two different patients.

Fitting material parameters

Mass fractions of the different constituents and deposition stretches of col-
lagen fibers were taken from literature [8, 15]. The deposition stretches of
elastin and its material parameter µe were calibrated in order to simulate
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correctly the recoiling following excision and at the same time to ensure
equilibrium between the prestress and the pressure at the reference config-
uration. The other parameters of the four-fiber family model reported in
Table 1 (kj1 and kj2, j ∈ {ci,m}) were calibrated by adjusting the pressure–
deflection curve predicted by the model against the experimental results. For
that we calculated the sum of squares of the deviations between the measured
deflection and the predicted deflection for all the pressures for which the dis-
placement fields were measured. Then, for each measured deflection set of yi
with a predicted deflection set of fi, we derived the coefficient of determina-
tion such as:

R2 = 1−
∑n

i=1(yi − fi)
2∑n

i=1(yi − y)2
(18)

where y represents the mean measured deflection data. Thus, R2 quanti-
fies the difference between modeling predictions and experimental data set.
When R2 is close to 1, the model predictions are very close to the exper-
imental results. The cost function 1 − R2 was minimized using a genetic
algorithm. At each iteration, the model resolution involved the complete
procedure, including excision, flattening and bulge inflation to take into ac-
count the mechanical effects of excising and cutting starting from the in vivo
tissue. Lower and upper bounds were defined for each parameter. The lower
bound was used only to avoid null or negative values of parameters whereas
the upper bound was set sufficiently high for not being reached. R2 val-
ues reported in Table 1 indicate reasonably good fits to experimental data.
The identification was performed for two sets of data corresponding to two
different patients (Table 1). Fig. 1 shows both experimental and modeled
pressure–deflection curves. A good agreement can be observed between the
predictions of the numerical model and experimental data sets. Moreover,
strain fields obtained with the CMT model were compared to the experimen-
tal strain fields deduced from DIC measurements at the maximum deflection
during the bulge inflation test (Fig. 2). There is a good agreement between
experimental strain fields and the model predictions, both for circumferen-
tial and axial components of the strain and for both patients, reflecting a
successful identification of material parameters.

12



Figure 1: Pressure–deflection curve for bulge inflation tests of two patients.
Solid lines demonstrate the fitted curve using material properties shown in
Table 1.

(a) (b)

(c) (d)

Figure 2: Top view of strain fields in circumferential and axial directions for
patient 1 (a and b) and patient 2 (c and d) calculated by CMT model (left)
and obtained from bulge inflation test (right).
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Table 1: Material properties fitted to experimental data of bulge inflation
tests for two different patients. Note that superscripts of c and t denote
material properties under compression and tension, respectively. R2 provides
a quantitative measure of the quality of each fit.

Symbol Patient 1 Patient 2
µe 82 [kPa] 71 [kPa]
kci,c
1 = km,c

1 15 [kPa] 17 [kPa]
kci,c
2 = km,c

2 1.0 1.0
kci,t
1 105 [kPa] 155 [kPa]
kci,t
2 0.13 0.16
km,t
1 10 [kPa] 10 [kPa]
km,t
2 0.1 0.1
ρe 0.25 0.25
ρci 0.46 0.46
ρm 0.28 0.28
R2 0.983 0.988

Damage parameters
ψe
0 1.26 [kPa1/2] -
ψci
0 3.09 [kPa1/2] -

Ωe = Ωci 45 [N/m] -
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2.5 Application to predict damage during inflation of
a perfectly cylindrical artery

A thick–wall cylinder with outer diameter of 50 mm and thickness of 2.38 mm
is meshed with 7500 hexahedral elements and with 10 elements across the
thickness. At both ends of the cylinder only radial displacements are allowed
while axial and circumferential displacements are blocked. Mass fractions ρe,
ρci and ρm introduced in the expression of the SEF in Eq. 2 and material
parameters are reported in Table 1. First the reference configuration is set
arbitrarily as the one of the artery in the in vivo conditions of diastole.
Afterwards, by increasing gradually luminal pressure, Pi, the FE analysis
with the CMT–based damage model is employed to localize damage initiation
and to calculate damage evolution across different layers of arterial wall.
Using FE simulation, the initial damage threshold, ψ0, is calculated based
on the maximum pressure (∼110 kPa will be explained in section 2.7) that
the sample could bear under experimental bulge inflation test.

2.6 Application to predict damage during tensile test
(uniaxial) of human ATAA strips

To simulate uniaxial tensile tests, in a first step, pressure and axial stretch
of the thick–wall cylinder of the section 2.5 are set to zero and a radial
cut is introduced to the arterial wall, allowing it to open and to flatten.
The flattening is achieved by applying proper boundary conditions (namely
displacement) to the cut edge surface of the cylinder. This permits to preserve
assigned in vivo deposition stretches of each constituent during tensile test.
In the second step, appropriate displacement is applied on the cut edge to
uniaxially load the flatten strip in the circumferential direction.

2.7 Application to predict the damage evolution of the
arterial wall during bulge inflation tests

Another application of the model can be to simulate bulge inflation tests on
a flatten sample of artery. As mentioned previously in section 2.4, taking
into account the mechanical effects of excising and cutting the sample from
the in vivo tissue. Here again the reference configuration is set arbitrarily as
the one of the artery in the in vivo conditions of diastole, before modeling
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the bulge inflation test. Thus, initially a segment of artery is pressurized and
axially stretched to find the circumferential component of deposition stretch
of elastin in the reference configuration. Afterwards, the average deformation
gradient of each layer of the mixture is calculated during the flattening step
of the tissue, namely Fk

f , k = 1, 2, ...,m with m number of layers. To simulate
bulge the inflation test, a disc of 30 mm diameter and with the same thickness
and number of layers as the arterial segment is meshed using wedge and
hexahedral elements. The disc is pressurized keeping the primary deposition
stretches of each constituent in reference configuration and applying Fk

f onto
the corresponding layer of the disc.

2.8 Application to predict damage evolution during
overpressure in a patient specific ATAA

The FE model is finally applied onto a patient–specific geometry to demon-
strate its capability for predicting damage evolution in a human ascending
thoracic aortic aneurysm (ATAA). An ATAA specimen and the preoperative
CT scan of the patient is obtained after informed consent from a donor under-
going elective surgery for ATAA repair at CHU-SE (Saint-Etienne, France).
The lumen of the aneurysm is clearly visible in the DICOM file, but the
aneurysm surface is not automatically detectable. The digital caliper is
used to homogeneously measure the thickness of the excised aneurysm in
vitro [77, 78]. A 2.5 mm average wall thickness is measured on the supplied
sample corresponding to the zero pressure configuration. A non-automatic
segmentation of the CT image slices is performed using MIMICS (v. 10.01,
Materialise NV) to reconstruct the ATAA geometry and export it as a STL
file. VMTK [2] was employed to generate the structural mesh for a membrane
obtained from the STL file. The extracted data from VMTK is postprocessed
in Matlab to extract an accurate structural mesh using the longitudinal and
circumferential metrics obtained from VMTK. The mesh morphing function
is then interpolated at every node of the template mesh using a least-squares
method. Finally, using the thickness measured in the reference configuration,
the membrane structural mesh is duplicated in eleven layers to generate ten
layers of hexahedral elements across the thickness where each layer of media
and adventitia has five. The material parameters are the ones of the first
patient in Table 1. The reference configuration is defined with a luminal
pressure of 80 mmHg which corresponds to the diastolic pressure. An axial
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prestretch (deposition stretch) of λiv
z = 1.3 is defined for the elastin compo-

nent and the deposition stretches of collagen and SMC components are set
to 1.1. The circumferential deposition stretch of elastin is determined itera-
tively as explained in section 2.3 [63]. Afterwards, damage evolution in the
ATAA wall is analyzed using the CMT–based damage model by increasing
gradually the luminal pressure. As boundary conditions, at both ends of the
ATAA model, only radial displacements are allowed and displacements in the
circumferential and axial direction are blocked.

3 Results

3.1 Damage evolution during inflation of a perfect thick-
wall cylinder

The distribution of damage evolution is shown as a colormap in Fig. 3. It
illustrates that damage always starts on the luminal side at the innermost
position in the media layer. The damaged component of the model is elastin
as the initial damage threshold of collagen in the model was higher than that
of elastin. Here, damage starts at Pi ≃ 28.5 kPa and increasing the luminal
pressure causes damage to propagate outwards radially in the media and
finally to spread across the whole media. The maximum applicable luminal
pressure in this case is Pi ≃ 30.1 kPa and due to extensive softening of the
media in consequence of damage, further pressurizing of the cylinder is not
possible. Accordingly damage stays in the elastin constituent in the media
and does not propagate to the adventitia.

3.2 Damage evolution during tensile test (uniaxial) of
human ATAA strips

Figs. 4-a and 4-b show damage evolution of a human ATAA strip under uni-
axial tensile loading after its opening and flattening by introducing a radial
cut. Damage evolution in Figs. 4-a is obtained with the CMT model and
damage evolution in Figs. 4-b is obtained with a traditional model without
prestrain. It can be seen that both models always predict damage initiation
on the luminal side at the innermost position in the media layer and again,
only the elastin constituent is concerned by damage. This is consistent with
the experimental results obtained in our group (unpublished) indicating that
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Figure 3: Damage evolution during inflation of a perfect thick-wall cylinder.

uniaxial stretching of the arterial tissue leads to a progressive delamination
of the tissue, layer by layer, starting from the luminal side. Besides, it is
experimentally shown that media has a significantly smaller strength in the
axial direction when subjected to uniaxial tension [76]. Further stretching of
the strip leads to the outwards radial propagation of damage in the media
layer but it remains in the elastin constituent due to the higher initial dam-
age threshold of collagen fibers. However, for the same stretch applied to the
ATAA strip, smaller damage variables are obtained with the CMT model.
For both cases again, damage does not propagate into the adventitia, this
time due to divergence of the resolution. Transmural distribution of the in-
plane and through-the-thickness stresses at the onset of damage initiation is
plotted in Fig. 5 for the CMT model. As expected, there is a discontinuity of
stresses at the interface between the media and the adventitia for each case,
due to discontinuous material properties. Through-the-thickness stresses are
two orders of magnitude smaller than in-plane stresses and consequently, as
an isotropic damage model was considered for elastin, damage was triggered
by in-plane stresses and not through-the-thickness stresses.

3.3 Damage evolution of the arterial wall during bulge
inflation tests

The distribution of damage evolution for a bulge inflation test is shown in
Fig. 6 for two situations:
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(a) (b)

Figure 4: Damage evolution of a human ATAA strip under uniaxial tension
after its opening and flattening by introducing a radial cut. a- using CMT
model, b- using traditional model (without prestrain).

(a) (b)

Figure 5: Transmural distribution of normal Cauchy stresses through the
thickness in radial, circumferential and axial directions (a) and radial shear
stresses (b) during uniaxial tensile test predicted using CMT model at the
onset of of damage initiation. All stress components are plotted as function
of the normalized thickness, with 0 and 1 corresponding to the inner and
outer surface of the artery„ respectively.
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(a)

(b)

Figure 6: Damage evolution during bulge inflation of a human ATAA. a- The
situation with the luminal side of the aorta inside, b- The situation with the
luminal side of the aorta outside. In the left, both layers together are shown
while in the right one just media is shown.

1. the first situation is with the luminal side of the aorta inside (Fig. 6-
a). In this case, damage always starts at the boundary between the
media and the adventitia and then propagates radially inwards across
the media thickness. Softening of the media due to damage evolution
permits to pressurize the sample up to Pi ≃ 114 kPa. After propagation
across the whole media, the pressure drops and the resolution diverges.

2. the second situation is with the luminal side of the aorta outside so
that the aorta is mounted upside down in the device (Fig. 6-b). Ex-
perimentally this situation was used to permit painting the surface and
track the deformation during the test with DIC [25, 24, 30, 73]. Indeed,
the luminal surface is smoother and cleaner, permitting a better optical
contrast. In this situation with the luminal side of the aorta outside,
damage initiates on the outermost surface of the sample (luminal side)
and propagates radially across the media.
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(a) (b)

Figure 7: Damage evolution during inflation of patient specific geometry. a-
Both layers together, b- media.

3.4 Damage evolution during over-pressurizing of a
patient-specific ATAA

Damage distributions for a patient-specific ATAA geometry subjected to
over-pressurizing is shown in Fig. 7. The parameters of the model used for
these simulations, including ψ0, came from the model calibration against the
experimental data of the bulge inflation test carried out on the aortic seg-
ment of the same patient. Focusing on the location with maximum damage it
is observed that damage initiates on the luminal side and propagates across
the media layer. Interestingly, damage mostly occurs in the inner curvature
of the aneurysm. This is a clear demonstration of the transition between ho-
mogeneous damage (which occurred in the cylinder problem of Section 3.1)
and the situation in which damage is localized into small regions that would
manifest physically as a crack (see our experimental results of ATAA rupture
in [30, 73]). Damage starts at Pi ≃ 35.2 kPa which is more than 2.5 times
a normal blood pressure (13 kPa) and the geometry can be inflated up to
Pi ≃ 45.8 kPa. Before damage affects the adventitia, softening of the media
prevents further inflation of the ATAA due to resolution divergence. The
results indicate though that, due to damage evolution, an ATAA may be
prone to undergo dissection by media rupture not followed by an adventitia
rupture, but most probably by a crack propagation at the interface between
the two layers (not simulated here).
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4 Discussion
The important potential of the constrained mixture theory (CMT) has al-
ready shown for predicting the mechanobiological behaviour of arteries based
on anisotropic hyperelastic models [8, 15, 50, 53, 63, 79]. In the present paper,
we combined for the first time the CMT approach with a damage model for
predicting layer-specific damage initiation in arteries during over-pressure
loading. The constitutive parameters of the novel model were calibrated
against experimental data before simulating damage initiation in different
situations, including patient-specific ATAA. As FE analyses are extensively
employed for soft tissue damage, it is important to take into account the in
vivo stress distribution of the tissue which may correspond to clinical sit-
uations [26]. The CMT approach presents the advantage of including the
actual in vivo state of stress of each constituent in a layer-specific fashion.
Therefore, the present numerical framework can be considered as a clinically
relevant tool.

As discussed in [63], different material parameters for the media and
adventitia render discontinuous circumferential and axial stresses at the in-
terface between the media and adventitia, supported also by [8, 46, 82]. In
addition to the different material parameters, it is required to introduce two
deposition stretches for the elastin, one axial and one circumferential which
are calibrated in order to ensure: (i) that the stresses in the wall of the
artery balance the luminal pressure present in the reference in vivo diastolic
configuration. (ii) that the axial recoil of the artery upon excision is pre-
dicted correctly. We first assign a constant axial deposition stretch at all
Gauss points (the value is calibrated to ensure that the axial recoil of the
artery upon excision is predicted correctly). Then we run the iterative finite
element analysis to calibrate the circumferential deposition stretch at every
Gauss point. During the iterations we do not modify the axial deposition
stretch. Satisfying condition (i) may induce a sensitivity of the calibrated
circumferential deposition stretch of the elastin with respect to the elastin
material parameter µe. In order to use the correct value of parameter µe,
we have to simulate an excision after running the iterative algorithm and re-
constructing the distribution of circumferential deposition stretch. Then the
average radial recoil during the simulated excision has to be compared to the
actual radial recoil and parameter µe must be updated. Then the iterative
algorithm has to be run again to find another distribution of circumferential
deposition stretch that permits satisfying equilibrium. The loop is repeated
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until the choice of parameter µe and the deduced deposition stretches yield
the correct actual recoil when the excision is simulated. Only the simula-
tion of arterial excision can validate the choice of deposition stretch for the
elastin.

Parameters of our four–fiber family model were calibrated by adjusting
the pressure–deflection curves against the experimental results. Abundant
literature can be found about the resolution of similar identification problems
where authors have investigated the unicity of the solution [3, 4, 35]. The
question of unicity arises especially for bi-layer models, as discussed by Badel
et al [5]. The identification of the fiber angle parameter in two–fiber family
models [36] particularly needs to satisfy constraints for ensuring a unique
solution to the problem [47]. For instance, bounds can be defined to ensure
that fibers remain closer to the axial direction in the adventitia and closer
to the circumferential direction in the media. In our case, as we used a
four-fiber family model, we assumed a similar angle for diagonal fibers in
the media and in the adventitia, but we assigned different mass fractions of
each type of fibers (circumferential, axial and diagonal) between two layers.
Other authors like Qi et al. [69] employed the κ-model [40] extended from
the Holzapfel model [46] to model fiber orientations. They suggested that if
upper and lower bounds are properly chosen, the parameters can be identified
uniquely. Another important aspect of the identification is the minimization
algorithm. The standard nonlinear Levenberg–Marquardt algorithm [47, 62,
69] is commonly used for the identification of material parameters such as
Neo–Hookean, exponential coefficients or fiber angles. In the current work
we used a genetic algorithm which ensures a global minimum. It was shown
to be less sensitive to the mutual influence between kj1 and kj2 coefficients of
exponential strain energy density functions [10].

One of the specificity of the current approach is that the reference config-
uration is set arbitrarily to the in vivo diastolic configuration. In this config-
uration, the diastolic pressure applied onto the artery is balanced by tissue
prestress. A different prestress is assigned to each constituent by assigning
a so-called deposition stretch. Whilst the deposition stretch of collagen was
previously estimated experimentally [34], the deposition stretch of elastin is
calibrated iteratively before each simulation in order to find the values that
will provide mechanical equilibrium [63]. At the end of the iterative approach,
there should be a displacement of less than 1% of the arterial thickness to the
application of the diastolic pressure, ensuring a perfect equilibrium. However,
it was numerically difficult to reach this 1% threshold at specific positions of
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patient specific ATAA geometries. It was due to highly curved configuration
which lead to significant local stress gradients, with through-thickness shear
stresses especially between media and adventitia. At these locations, we still
had a displacement of about 10% of the arterial thickness after calibrating
the elastin deposition stretch. However, these locations were not concerned
by damage initiation and consequently this did not have an impact on the
results.

The most relevant results in simulations of damage initiation is the predic-
tion of damage propagation across the aortic wall, starting from the intimal
layer (luminal side) and propagating across the whole media, but not hitting
the adventitia. This means that, at high blood pressure, a partial rupture
of the arterial thickness can be predicted. This can be related clinically to
acute dissection development. Despite of large advances in diagnosis and
surgery of ATAA, acute dissection remain the most common crucial com-
plication of an ATAA, with significant mortality [13]. Dissection commonly
occurs in elderly patients having a tricuspid aortic valve and can also hit rel-
atively young patients having a bicuspid aortic valve [14]. We suggest that
conditions such as aging or bicuspid aortic valve, which are known to affect
the biochemistry of the wall [11] and consequently reduce through-thickness
radial strength of the aorta, would be favorable for deviating a crack propa-
gating radialy across the whole media. Crack deviation means that the crack
would kink and propagate tangentially between the media and the adven-
titia. Our results presented here reveal that the media is prone to undergo
such rupture when the arterial wall is overloaded, but we did not simulate the
crack deviation, we just showed that the crack propagation was stopped when
it reached the adventitia. Crack deviation and further delamination could
possibly be modelled using cohesive zone elements [6, 59], but this was out of
scope here. Nevertheless, this scenario of dissection initiation was observed
in most of the bulge inflation tests carried out on aortic samples when the
sample was mounted with the luminal side out, similar to the numerical pre-
diction [30]. Interestingly when the bulge inflation test was carried out with
samples mounted with the luminal side in, we observed strain localization but
not a dissection-like rupture [73]. This is also predicted by the model which
shows that, in such situation, damage will initiate in the inter–layer posi-
tion and propagate radially inwards, without reaching the outside position.
The scenario of dissection initiation, starting with a partial rupture of the
arterial thickness, is also confirmed by tensile tests performed on completely
delaminated ATAA samples by Pasta et al. [66]. They demonstrated that
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the intima-media half of the aortic wall may undergo failure before the outer
adventitial half. Tear initiation in ascending aortic dissection was shown to
occur in the region close to the sinotubular junction which experiences the
maximum wall stresses [20]. This tear is highly hazardous, even often lethal,
as it permits blood to enter the aortic wall and consequently split progres-
sively the media and separate it along the axial direction of the aorta.

4.1 Study limitations
Despite the interesting observations made with the current model, several
limitations should be listed.

The viscoelastic effect is ignored in this work. Although some authors
suggested it was not significant in damage of anisotropic soft tissue [18, 52],
we plan to consider viscoelastic effects in future studies to verify this assump-
tion.

Moreover, in this work fiber–fiber and fiber–matrix interactions are ne-
glected. Such interactions may become important for the time–dependent
response. Therefore, a plasticity theory could be appropriate, as the non-
linear behaviour of collagen fibers may cause irresversible slips of fibers one
over another.

The material parameters, including mass fractions and deposition stretches
of each constituent, were estimated by calibrating the model against the re-
sponse to bulge inflation. There is a pressing need to develop a non-invasive
methodology to obtain in vivo material parameters which would be relevant
for clinical applications.

In the present work, for patient-specific analyses of human ATAAs, the
wall thickness is assumed homogeneous. However it is shown by some authors
[16] that thickness varies in an ascending thoracic aorta. Although this can
be considered as a limitation of this work, it is possible to include these
variations in the present model if data are available. Nevertheless, it is
also shown that these thickness variations are less important in aneurysms
than in healthy aortas [16]. The effect of possible regional variations in the
thickness and in the material properties, would obviously affect the local
values of deposition stretches that we have to assign to elastin, as shown
in another paper where the regional variations of a CMT-based model were
reconstructed on mice aortas [10].

There is no clinical evidence that a dissection would actually appear on
the inner curvature of the aortic arch. Most dissection would even occur
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on the outer curvature side [66]. However, in our model, we used the same
damage initiation threshold and same material properties everywhere. In
reality, material properties may vary regionally [51, 67, 86]. So it may happen
that even if the maximum stress is at the inner curvature side, the location
where the damage threshold is reached first may be on the outer curvature
side in reality, because this side may be weaker. This reveals the importance
of taking into account the regional variations of material properties in the
models.

In this model we have assumed an isotropic damage criterion. As noted
above, through-the-thickness stresses are smaller than in-plane stresses and
consequently, as we have an isotropic damage model for elastin, damage
initiates in the plane and not through-the-thickness. Therefore it would be
very interesting to introduce an anisotropic damage criterion and investigate
how in-plane and through-the-thickness damage can interplay in that case.

5 Conclusions
In summary, in the present work, a novel layer–specific damage model based
on the constrained mixture theory (CMT) was presented, it was implemented
robustly in a finite-element framework and its applicability was demonstrated
by different examples such as uniaxial tensile tests, bulge inflation tests and
patient-specific over–pressurization of a human aortic aneurysm. The main
advantage of the present model is that the numerical framework is flexible and
material definition can be conveniently augmented with new components such
as growth and remodeling in the strain energy function and in the damage
formulation. We are currently following this direction for predicting patient-
specific damage evolution and possible risk of dissection during aneurysm
growth.
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Appendix A Algorithm of the numerical im-
plementation of the model at Gauss
point level

Initialization at t = 0 and n = 0
set Djn+1

= Djn = 0, j ∈ {e, ci}
At each time increment n+1

For corresponding mixture deformation gradient, F, calculate Ie
1, I

ci
4 and

Im
4 .
Compute the second Piola-Kirchhoff stress tensor, S, using Eq. 12 and

the
corresponding tangent constitutive tensor, C, using Eq. 14.
Calculate the undamaged deviatoric part of the Helmholtz free energy

for
elastin, W e, and collagen families, W ci , from Eqs. 3 and 6, respectively,

and
determine the present damage threshold of each constituent, ψe and ψci ,

from
Eq. 16.

if ψj > ψj0, j ∈ {e, ci} (damage progresses) then
Compute the mechanical damage for the current increment, Djn+1, and
∂Gj(ψj)
∂ψj using Eqs. 16 and 17, respectively.

if Djn+1
< Djn (elastic unloading) then

∂Gj(ψj)
∂ψj = 0

end if
else
Djn+1

= Djn

∂Gj(ψj)
∂ψj = 0

end if
Using current damage, Djn+1, update the second Piola-Kirchhoff stress
tensor, S, using Eq. 12 and the corresponding tangent constitutive tensor,
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C, using Eq. 14.
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