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Abstract It is now a rather common approach to per-
form patient-specific stress analyses of arterial walls
using finite–element models reconstructed from gated
medical images. However this requires to compute for
every Gauss point the deformation gradient between
the current configuration and a stressfree reference con-
figuration. It is technically difficult to define such a ref-
erence configuration and there is actually no guaran-
tee that a stressfree configuration is physically attain-
able due to the presence of internal stresses in unloaded
soft tissues. An alternative framework was proposed by
Bellini et al., 2014. It consists of computing the defor-
mation gradients between the current configuration and
a prestressed reference configuration. We present here
the first finite–element results based on this concept us-
ing the Abaqus software. The reference configuration is
set arbitrarily to the in vivo average geometry of the
artery, which is obtained from gated medical images
and is assumed to be mechanobiologically homeostatic.
For every Gauss point, the stress is split additively into
the contributions of each individual load–bearing con-
stituent of the tissue, namely elastin, collagen, smooth
muscle cells. Each constituent is assigned an indepen-
dent prestretch in the reference configuration, named
the deposition stretch. The outstanding advantage of
the present approach is that it simultaneously computes
the in situ stresses existing in the reference configura-
tion and predicts the residual stresses that occur after
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removing the different loadings applied onto the artery
(pressure and axial load). As a proof of concept, we
applied it on an ideal thick–wall cylinder and showed
that the obtained results were consistent with corre-
sponding experimental and analytical results of well–
known literature. In addition, we developed a patient–
specific model of a human ascending thoracic aneurys-
mal aorta and demonstrated the utility in predicting
the wall stress distribution in vivo under the effects of
physiological pressure. Finally we simulated the whole
process preceding traditional in vitro uniaxial tensile
testing of arteries, including excision from the body, ra-
dial cutting, flattening and subsequent tensile loading,
showing how this process may impact the final mechan-
ical properties derived from these in vitro tests.

Keywords finite–elements · constrained mixture
theory · anisotropic behaviour · zero–pressure configu-
ration · residual stresses

1 Introduction

For the past few years, scientists have employed dif-
ferent methodologies, such as the theory of continuum
mechanics, to investigate the biomechanical behavior of
arteries. Important studies demonstrated that mechan-
ical factors may play an essential role in the develop-
ment of cardiovascular diseases, such as atherosclero-
sis or aneurysms, which are prevalent causes of many
deaths in the western world [26,28,58].
An important aspect of the biomechanical behavior of
arteries is the permanent state of biaxial tensile stresses
that exists in vivo. The existence of these in situ stresses
is well evidenced when arteries are excised during a sur-
gical intervention for instance. Due to the removal of in
vivo loadings, the artery experiences an elastic recoiling
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[10,29]. Even when these loadings are removed, internal
or residual stresses still exist in the tissues. An effect of
these internal stresses can be observed in arteries with
the well–known open angle experiment [2,18,29]. Resid-
ual stresses can be observed in most of soft tissues [36,
60], including myocardium [22,40,57] and mitral valve
leaflets [44]. The intrinsic reason of this specific mechan-
ical behavior of soft tissues is their composite nature
combined with different kinetics of growth and remod-
eling for each micro–constituent. For instance, in large
arteries, while the extracellular matrix (ECM) of the
media mainly consists of a complex three-dimensional
(3D) network of elastin and collagen fibrils surrounding
the smooth muscle cells (SMCs), the ECM in the outer
layer (adventitia) is mostly made of thick bundles of
collagen.
It is now a rather common approach to perform patient-
specific stress analyses in arterial walls using finite–
element (FE) models reconstructed from gated medi-
cal images [20,45,46,52,53]. There is also nowadays an
important endeavor to understand and model computa-
tionally the mechanobiological behavior of arteries [37],
especially how the fibrobasts and SMCs sense the in
situ mechanical stimuli and maintain stresses or stiff-
ness properties at homeostasis [6,7,8,39]. However this
requires for every Gauss point to compute the deforma-
tion gradient between the current configuration and a
stressfree reference configuration. It is technically dif-
ficult to derive such reference configuration. Moreover,
there is actually no guarantee that a stressfree config-
uration is physically attainable due to the presence of
internal stresses after removing the external loads and
even after introducing a radial cut.
For specific applications, arterial walls were modeled as
a homogenized single layer [33,49]. The in situ stresses
existing in vivo are taken into account by determining
a stress-free zero-pressure reference configuration. For
instance, Riveros et al. [45] proposed an iterative FE
model to predict the zero-pressure geometry of patient
specific abdominal aortic aneurysms (AAA). The aor-
tic wall was considered as an anisotropic hyperelastic
material and the intraluminal thrombus was also con-
sidered. The residual stresses were neglected.
One can also find a number of computational models
accounting for the bi-layered structure of arteries in
the literature [14,25,35,41,42,50,55,56]. Maltzahn et
al. [55,56] used a finite deformation framework and re-
ported discontinuous axial and circumferential stresses
at the interface of the media and adventitia, the max-
imum circumferential stresses occurring in the media.
They obtained non uniform stress distributions across
the thickness of the artery but they neglected residual
stresses.

Other authors included the residual stresses in their
model by defining the reference configuration as the
geometry of the artery resulting from the open angle
experiment [25]. Doing so and using bi-layer models,
Taber et al. [50] and Rachev [42] obtained a roughly
uniform distribution of circumferential stress in each
arterial layer.
Another type of approach permitting to address this
problem is based on the Constrained Mixture Theory
(CMT) [30]. Experiments reveal that the net residual
stresses in an excised artery likely depend on different
residual stresses within individual constituents. This is
consistent with the fact that each constituent is de-
posited at a different time period and with different
value, which leads each constituent to have a differ-
ent deposition stretch. According to the principle of
the constrained mixture theory (CMT), all constituents
in the mixture are assumed to deform together in the
stressed configuration whereas they have their own evolv-
ing mass fractions. Indeed, this suggestion is consistent
with the idea that elastin is deposited and cross–linked
during the perinatal period and its half–life is normally
on the order of decades, thus causing it to undergo
extensive elastic deformations during normal biologi-
cal growth [5,11] that will be partially released in the
mature artery upon excision. On the other hand, col-
lagen turns over continuously and is likely deposited
in the current state of the artery at maturity [29,51].
The extensibility of collagen fibers being rather limited,
of the order of 10% strain, the prestretch of collagen
is rather modest compared to the one of elastin. Fol-
lowing the seminal paper of Humphrey and Rajagopal
[31], mathematical models and computational frame-
works based on the CMT were recently published in
several papers, including Bellini et al. [2], Cardamone
et al. [5] and Valentín et al. [54]. It was shown that they
can successfully predict the zero–pressure configuration
and residual stresses. The approach was used success-
fully for thick cylinders and a FE implementation would
permit applying it on patient-specific geometries of ar-
terial walls reconstructed from medical images.
In the present work, the objective is to develop and
apply the first FE model based on the CMT concept
using the Abaqus software. We applied it first on an
ideal thick-wall cylinder and showed that the obtained
results were consistent with corresponding experimen-
tal and analytical results of well–known literature. In
addition, we developed a patient-specific model of a hu-
man ascending thoracic aneurysmal aorta (ATAA) and
demonstrated the utility in predicting the wall stress
distribution in vivo under the effects of physiological
pressure. Finally we simulated the whole process pre-
ceding traditional in vitro mechanical testing of arter-
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ies, including excision from the body, radial cutting,
flattening and subsequent tensile loading, showing how
this process may impact the final mechanical properties
derived from these in vitro tests.

2 Material and methods

2.1 Constitutive model

It has been recently demonstrated that 2D mathemati-
cal [2] and 3D computational [54] models based on the
CMT are able to successfully predict the behavior of
thick-wall arteries concerning zero–pressure configura-
tion, residual stresses and growth and remodeling. In
these manuscripts the approach was used successfully
to predict the behavior of the thick cylinders. However
those studies lacked a 3D demonstration and applica-
tion on actual ATAA model. Therefore, we propose to
develop FE models of arteries using 3D hexahedral or
wedge finite elements. At the Gauss points of each ele-
ment, the passive behavior is assumed hyperelastic and
a strain-energy function (SEF) is assumed with decou-
pled contributions of the purely volumetric contribu-
tions and the purely isochoric contributions [2,25,28,
54]. The same SEF is assumed for every element across
the geometry of the artery, but different material prop-
erties can be applied at each layer.
It is assumed that the isochoric part of the SEF can be
written as an additive split of different contributions:
the contribution of elastin, the passive contribution of
SMC if present, and the contribution of collagen fibers
(Fig. 1). For the latter, a number of families can be
considered. Eventually, the SEF may be written as [2,
28]:

W =ρeW
e
(I

e
1) +

n∑
i=1

ρciW
ci
(I

ci
4 )+

ρmW
m
(I

m
4 ) + U(J)

(1)

where superscripts e, ci and m represent respectively
the elastin fiber constituent, the constituent made of
each of the n possible collagen fiber families and the
SMC constituent. In Eq. 1, ρj refers to mass fraction,
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4) invariants of the related constituents of the
mixture (j ∈ {e, ci,m}). Let the mechanical behavior of
the elastin constituent be described by a Neo-Hookean
strain energy function as in [5,15,25]
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Noting that Fe = FGe
h where F is the corresponding

deformation gradient of the mixture and Ge
h is the de-

position stretch of elastin with respect to the reference
configuration [2,5]. Therefore, using the CMT–based
model it is assumed that all constituents in the mixture
deform together in the stressed configuration while each
constituent has a different "total" deformation gradient
based on its own deposition stretch.
The SEF of the passive SMCs and collagen contribu-
tions is described using an exponential expression such
as [2,5,45,46]:
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where k ∈ {ci,m}. Dk
1 and Dk

2 are stress-like and di-
mensionless material parameters, respectively, and can
take different values when fibers are under compression
or tension [4]. I

k
4 = Jk(−2/3)

Ik
4 which is greater than

one when fiber is under tension and less than one when
fiber is under compression. Noting that Jk = det(Fk)
and Ik

4 is the fourth invariant which can be written such
as:

Ik4 = Gk
h

2
C : Mk ⊗Mk (5)

where Gk
h, k ∈ {ci,m}, is the specific deposition stretch

of each collagen fiber family or SMCs, with respect
to the reference configuration. Mk, k ∈ {ci,m}, de-
notes a unit vector along the dominant orientation of
anisotropy in the reference configuration of the con-
stituent made of the ith family of collagen fibers or
of SMCs. For SMCs, Mm coincides with the circum-
ferential direction of the vessel in the reference con-
figuration while for the ith family of collagen fibers
Mci = [0 sinαi cosαi], where αi is the angle of the
ith family of collagen fibers with respect to the axial
direction. C = FTF is the right Cauchy-Green stretch
tensor of the arterial wall mixture [2,5].
The volumetric component of the SEF is written such
as [45]:

U(J) = κ(J − 1)2 (6)

where κ is the bulk modulus and J = det(F) is the Ja-
cobian.
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The second Piola-Kirchhoff stress tensor can be ob-
tained as:
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where p = dU/dJ is the hydrostatic pressure. The Cauchy
stress tensor is derived from the second Piola-Kirchoff
stress as [24,25]

σ = J−1FSFT (8)

2.2 Finite–Element implementation

The proposed model is implemented within the com-
mercial FE software Abaqus [23] through a coupled user
material subroutine (UMAT) [16,38]. A 3D structural
mesh made of hexahedral elements with eight nodes and
eight Gauss points is reconstructed across the wall of
the artery. The mesh is structural, which means that the
edges of each hexahedron are locally aligned with the
material directions of the artery: radial, circumferential
and axial. For non–perfectly cylindrical geometries, the
radial direction is defined as the outward normal direc-
tion to the luminal surface, the axial direction is defined
as the direction parallel to the luminal centerline in the
direction of the blood flow, and the circumferential di-
rection is perpendicular to the two previously defined
directions. It is assumed that each element is a mixture
of elastin, collagen and SMCs with mass fractions vary-
ing regionally.
For each simulation the deposition stretch of elastin
should be determined and a specific algorithm had to
be implemented for this. Indeed, it is well–known that
elastin is produced primarily during the perinatal pe-
riod and it is mainly stable thereafter for at least a few
decades [11,34]. Thus as the artery enlarges from in-
fancy to adulthood, it undergoes large multiaxial stretches.
In the contrary, collagen and SMCs are continuously
produced and replaced during lifetime [34]. Therefore,
elastin experiences a higher prestretch (including both
developmental and deposition stretches) in comparison
with collagen fibers and SMCs which are deposited at
maturity. To characterize experimentally the deposition
stretches of collagen fibers and SMCs, a method was
proposed by [3]. First the specimen is stretched to its
in vivo axial length and is pressurized correspondingly.
After infusing the sample by appropriate amount of
porcine pancreatic elastase for some minutes the elastic
fibers are digested [17]. Therefore, measured changes in
unloaded length and outer diameter following elastase

treatment are then combined with homeostatic values
of the biaxial stretches obtained from the distension-
extension data to provide a range for the deposition
stretch of collagen fibers and smooth SMCs [3]. There-
fore, according to those experimental data [2,3], de-
position stretches of the SMCs constituent, Gm

h , and
of the collagen constituents, Gci

h , are assumed ∼1.1.
Refined values around 1.1 can be deduced using in-
verse approach and biaxial test data [4]. The deposition
stretches of the elastin constituent are defined itera-
tively. The axial deposition stretch of elastin is assigned
such as being able to induce the usual axial recoil that
can be measured when the artery is excised (this axial
stretch may depend on species, on the type of arteries,
on the age, etc [27]). Assuming a cylindrical geometry
and incompressibility, the structure of the prestretch
tensor in matrix notation can be written such as

Ge
h =

 1
λθλiv

z
0 0

0 λθ 0
0 0 λivz

 (9)

In the first step, circumferential component of deposi-
tion stretch of elastin is set to one, λθ = 1. Therefore,
by applying diastolic pressure and taking into account
deposition stretches of collagen and SMCs mentioned
above, an FE analysis is performed for the first step.
The deformation gradient of elastin, Fe, is recorded at
the end of each step and assigned as the deposition
stretch tensor of the elastin component in the next step
until it converges to a stable value. The decision that
deposition stretch tensor of the elastin is stable is made
according to average nodal displacements across the ar-
terial wall, U . So at the end of each step (at convergence
of the algorithm), U must be less than a prescribed tol-
erance, ξ, which is set to 1% of the wall thickness in
the present work. This entire algorithm to calibrate the
deposition stretch tensor of elastin is summarized in a
flowchart shown in Fig. 2.
After calibrating the deposition stretch tensor of the
elastin component, FE analyses can be performed to
deduce the response of the artery to mechanical actions.
For instance, if we set the luminal pressure to zero, we
can deduce the pressure–free geometry of the artery in-
cluding the distribution of residual stresses across the
wall.

2.3 Application to predict the tension–inflation and
opening angle response of murine arterial segments

The FE model is validated against data available for
a thick-wall cylinder (outer diameter = 697 µm) sub-
jected to pressures Pi varying from 0 to 140 mmHg, at
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three different axial stretches (λz = {1.47, 1.55, 1.63})
[2]. The cylinder wall is meshed with 7500 hexahedral
elements, with 10 elements across the thickness. Axial
and circumferential displacements of both ends of the
cylinder are blocked, only radial displacements are al-
lowed. Mass fractions ρe, ρci and ρm introduced in the
expression of the SEF in Eq. 1 are the ones reported by
[2]. Material parameters are reported in Table 1. For
every pressure Pi and every axial stretch λiv

z , the FE
analysis with the CMT–based model is used to derive
the outer diameter of the artery, denoted D, and the re-
duced axial force, denoted F , permitting to plot P −D
and F − P curves for the three applied axial stretches.
The reduced axial force is derived by subtracting Piπr

2
i

from calculated numerical axial forces, where ri is the
actual inner radius of the cylinder [25]. Finally a FE
analysis is performed on a small ring of the same arte-
rial model, this time with no pressure, no axial stretch
and with a radial cut, permitting to simulate the open
angle experiment and to estimate the opening angle re-
sulting from the release of internal stresses. In this case,
boundary conditions are assigned in one of the cut sur-
faces as shown in Fig. 3

2.4 Application to predict the patient–specific
distribution of stresses in human ATAAs

To demonstrate its applicability to predict patient–specific
wall stresses, the model was employed onto a human as-
cending thoracic aortic aneurysm (ATAA). An ATAA
specimen and the preoperative CT scan of the patient
were obtained after informed consent from a donor un-
dergoing elective surgery for ATAA repair at CHU-SE
(Saint-Etienne, France). The lumen of the aneurysm
was clearly visible in the DICOM file, but detection of
the aneurysm surface was not possible automatically. A
non-automatic segmentation of the CT image slices was
performed using MIMICS (v. 10.01, Materialise NV) to
reconstruct the ATAA geometry. The reconstructed ge-
ometry was meshed with 53820 hexahedral elements.
A wall thickness of 2.38 mm was defined evenly in the
reference configuration, yielding an average thickness
of 2.67 mm at zero pressure, which corresponded to
the measured thickness on the supplied sample. The
thickness was indeed measured homogeneous on the ex-
cised aneurysm of this patient in vitro using a digital
caliper. As explained in [52,53] the piece of artery was
put between two plastic plates and the thickness of the
artery and the plates was measured. Then subtract-
ing the thickness of the two plates from the obtained
value delivered artery thickness. The mesh comprised
five elements across the thickness. Material parameters

(reported in Table 2) such as deposition stretch of col-
lagen and exponents were taken from literature [2,5]
and others were calibrated with data of our group [12].
The reference configuration was defined with a luminal
pressure of 80 mmHg which corresponded to the dias-
tolic pressure. An axial prestretch (deposition stretch)
of λiv

z = 1.3 was defined for the elastin component and
the deposition stretches of collagen and SMC compo-
nents were set to 1.1. The circumferential deposition
stretch of elastin was determined using the iterative al-
gorithm shown in Fig. 2. After setting the determined
deposition stretch to all the elements, the zero-pressure
geometry was then derived by performing an FE anal-
ysis with the model with a luminal pressure set to zero
(free edge) as boundary conditions. The distribution of
wall stresses at systole was also derived by setting the
luminal pressure to 120 mmHg (16 kPa) in the model.
In each case, the same boundary conditions were as-
signed to both ends of the ATAA model, allowing only
radial displacements and blocking displacements in the
other two directions (circumferential and axial).
The aortic arch motion is linked to that of the heart
left ventricle through the aortic root. This motion gen-
erates axial stresses in the ascending aorta which may
induce in turn higher stress levels in the aortic arch.
In this patient–specific analysis this complex bound-
ary conditions of pulling or twisting are first ignored
because these data were not available for this patient
in vivo. Afterwards, in order to investigate the effects
of ventricular contraction on the stress distribution, in
vivo measurements of pulling and twist angle of Beller
et al. [1,19] are adopted. An axial displacement of 8.9
mm and a rotation angle of 6◦ are applied onto the end
of the ATAA model [19].

2.5 Application to predict the response of human
ATAA strips to uniaxial tensile tests

A third application of the model is to simulate uni-
axial tensile tests on strips of arteries considering the
mechanical effects of excising and cutting these strips
from the in vivo tissue. The reference configuration be-
ing set arbitrarily as the one of the artery in the in vivo
conditions of diastole, before modeling the tensile test
on a strip, we have to model first the elastic recoiling
occurring after taking the strip from the artery which
is initially pressurized and axially stretched, and sec-
ond the flattening of the tissue. All these deformations
are applied successfully in the FE analysis, as shown
schematically in Fig. 4. The flattening is modeled by
applying appropriate boundary conditions to the cut
strip, namely displacement at the cut edge surface.
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The FE analysis is used to derive the stress–stretch re-
sponse of the strip that would be measured in a tra-
ditional uniaxial testing approach. The stress and the
stretch values are both derived as the average values
across the strip of σ : N⊗N and

√
C : N⊗N respec-

tively, where N is a vector pointing in the direction of
the tension axis.
Traditionally, hyperelastic models are formulated with
the reference configuration set in the zero load state
and without prestretch [25]. An incompressible four–
fiber family model in such situation would have a strain
energy of the form:

ψ = c(λr
2 + λθ

2 + λz
2 − 3)+

4∑
i=1

k1
2k2

[
exp

(
k2(I

i
4 − 1)2

)
− 1

] (10)

where c, k1 > 0 and k2 > 0 are model parameters
and λi, (i = r, θ, z), are the three principal stretches.
Thus the deformation gradient may be written as F =
diag[λr λθ λz].
We propose to fit the stress–strain curves simulated
by our FE model with the traditional four–fiber family
model written just above. The same orientation angle is
used for the diagonal fibers of both models for the sake
of simplicity: α3,4 = ±45◦. Two uniaxial tensile tests
are simulated: one with N aligned in the θ-direction
(circumferential) of the artery and the second one with
N aligned in the z-direction (axial) of the artery. Then
using a least–squares optimization method, parameters
c, k1 and k2 of Eq. 10 are identified. Strips of dimen-
sions 314 × 160 × 2 mm3 are modeled, excised from
a cylindrical artery with outer diameter 50 mm having
the same material properties as the ones of the human
ATAA reported in Tab. 2. The strips are meshed with
22,500 linear hexahedral elements with 26,400 nodes.
The deposition stretch of collagen and SMC compo-
nents is ∼1.1 while the axial deposition stretch of elastin
is ∼1.3.

3 Results

3.1 Tension–inflation and opening angle response of
murine arterial segments

The circumferential component of deposition stretch of
elastin is estimated equal to 1.40 and the axial compo-
nent of deposition stretch of elastin is estimated equal
to 1.55. The P −D and F −P curves obtained with our
FE model are shown in Fig. 5. They are compared with
analytical counter parts of Bellini et al. [2]. A black spot
indicates the reference configuration. A good agreement

can be observed between analytical and numerical re-
sults. The analytical response was previously validated
against experimental data [2]. In Fig. 6 we show the
predicted response of an arterial ring to the open an-
gle experiment. The obtained opening angle with the
numerical model is ∼ 27.8◦, which is just in–between
theoretical (∼ 21◦ ± 3) and experimental (∼ 29◦ ± 8)
results of Bellini et al. [2].

3.2 Patient–specific distribution of stresses in human
ATAAs

From the mesh reconstructed using the preoperative
CT scan, the zero pressure geometry of the patient-
specific ATAA was derived using our CMT–based FE
model. Results are showed in Fig. 7. The distribution of
residual stresses in the zero–pressure state shows com-
pression on the luminal side of the artery and tension
on the outer side. The stress maps computed at sys-
tole are shown in Fig. 8. It is compared with the strain
map reported by [52] on the same geometry with a tra-
ditional FE model. The traditional model predicts a
maximum stress in the wall of ∼510 kPa while our new
CMT–based FE model predicts it ∼600 kPa, which is
∼17% higher. Moreover, average nodal displacements
of ATAA model using the traditional model and the
CMT–based model are ∼3.67 mm and ∼1.43 mm, re-
spectively.
Including pulling and twist boundary conditions increases
limits of maximum and minimum stresses in the arte-
rial wall. As seen in Fig. 9 CMT–based model predicts
a maximum stress of ∼650 kPa in the arterial wall.

3.3 Response of human ATAA strips to uniaxial
tensile tests

Stress–strain curves for both uniaxial tests on human
ATAA strips obtained with the CMT–based model are
shown in Fig. 10. The flatten strip could be stretched of
1.5 and of 1.28 in the axial (red circles) and circumferen-
tial (blue circles) directions, respectively. It can be seen
that the curves can be fitted very well with a hyperelas-
tic model using a traditional formulation. The best-fit
parameters are k2 = 0.1, c = 4.65 kPa and k1 = 293

kPa. The values of these parameters are different of the
ones used initially in the CMT-based four-fiber family
model. The c value of the initial CMT-based model is
larger than the one of the traditional model and the
k values are smaller. This means that both approaches
can predict similar uniaxial tensile responses but with
different material parameters.
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4 Discussion

4.1 Main assets of the CMT–based FE model

We have developed the first FE model based on the
constrained mixture theory (CMT) using the Abaqus
software and we have shown its potential for patient-
specific biomechanical investigations of arteries.
A first advantage of the CMT–based FE model is its
ability of predicting the wall stress distribution of ar-
teries in vivo under the effects of physiological pressure
by using their CT-scan-based geometry. It is basically
accepted that stress analyses of arterial walls using CT-
scan-based geometries as a reference configuration can
lead to errors [13,48], confirmed in recent literature [36,
45]. This is due to the presence of in situ wall stresses
existing in the CT-scan-based reference configuration,
the artery being loaded by the luminal pressure [13,35,
43,48,45]. Some recent literature [32] proposed an ap-
proach for stress analyses which simplifies the biome-
chanical problem and can use directly CT-scan-based
reconstructed geometries, relying on trivial linear elas-
tic finite element computations. Outside of this recent
publication, most of the computational approaches for
the derivation of wall stresses in arteries relied first on
the derivation of the zero-pressure geometry from CT-
scan-based geometry.
A second advantage of the CMT–based FE model, even
if it is not necessary for in situ stress predictions, is its
ability for predicting efficiently the zero pressure ge-
ometry of an artery from the CT-scan-based geometry.
Finding the zero pressure geometry of an artery is a re-
current problem in vascular biomechanics, recently ex-
tended to all types of soft tissues by [36]. In [43], a scal-
ing factor was defined on the deformation obtained by
applying the diastolic pressure to the CT-based geom-
etry. This permitted to approximate the zero pressure
geometry of patient-specific AAAs using a single FE
analysis. An improved approach was proposed by [45]
for AAAs and extended to ATAAs by [52], with an iter-
ative algorithm to derive the zero pressure geometry, in-
stead of the direct method of [43]. However, there is still
noticeable numerical advantages to use our CMT-based
FE model over the previously reported methodologies
[45] based on incremental upgrading of the deformation
gradient. Indeed, the zero pressure geometry is simply
the response of the model to a given set of boundary
conditions in our model, permitting to derive the solu-
tion in a single analysis. It is noteworthy that in the
case of patient specific analysis more precaution is nec-
essary because in addition to the patient specific geom-
etry and loading conditions the material properties and
prestretch levels may play prominent roles. Therefore,

due to large number of material parameters, it is im-
portant to ensure that a unique solution exist for the
calibration of the circumferential component of the de-
position stretch of the elastin.
A third advantage of the CMT–based FE model is its
ability for predicting residual stresses, with successful
predictions of the opening angle experiment. Residual
stresses do exist in the zero-pressure configuration of
arteries but they were generally ignored in the previ-
ously cited approaches which had also the disadvantage
of not being layer specific [45]. Residual stresses were
ignored also because the traditional approach for intro-
ducing them in a model is to start the analysis from
an opened artery, and not to do it reversely as in our
model. However, neglecting the residual stresses signif-
icantly impacts the distribution of wall stresses at dias-
tole and systole, as shown in Fig.8 where we compared
the two solutions, with and without residual stresses at
the zero-pressure state.
A fourth advantage of the CMT–based FE model is to
consider the contributions of each constituent of the
tissue to its biomechanical response. The constrained
mixture theory was herein adopted to include internal
stresses which may exist in a reference configuration of
a biological tissue [2,5,50]. The CMT framework is a
mechanobiologically inspired description which can be
appropriately employed for any general 3D solid struc-
tures under pressure, such as the heart, atria, eye and
brain aneurysms among others. It includes the comple-
mentary roles of transmural distributions of elastin, col-
lagen fiber families and SMCs. Specifically, our results
indicate the primary role of elastin on residual stresses
of thick-wall response such as calculated outer diameter
and reaction forces of arterial wall versus internal pres-
sure. This is in agreement with experiments by [21] who
demonstrated that residual stresses depends primarily
on intramural elastin, before collagen or SMC.
A fifth advantage of the CMT–based FE model is to
bridge directly the in vivo mechanical behavior of ar-
teries to their behavior observed in vitro after exci-
sion. Several authors have tried to identify hyperelastic
material parameters in vivo using imaging data and
to compare them to the best-fit parameters of stress-
strain curves obtained in vitro on the same tissue af-
ter excision. However, the reference configuration for
the hyperelastic models of those studies was always the
zero load geometry of the experimental tests [47,53].
We showed here that a different approach can be per-
formed, using the in vivo geometry as a reference con-
figuration for the hyperelastic model and predicting the
stress-strain response of in vitro testing after excision
using the model. The deposition stretch of each con-
stituent in the reference configuration has a crucial role
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in this response. In a traditional approach with no depo-
sition stretch, collagen fibers are the major contributors
to the stress in in vivo conditions. This is rather differ-
ent with the FE model here, where elastin can have
a relatively high contribution to the stress of healthy
arteries in the reference configuration in vitro. In a tra-
ditional model such as [25], the elastin constituent is
represented as a soft matrix in a composite where the
collagen fibers are the reinforcements. In the current ap-
proach the role of elastin fibers in bearing stresses for
in vivo conditions is prominent. Anyway, at the end,
both models are able to predict similar stress-strain
curves for in vitro uniaxial tensile tests, but with dif-
ferent material parameters. It is yet not trivial to find
the parameters of the CMT–based FE model that give
an equivalent response to a similar hyperelastic model
with no deposition stretch. This may also explain why
different maximum stresses are found in Fig. 8 between
both approaches.
A sixth advantage of the present model is its mechanobi-
ological foundation. By spliting the contribution of elastin,
collagen and SMCs to the wall stress and by taking into
account their respective deposition stretches, this per-
mits to: 1- model the transfer of stress from collagen to
elastin when elastin gets damaged which is usually the
onset of aneurysm growth [59]; 2- vary collagen mass
fractions by taking into account the turnover of collagen
which can be mechanobiologically driven. In that case
the objective is to preserve a constant (homeostatic)
stress in the collagen fibers (maximum stress must re-
turn to a given target, σ0, which is homeostatic) [54];
3- Adapt the deposition stretch of collagen to the con-
figuration in which it is deposited during the growth.

4.2 Future improvements of the CMT–based FE model

Despite its promising advantages, the CMT–based FE
approach presented in this study still requires research
efforts regarding the following points: estimation of the
deposition stretches of each constituent from experi-
mental data, regional variations of thickness and mate-
rial parameters, in vivo assessment of boundary condi-
tions...

Regarding the deposition stretches, Bellini et al. [2]
reported bounds for each type of deposition stretches.
For collagen fibers the bounds were obtained experi-
mentally using elastase treatment [3,17]. Therefore, a
value of 1.1 was assigned for collagen fibers and for
the passive behavior of SMCs. For elastin, a sensitivity
analysis was performed (results not reported) on the ef-
fect of the elastic modulus of elastin and of the compres-
sive modulus of collagen and we deduced that they had
an impact on the axial and circumferential deposition

stretches to be assigned for the elastin in our model.
Knowing this, we used values of deposition stretches
for elastin below the bounds reported by Bellini et al.
[2] but we used a higher value for the elastic modulus
of elastin, and a lower compressive modulus of collagen
fibers. We found that our combination of material pa-
rameters provided a better fit of the experimental data
with our numerical model. Moreover, based on existing
literature, the compressive modulus of collagen fibers is
always assumed negligible compared to the elastic mod-
ulus of elastin [2,12,25,28] (see Tables 1 and 2).

Regarding regional variations, in the present work, for
patient–specific stress analysis of human ATAAs, the
wall thickness is indeed assumed homogeneous. It was
measured in vitro on the excised aneurysm of the same
patient as explained in [52,53]. Therefore, this is an av-
erage thickness while it is shown by some authors [9]
that thickness varies in an ascending thoracic aorta.
Although this can be considered as a limitation of this
work, it is possible to include these variations in the
present model if data are available. However Choudhury
et al. [9] have also shown that these thickness variations
are less important in aneurysms than in healthy aortas.
The effect of possible variations in the thickness, as well
as possible variations in the material properties, would
obviously affect the local values of deposition stretches
that we have to assign to elastin, as shown in another
paper where the regional variations of a CMT-based
model were reconstructed on mice aortas [4].

Regarding boundary conditions, consideration of the
pulling and twist boundary conditions in patient-specific
analysis of ATAAs slightly increases maximum stress
compared to the result where only the systolic pressure
is applied. A maximum difference of ∼50 kPa is calcu-
lated here. This shows that the longitudinal stress in the
ascending thoracic aorta plays a significant role. How-
ever, here we did not assign the patient–specific bound-
ary conditions but some generic values taken from an-
other study [1]. Therefore, it is important for future
studies to measure precisely the motion of the aortic
root for precise assessment of stresses in ATAAs.

Other points still requiring research efforts for the
CMT–based FE approach presented in this study are
the following: separation between in-plane contributions
of elastin fibers and 3D through-thickness properties to
the SEF, implementation of the active role of SMCs,
damage... The approach is also tailored for introducing
new constituents in the mixture and for changing the
mass fractions of existing constituents. Other current
developments concern the extension of the Abaqus FE
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model to growth and remodeling predictions in human
ATAAs.

5 Conclusion

In summary, in this manuscript, a robust computational
model based on the constrained mixture theory was pre-
sented and its potential was shown for patient-specific
biomechanical investigations in aneurysmal aortas of
humans. Important developments are currently under
progress for the application to patient-specific analysis
of aneurysm risk of rupture.
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Table 1 Material parameters employed for the murine arterial model. Superscript t and c are tensile and compressive material
properties, respectively [2].

Symbol Values
µe 337.97 [kPa]
Dci,c

1 = Dm,c
1 18.61 [kPa]

Dci,c
2 = Dm,c

2 1.77
Dci,t

1 1.38 [MPa]
Dci,t

2 6.42
Dm,t

1 32 [kPa]
Dm,t

2 4.2
α1,2,3,4 0, ±π

4
and π

2

Table 2 Material parameters employed for the human ATAA model. Superscript t and c are tensile and compressive material
properties, respectively [2,5,12].

Symbol Values
µe 100 [kPa]
Dci,c

1 = Dm,c
1 5 [kPa]

Dci,c
2 = Dm,c

2 0.1
Dci,t

1 90 [KPa]
Dci,t

2 0.85
Dm,t

1 10 [kPa]
Dm,t

2 0.5
α1,2,3,4 0, ±π

4
and π

2

Fig. 1 Schematic illustration of some of the key different configurations relevant for CMT-based models of an arterial segment.
a- The arterial wall is composed of elastin, several families of collagen fibers and SMCs. b- Reference configuration under in
vivo loading conditions (pressure Pi and axial stretch λiv

z ). c- Zero-pressure configuration with no luminal pressure but still
with an axial stretch. d- Traction–free configuration which is completely unloaded (the diameter is larger than the one of
the zero-pressure configuration). e- Radially-cut configuration with an opening angle of Φ0. Ge

h, Gci

h and Gm
h are deposition

and developmental stretches of each load–bearing constituent: elastin, collagen and SMC, respectively, while F denotes the
deformation gradients mapping each configuration from one to another.
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Fig. 2 Flowchart of the algorithm to determine the homeostatic deposition stretch of the elastin component.

Fig. 3 Assigned boundary conditions for opening angle simulation.

Fig. 4 Schematic description of the process preceding a uniaxial tensile tests, including cutting, flattening and tensile loading.
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(a)

(b)

Fig. 5 P − D (a) and F − P (b) curves at three different axial stretches λiv
z = 1.55 ± 5%. The P − D curve is shown at

λiv
z = 1.55 only for the sake of facilitating the comparison as the P −D response does not change significantly for other axial

stretches [2]. Numerical results are obtained with the present CMT–based FE model whereas analytical results are from [2].
The black spot represents the reference configuration (Pi = 93 mmHg and λiv

z = 1.55).
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Fig. 6 Response to the opening angle experiment predicted by the numerical model (showing residual circumferential stresses
in Pa). The obtained opening angle with the numerical model is ∼ 27.8◦ (See also supplemental video), which is just in–between
theoretical (∼ 21◦ ± 3) and experimental (∼ 29◦ ± 8) results of Bellini et al. [2].

Fig. 7 Zero-pressure configuration including residual circumferential stresses (Pa) for a patient–specific model of human
ATAA.
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(a)

(b)

Fig. 8 Principal stress of the human ATAA model (MPa) for systolic state (16 kPa) using a- traditional methodology and b-
using CMT–based model.

Fig. 9 Principal stress of the human ATAA model (MPa) for systolic state (16 kPa) including pulling and twist boundary
conditions.
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Fig. 10 Stress–strain curves for two uniaxial axial tensile tests on human ATAA strips obtained with the CMT–based model
and fitted with a traditional hyperelastic formulation. Red circles and line show the result of the axial direction and the blue
ones show the result of the circumferential direction.


