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Abstract

We study some anisotropic heterogeneous nonlinear integral equations aris-
ing in epidemiology. We focus on the case where the heterogeneities are spatially
periodic. In the first part of the paper, we show that the equations we consider
exhibit a threshold phenomenon. In the second part, we study the existence and
non-existence of traveling waves, and we provide a formula for the admissible
speeds. In a third part, we apply our results to a spatial heterogeneous SIR
model.

1 Introduction

1.1 Motivations: spatial models for the spread of epidemics

In 1927, Kermack and McKendrick introduced in [24, 25, 26] several deterministic
models describing the evolution of a disease in a closed population. Their most
general model consists in a renewal equation for the infection, and takes the form of
the following nonlinear Volterra integral equation:

u(t) =

∫ t

0

Γ(τ)g(u(t− τ))dτ + f(t), t > 0. (1.1)

The unknown function u(t) ≥ 0 (the cumulative force of infection) represents “how
much” the population is contaminated by time t > 0; u = 0 means no contamination,
while u > 0 means that a proportion of the population is infected. The kernel Γ(τ)
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encodes the characteristics of the epidemic (mean duration of the contamination, in-
cubation period...). The function g reflects the nonlinear growth of the epidemic.
Finally, the function f accounts for the initial infectivity. We refer to [11] for more
details concerning the modelling aspects.

Kermack and McKendrick also introduced in the mentioned papers the SIR model.
It consists in a set of coupled ODEs, and became of great importance in mathemati-
cal epidemiology, to such an extend that it sometimes overshadows the more general
model (1.1), which encompasses not only the SIR model, but also many more.

One important limitation of these models is that they do not take into account
spatial effects, such as diffusion and migration of individuals. Such effects are now
recognised as being of first importance in the understanding of propagation of epi-
demics. To bridge this gap, Diekmann [14] and Thieme [31] introduced independently
in 1977 the following spatial generalization of (1.1):

u(t, x) =

∫ t

0

∫
y∈RN

Γ(τ, x, y)g(u(t− τ, y))dydτ + f(t, x), t > 0, x ∈ RN . (1.2)

As in (1.1), the unknown is the function u, which still represents the strength of in-
fection, now depending not only on the time variable t, but also on a space variable x.
We refer to the original papers [14, 31] for the details concerning the modelling.

While equation (1.2) describes the evolution of an epidemic in a population where
some infected individuals are introduced at a given initial time, it is also interesting to
study the propagation of an epidemic without assuming any specific initial condition,
to see the “generic” way the epidemic spreads through space. In this case, it is natural
to consider the same problem but with solutions defined for all time t ∈ R; this allows
to find traveling waves solutions. This is possible by considering the second form of
the model by Diekmann and Thieme:

u(t, x) =

∫ +∞

0

∫
y∈RN

Γ(τ, x, y)g(u(t− τ, y))dydτ, t ∈ R, x ∈ RN . (1.3)

Diekmann and Thieme [14, 15, 31, 32, 33, 34] studied equations (1.2), (1.3) in the
homogeneous, isotropic case, that is, under the assumption that

Γ(t, x, y) = Λ(t, |x− y|), (1.4)

for some Λ : R2 → R, i.e, Γ only depends on the distance between the points (and
on t). See also [2] for related results.

However, hypothesis (1.4) is very retrictive from the point of view of modelling:
it means that that everything in the model - the medium, the initial population, the
recovery and contamination rates - is spatially homogeneous (this appears clearly
when considering SIR models, see the discussion in Section 1.2 below - we refer to
the original papers [14, 31] for more general considerations).
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This paper is dedicated to the study of equations (1.2), (1.3) without this isotropy
condition - we focus on the more general case of periodic heterogeneous media, that is,
situations where Γ satisfies (without loss of generality, we consider only the 1-periodic
case throughout the whole paper)

Γ(t, x+ k, y + k) = Γ(t, x, y), ∀t ∈ R, ∀x, y ∈ RN , ∀k ∈ ZN . (1.5)

We consider here two aspects of equations (1.2), (1.3): first, we study under which
conditions initial disturbances will propagate (the threshold effect), second, we study
the existence of traveling waves. Therefore, this paper can be seen as a generalization
of the papers of Diekmann and Thieme mentionned above to an heterogeneous setting.

The techniques we will employ come from the study of heterogeneous KPP
(Kolmogorov-Petrovski-Piskunov [27]) reaction-diffusion equations. Those are PDEs
of the form ∂tu = ∇(A(x)∇u) + f(u), with f satisfying some concavity assumption.
Indeed, if u(t, x) is solution to such a reaction-diffusion equation, then one can see
that (under suitable regularity assumptions), u(t, x) also solves an equation of the
form (1.2), with Γ(t, x, y) being the fundamental solution of a parabolic operator.
Many methods were introduced in the last years to study heterogeneous reaction-
diffusion equations (see [10] for instance), and as we will see, they can somewhat be
adapted to the setting of nonlinear integral equations.

One motivation in studying (1.2), (1.3) is to obtain results for SIR models. In-
deed, just like the original model of Kermack and McKendrick (1.1) encompasses the
standard SIR model (recalled below in section 1.2), equations (1.2), (1.3) encompass
some spatial SIR models. As a by-product of our analysis of these integral equations,
we will obtain new results for some heterogeneous SIR model. Before presenting
our main results, we recall in the next section some facts about SIR models and we
explain why they are special cases of the renewal equations presented here. This
discussion is also enlightening to understand what Γ, g, f represent in (1.2), (1.3).

1.2 Connection with SIR models

SIR systems are compartmental models, that is, the population is divided into several
classes (the compartments), that interact following some simple rules. The first SIR
model was introduced by Kermack and McKendrick in their paper [24], as a special
case of their general model (1.1). It takes the form of the following set of ODE:

Ṡ(t) = −αS(t)I(t), t ∈ R,
İ(t) = αS(t)I(t)− µI(t), t ∈ R,
Ṙ(t) = µI(t), t ∈ R,

(1.6)

where α, µ > 0. The functions S, I, R are the unknowns, and represent respectively
the number of Susceptible, Infectious and Recovered individuals in the population.
The infectious individuals contaminate the susceptible ones, following a law of mass-
action, that is, the rate of contamination is αI. The infectious individuals recover
with rate µ. Observe that the function R, the recovered, does not play any role in
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the dynamics of the system. For this reason, we will not mention it in the sequel.

Many spatial generalizations of the SIR model (1.6) were introduced. We pay in
this paper a particular attention to the following one{

∂tS(t, x) = −α(x)S(t, x)
∫
y∈RN K(x, y)I(t, y)dy, t > 0, x ∈ RN ,

∂tI(t, x) = α(x)S(t, x)
∫
y∈RN K(x, y)I(t, y)dy − µ(x)I(t, x), t > 0, x ∈ RN . (1.7)

The functions S(t, x), I(t, x) represent the densities of susceptible and infected in-
divuals respectively. The contamination is non-local, that is, the susceptible indi-
viduals located at point x can get contaminated by infectious located at an other
point y, with some probability K(x, y). The rate of infection at point x at time t
is α(x)

∫
y∈RN K(x, y)I(t, y)dy. The recovery rate is a function µ(x). The fact that

it can vary from places to places may account for the effects of localized quarantine
zones or different vaccination policies, for instance.

The connection between the SIR models and the renewal equations is known
since the pionering works of Kermack and McKendrick: up to doing some change of
functions - sometimes called the linear chain trick, see [11] - one can turn SIR models
into renewal equations.

Indeed, if (S(t, x), I(t, x)) solves (1.7) with initial datum (S0(x), I0(x))1, where
S0 > 0, then u(t, x) := − ln

(
S(t,x)
S0(x)

)
solves (1.2) with g(z) = 1− e−z and

Γ(t, x, y) = α(x)S0(y)e−µ(y)tK(x, y),

f(t, x) = α(x)

∫ t

0

∫
y∈RN

K(x, y)I0(y)e−µ(y)τdτdy. (1.8)

The details are given in Section 4. As annouced before, we see that Γ indeed encodes
the caracteristics of the epidemic (contamination rate, recovery rate) and of the initial
susceptible population, while f accounts for the initial infection.

If we wanted to study system (1.7) for t ∈ R (rather than for t > 0), without
specifying any initial datum (which will be the case in order to find traveling waves),
then, we can turn (1.7) into (1.3) with similar Γ, g. Again, see Section 4 for details.

The system (1.7) was originally considered by Kendall in [22, 23], under the
assumption that everything is homogeneous, that is, α, µ are positive constants,
the contamination kernel K(x, y) is a decreasing function of the distance only (i.e.,
K(x, y) = K(|x− y|)), and the initial datum for S is constant.

In this case, the function Γ(t, x, y) given by (1.8) satisfies the isotropy hypothesis
(1.4), and the model of Kendall can be studied using the results on the homogeneous
renewal equation mentioned above (see for instance [29] and references therein).

As soon as something in the model (1.7) is not homogeneous, this is not possible.
By studying (1.2), (1.3) under the hypothesis (1.4), we will be able to consider some
spatial heterogeneous SIR models.

1We say that the couple (S, I) solves (1.7) if it is C1 in t > 0, C0 on [0,+∞) × RN , if (1.7) is
satisfied pointwise for (t, x) ∈ (0,+∞)×RN , and if (S(t, ·), I(t, ·))→ (S0, I0) as t goes to 0 pointwise
in x.

4



Remark 1. Many other spatial SIR models were introduced. An interesting setting
is to consider situations where the individuals can “move”. This can be done by
adding Laplace (or more general diffusion) operators in the equations for S and I.

Hosono and Ilyas [20] proved the existence of traveling waves for such SIR models
in the homogeneous case. Ducrot and Giletti [17] proved the existence of waves,
their stability and the existence of a threshold phenomenon in the heterogeneous
periodic framework when only the infected diffuse (not the susceptibles) and with
local contamination. When both the susceptible and infectious individuals diffuse,
much less is known (even in the homogeneous framework), and the renewal equation
approach does not seem to apply anymore. The author considered the situation of a
bounded domain in [16].

We also refer to [9] where diffusive SIR models with networks are considered with
similar methods.

1.3 Propagation and generalized traveling waves

When studying models from epidemiology, the main questions that one may want to
answer are the two following:

Question 1. Under what conditions does the epidemic propagate? Moreover, when
the epidemic propagates, what is the final state of the population?

Question 2. How does the epidemic spreads through space? What is the “speed” of
the epidemic?

Of course, these notions of propagation, of final state, of speed, must be adapted
to the model under consideration. The next definition introduces the notions of
propagation and of fading out for an epidemic described by the general model (1.2).

Definition 1.1 (Propagation for (1.2)). We say that the epidemic propagates if the
solution u(t, x) of (1.2) converges to some u∞(x) ∈ L∞(RN) as t goes to +∞, locally
uniformly in x ∈ RN , and if

lim inf
|x|→+∞

u∞(x) > 0.

On the other hand, we say that the epidemic fades out if the solution u of (1.2)
converges similarly to some u∞ ∈ L∞(RN) such that

lim sup
|x|→+∞

u∞(x) = 0.

In other words, the epidemic propagates if the infection eventually spreads every-
where.

To answer Question 1, we will prove that (1.2) exhibits a threshold phenomenon,
that is, we will identify a quantity λ1 ∈ R, depending on the characteristics of the
epidemic and on the initial population, such that, if λ1 is greater than some thresh-
old, the epidemic propagates, no matter how “small” the initial infectivity. On the
other hand, if λ1 is below the threshold, then the epidemic fades out, no matter how
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“large” the initial infectivity.

The first proof that an epidemic model can exhibit a threshold phenomenon dates
back to the paper of Kermack and McKendrick [24] (we review some results in Sec-
tion 1.4).

To answer Question 2, we will study the existence and non-existence of generalized
traveling waves for (1.3).

Definition 1.2 (Traveling waves for (1.3)). We say that a solution u(t, x) of (1.3)
is a (generalized) traveling wave connecting 0 to U(x) ∈ L∞(RN) in the direction
e ∈ SN−1 with speed c > 0 if

sup
x·e−ct≤δ

|u(t, x)− U(x)| −→
δ→−∞

0 and sup
x·e−ct≥δ

|u(t, x)| −→
δ→+∞

0.

The notion of generalized traveling waves was introduced, under a more gen-
eral form, by Berestycki and Hamel in [7] in the context of heterogeneous reaction-
diffusion equations, in order to generalize the notion of traveling waves introduced by
Kolmogorov, Petrovski and Piskunov [27] for homogeneous reaction-diffusion equa-
tions. Let us mention that generalized traveling waves also generalize the concept of
pulsating traveling waves, see [6, 35] for more details.

The waves satisfying definition 1.2 are sometimes called almost planar wave with
linear speed, see Definition 2.8 in [7].

Remark 2. The waves we consider here have a linear speed. Observe that there are
no a priori reason for this to hold true. Actually, there are examples of reaction-
diffusion equations where the propagation happens with a super-linear speed. For
instance, Cabré and Roquejoffre [13] prove that this is the case for reaction-diffusion
equations with diffusion given by a fractional Laplace operator (−∆)s, s ∈ (0, 1).
This comes from the fact that the transition function of the underlying process decays
“too slowly” (algebraically) at infinity. Similar observation was made in the context of
neural field equations, see for instance [18]. To prevent such super-linear propagation
here, we will restrict our attention to kernels Γ that decay exponentially fast.

1.4 Results of the paper

We gather in this section the main results of the paper. After stating some hypotheses,
we present in Section 1.4.2 our results concerning the general model (1.2) and (1.3).
Section 1.4.3 contains an application of our results to the SIR model (1.7).

1.4.1 General hypotheses

The hypotheses presented here are classical (see [14, 34]) and will be assumed through-
out the whole paper, without further notice.
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We assume that g is a strictly increasing, bounded, Lipschitz continuous function
on [0,+∞), such that g(0) = 0, g(z) > 0 for all z > 0. Moreover, we assume that

z 7→ g(z)

z
is strictly decreasing on R+. (1.9)

In addition, g(z) is differentiable at z = 0, and there is C > 0 such that,

g′(0)z − Cz2 ≤ g(z) ≤ g′(0)z, for every z ≥ 0. (1.10)

The right-hand side inequality is actually a consequence of (1.9).
We assume that Γ ≥ 0 is periodic in the sense (1.5), and that it is non-degenerate

in the sense that there are ε, r > 0 such that Γ(t, x, y) > ε if t+ |x−y| ≤ r. Moreover,

∀x ∈ RN , Γ(·, x, ·) ∈ L1((0,+∞)× RN).

We also assume the following regularity hypothesis: for every ε > 0, there is δ > 0
such that, for every x1, x2 ∈ RN such that |x1 − x2| ≤ δ, we have∫ +∞

0

∫
RN
|Γ(τ, x1, y)− Γ(τ, x2, y)|dτdy < ε. (1.11)

The function f(t, x), that appears only in (1.2), not in (1.3), is supposed to be
continuous on [0,+∞)× RN and non-negative. Moreover, we assume that f is non-
decreasing with respect to the variable t, and that

f(t, x) ↗
t→+∞

f∞(x), locally uniformly in x ∈ RN , (1.12)

where f∞ is bounded, uniformly continuous on RN and satisfies

f∞(x) −→
|x|→+∞

0. (1.13)

Under these general hypotheses, Diekmann [14] proved the existence, uniqueness and
convergence of solutions to (1.2).

Proposition 1.3 ([14], Theorems 3.3 and 3.4). There is a unique continuous bounded
solution u(t, x) to (1.2). Moreover, u is time-nondecreasing and

u(t, x) ↗
t→+∞

u∞(x) locally uniformly in x ∈ RN ,

where u∞ ∈ C0(RN) is a solution of the limiting equation:

u∞(x) =

∫
RN
V (x, y)g(u∞(y))dy + f∞(x), x ∈ RN , (1.14)

where, for every x and a.e. y,

V (x, y) :=

∫ +∞

0

Γ(τ, x, y)dτ. (1.15)
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1.4.2 Results on the integral equations (1.2) and (1.3)

In addition to the general hypotheses presented above - that are assumed throughout
the whole paper - we will need others hypotheses specific to the heterogeneous case
considered here.

First, we will assume that V , given by (1.15), satisfies, for every compact set
S ⊂ RN ,

sup
x∈S

(∫
y∈S

V 2(x, y)dy

)
< +∞. (1.16)

We will also add a “symmetry hypothesis” on V ((1.19) below) and a decay hypothesis
on Γ ((1.23) below).

The first part of the paper is concerned with the threshold phenomenon, that
is, with the long-time behavior of solutions to (1.2). If u(t, x) is such a solution,
Proposition 1.3 tells us that it converges as t goes to +∞ to a function u∞ solution
of (1.14). To establish whether the epidemic propagates or fades out in the sense
of Definition 1.1, we have to look for the values of u∞(x) for |x| large. Hypothesis
(1.13) states that f∞ vanishes for large |x|, therefore, it is reasonable to infer that
u∞ should be similar, at least for large |x|, to a solution U of

U(x) =

∫
RN
V (x, y)g(U(y))dy, x ∈ RN . (1.17)

Clearly, the function U ≡ 0 is solution of (1.17). We will prove that the epidemic
propagates if, and only if, there is a strictly positive solution to (1.17).

The key-point in our analysis is that the long-time behavior of (1.2) is completely
determined by the principal periodic eigenvalue of the linearization of (1.17) near
U = 0, that is, the operator L, acting on the set of continuous 1-periodic functions
on RN , C0

per(RN):

Lφ(x) :=

∫
RN
g′(0)V (x, y)φ(y)dy. (1.18)

In order to make to make this work, we require a symmetry hypothesis on the operator
L: we assume that there are γ1, γ2 ∈ C0

per(RN), γ1, γ2 > 0 and that there is Ṽ (x, y)

such that Ṽ (x, y) = Ṽ (y, x) for every x, y ∈ RN , and

V (x, y) = Ṽ (x, y)γ1(x)γ2(y). (1.19)

These hypothesis may seem surprising at first glance. However, it turns out that
what we said above (the fact that the principal periodic eigenvalue of the operator
gives the stability of the null state) does not hold true without it. We present a coun-
terexample below as Proposition 2.7, and we give more details there about this fact.
Fortunately, as we will see, this hypothesis is automatically satisfied when working
with SIR models.

We let λ1 ∈ R denote the principal periodic eigenvalue of L, that is, the unique
real number such that there is φp ∈ C0

per(RN), φp > 0, such that

Lφp = λ1φp.
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The existence of λ1 is a consequence of the Krein-Rutman theorem, see [28], that we
recall in Section 2 as Theorem 2.1. Our first result states that λ1 characterizes the
number of solutions to (1.17) and the threshold phenomenon.

Theorem 1.4. Assume that f∞ 6≡ 0. Let u(t, x) be the solution to (1.2) and let
u∞(x) := limt→+∞ u(t, x).

• If λ1 > 1, the epidemic propagates in the sense of Definition 1.1. Moreover,
there is a unique bounded positive solution U to (1.17). It is periodic and

sup
|x|≥R

|u∞(x)− U(x)| −→
R→+∞

0.

• If λ1 ≤ 1, the epidemic fades out, in the sense of Definition 1.1. Moreover,
there are no positive bounded solutions to (1.17), and

sup
|x|≥R

|u∞(x)| −→
R→+∞

0.

This completely answers Question 1 in the periodic case. In the homogeneous
cas, this result was obtained by Diekmann and Thieme, see for instance [32], Theo-
rems 2.6a and 2.8c. In the homogeneous case, we have the following explicit formula
λ1 = g′(0)

∫
τ>0

∫
y

Λ(τ, y)dτdy.

Our next result is dedicated to answering Question 2, by studying the existence
and non-existence of traveling waves to (1.3). Remembering Remark 2 above, it is
necessary, in order for such a result to hold true, to have some decay on Γ, V . Hence,
we assume in the next results that, for every ρ ≥ 0, there are C, ε > 0 such that,

Γ(t, x, y) ≤ Ce−εte−ρ|x−y|. (1.20)

This hypothesis may be slightly relaxed, see Section 3, but we will assume it when
studying the existence of waves.

For ρ, c ≥ 0, e ∈ SN−1, we define

Vρ,c(x, y) :=

∫ +∞

0

Γ(τ, x, y)e−ρcτdτ,

and the operator Sρ,c,e

(Sρ,c,eφ)(x) :=

∫
RN
g′(0)Vρ,c(x, y)e−ρ(y−x)·eφ(y)dy. (1.21)

We let λ1(ρ, c, e) denote the principal periodic eigenvalue of the operator Sρ,c,e acting
on C0

per(RN). Observe that λ1(0, 0, e) = λ1 defined above. We define

c?(e) := inf
{
c ≥ 0 : ∃ρ ≥ 0 such that λ1(ρ, c, e) ≤ 1

}
. (1.22)
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Theorem 1.5. Assume that Γ satisfies (1.20) and that λ1 > 1. Let U be the unique
positive solution of (1.17) given by Theorem 1.4. Then, for every e ∈ SN−1 and for
every c > c?(e), there is a generalized traveling wave solution to (1.3), connecting 0
to U in the direction e with speed c.

In the homogeneous case, Theorem (1.5) was proven by Diekmann and Thieme
independently in [14, 31]. In this specific case, c?(e) does not depend on e, the equa-
tion is isotropic.

We now turn to the non-existence of traveling waves with speed lesser than c?(e).
Such results are usually more technical to prove. A standard approach could be
to prove that any solution of the the renewal equation (1.2) asymptotically spreads
with speed c?(e) in the direction e, and to conclude by comparison. This strategy
was used by Diekmann in [15] in the homogeneous framework. However, here, we
adopt a different approach, inspired by the study of heterogeneous reaction-diffusion
equations, that consists in using some arguments from complex analysis to build
adequate subsolutions.

To prove the next result, we assume, in addition to all the hypotheses above, that
there are T,C > 0 such that

Γ(t2, x, y) ≤ CΓ(t1, x, y), ∀t2, t1 > 0, t2 ≥ t1 + T, x, y ∈ RN . (1.23)

Theorem 1.6. Assume that Γ satisfies, in addition to the hypotheses above, (1.20)
and (1.23) and that λ1 > 1.

Then, for every c ∈ [0, c?(e)), for every U > 0, U ∈ C0
per, there are no generalized

traveling waves in the direction e, with speed c, connecting 0 to U .

1.4.3 Application to a SIR model

Let us now present an application of our results to the SIR system (1.7). We mention
that other models from epidemiology or biology could be studied this way, see for
instance [34] for some (homogeneous) examples.

When considering the system (1.7), we always assume that µ, α ∈ C0
per(RN), K ∈

C0(RN×RN), with α, µ,K > 0 and K is periodic in the sense that K(·+k, ·+k) = K
for all k ∈ ZN , symmetric in the sense that K(x, y) = K(y, x) for all x, y ∈ RN , and
decays faster than any exponential in the sense that, for all ρ > 0, there is C > 0
such that

K(x, y) ≤ Ce−ρ|x−y| for every x, y ∈ RN .

Let us start with defining adequate notions of propagation and fading out for the
SIR system (1.7).

Definition 1.7 (Propagation for SIR models). We say that the epidemic propagates
in (1.7) with initial datum (S0, I0) if the solution (S(t, x), I(t, x)) is such that S(t, x)
converges to some S∞(x) ∈ L∞(RN) locally uniformly as t goes to +∞ and if

sup
x∈RN

(S∞(x)− S0(x)) < 0.

10



We say that the epidemic fades out if S converges similarly so some S∞ such that

|S∞(x)− S0(x)| −→
|x|→+∞

0.

In other terms, the epidemic propagates if and only if a non-negligible number
of infections occur everywhere, even far away from the initial focus of infection. Of
course, there will always be infections on the support of I0.

Definition 1.8 (Traveling waves for SIR models). Let S−∞, S+∞ ∈ L∞(RN) be such
that infx∈RN S±∞ > 0. We say that (S(t, x), I(t, x)) is a traveling wave in the direction
e ∈ SN−1 with speed c > 0 for (1.7) connecting (S−∞(x), 0) to (S+∞(x), 0) if it solves
(1.7) for every t ∈ R and if

sup
x·e−ct≤δ

|S(t, x)− S+∞(x)| −→
δ→−∞

0 and sup
x·e−ct≥δ

|S(t, x)− S−∞(x)| −→
δ→+∞

0,

and
sup

x·e−ct≤δ
I(t, x) −→

δ→−∞
0 and sup

x·e−ct≥δ
I(t, x) −→

δ→+∞
0.

Then, we have the following result concerning the heterogeneous SIR model (1.7).

Theorem 1.9. Consider the SIR system (1.7) with µ, α,K satisfying the above hy-
potheses. Take S0 ∈ C0

per(RN) positive and let λ1 be the principal periodic eigenvalue
of the operator

φ 7→
∫
RN

α(x)S0(y)

µ(y)
K(x, y)φ(y)dy, (1.24)

acting on C0
per(RN). Then

• If λ1 > 1, then, for every I0 6≡ 0, I0 ≥ 0 compactly supported, the epidemic prop-
agates for the initial datum (S0, I0). In addition, S(t, x)→ S∞(x) ∈ C0

per(RN),
loc. unif. in x ∈ RN as t goes to +∞, and

|S∞(x)− S(x)| −→
|x|→+∞

0,

where S = S0e
−U , with U the unique positive bounded solution of

U(x) =

∫
RN

α(x)S0(y)

µ(y)
K(x, y)(1− e−U(y))dy. (1.25)

• If λ1 ≤ 1, the epidemic fades out for every I0 compactly supported.

Observe that we use the same notation for the principal periodic eigenvalue λ1 of
(1.24) and (1.18). This is because they coincide when Γ is given by (1.8).

This theorem proves that the heterogeneous SIR system (1.7) satisfies a threshold
phenomenon. It also indicates what the final population looks like far away from the
initial focus of infection. Observe that the final repartition does not depend on I0 far
away from the initial focus of infection.

Let us now consider the existence/non-existence of waves.
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Theorem 1.10. Consider the SIR system (1.7) with µ, α,K satisfying the above
hypotheses. For every S−∞ ∈ C0

per(RN), S−∞ > 0, let λ1(ρ, c, e) be the principal
periodic eigenvalue of the operator

φ 7→
∫
RN

α(x)S−∞(y)

µ(y) + ρc
K(x, y)e−ρ(y−x)·eφ(y)dy,

acting on C0
per(RN), and let c? be given by (1.22).

Assume that λ1 > 1, and let U be the unique positive bounded solution of (1.25)
with S0 replaced by S−∞.

Then, there are traveling waves solutions to (1.7) connecting (S−∞, 0) to
(S−∞e

−U , 0) with speed c in the direction e ∈ SN−1 for every c > c?(e).
On the other hand, for any e ∈ SN−1, for any S+∞ > 0 periodic, for any c ∈

[0, c?(e)), there are no traveling waves connecting (S−∞, 0) to (S+∞, 0).

The paper is organized as follows: in Section 2, we study equation (1.2). We
present some technical results in Section 2.1, where we study the operator L defined by
(1.18). We prove the threshold phenomenon, Theorem 1.4, in Section 2.2. Section 3
is dedicated to the study of equation (1.3). In Section 3.1, we prove the existence of
traveling waves, Theorem 1.5, and we prove the non-existence result Theorem 1.6 in
Section 3.2. Finally, we apply our results to the the case of the SIR system (1.7) in
Section 4.

2 The threshold phenomenon
This section is dedicated to the proof of Theorem 1.4, that states that λ1, the principal
periodic eigenvalue of the operator L, defined by (1.18), characterizes the long-time
behavior of (1.2). The existence of λ1 is given by the Krein-Rutman theorem.

For notational simplicity, we assume in the sequel that g′(0) = 1 in the definition
of (1.18). This can be done without loss of generality by replacing Γ and V by g′(0)Γ,
g′(0)V .

Theorem 2.1 (Krein-Rutman theorem, [28]). Let E be a real Banach space ordered
by a salient cone K (i.e., K∩(−K) = {0}) with non-empty interior. Let L be a linear
compact operator. Assume that L is strongly positive (i.e., L(K\{0}) ⊂ intK). Then,
there exists a unique eigenvalue λ1 associated with some u1 ∈ K\{0}. Moreover, for
any other eigenvalue λ, there holds

λ1 > <(λ).

The Krein-Rutman theorem applies to the operator L defined by (1.18), on the
Banach space C0

per(RN) (endowed with the L∞ norm) with K being the cone of non-
negative functions K := {φ ∈ C0

per : φ ≥ 0}. The operator L is linear and compact,
owing to hypothesis (1.11). Indeed, it is readily seen that, for every ε > 0, we can
find δ > 0 such that, if |x1 − x2| ≤ δ, we have, for every φ ∈ C0

per(RN):

|Lφ(x1)− Lφ(x2)| ≤ ε‖φ‖L∞ .

12



This implies that the image of any bounded set of C0
per(RN) by L is equicontinuous,

and the Ascoli-Arzelà theorem, see [12], yields the compactness of L. The strong
positivity of L is readily seen: indeed, assume that there were φ ≥ 0, φ 6≡ 0 such that
Lφ(x0) = 0 for some x0 ∈ RN . Then, because V (x, y) > 0 for x, y ∈ RN such that
|x − y| ≤ r, where r is from the hypotheses in Section 1.4.1, we see that we should
have φ(x) = 0 on Br(x0). Iterating this argument, we would find that φ ≡ 0; this
proves the strong positivity of L.

2.1 Approximation of the principal eigenvalue λ1.

This section is dedicated to the proof of the following technical proposition:

Proposition 2.2. Let λ1 be the principal periodic eigenvalue of L. For every ε > 0,
there is R0 > 0 such that, for every R > R0, there is φε ∈ C0(RN), strictly positive
in BR and equal to zero elsewhere, such that

∀x ∈ RN , L(φε)(x) ≥ (λ1 − ε)φε(x).

To prove this result, we introduce a family of operators (LR)R>0 whose principal
eigenvalues will approximate λ1:

LRφ(x) :=

∫
BR

V (x, y)φ(y)dy. (2.26)

The operator LR acts on the Banach space C0(BR). Arguing as above, we can
apply the Krein-Rutman theorem 2.1 to LR on the Banach space C0(BR), to get the
existence of its principal eigenvalue, that we call λR. We let φR ∈ C0(BR) denote a
principal eigenfunction, φR > 0 on BR. Let us observe that λR is characterized by a
Rayleigh-Ritz formula.

Lemma 2.3. Let γ(x) := γ2(x)
γ1(x)

, where γ1, γ2 are from (1.19). Then, the principal
eigenvalue λR of LR is given by

λR = sup
φ∈L2

γ(BR)

∫
BR
LRφ(x)φ(x)γ(x)dx∫
BR
φ2(x)γ(x)dx

, (2.27)

where L2
γ(BR) is the space L2(BR) endowed with the scalar product

〈f, g〉L2
γ

:=

∫
BR

f(x)g(x)γ(x)dx.

Proof. Owing to the hypothesis (1.19), the operator LR is self-adjoint on the space
L2
γ(BR). Moreover, it is compact (it is a Hilbert-Schmidt operator, owing to hypoth-

esis (1.16), see [12]). Therefore, we can apply the spectral theorem, and the usual
Rayleigh formula gives us that λ̃, the largest eigenvalue of LR (on L2

µ(BR)), is given
by

λ̃ = sup
φ∈L2

γ(BR)

∫
BR
LRφ(x)φ(x)γ(x)dx∫
BR
φ2(x)γ(x)dx

. (2.28)
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It is readily seen that λ̃ ≥ λR > 0 (the strict positivity comes from the fact that
V ≥ 0, V 6≡ 0). Let φ̃ ∈ L2

γ(BR) be an eigenfunction associated with λ̃. Up to
considering |φ̃|, we assume that φ̃ ≥ 0 almost everywhere. Hypothesis (1.16) yields
that φ̃ is bounded, because λ̃ > 0 and

∀x ∈ BR, λ̃2φ̃2(x) ≤ sup
z∈BR

(∫
BR

V 2(z, y)dy

)(∫
BR

φ̃2(y)dy

)
.

Now, hypothesis (1.11) yields that φ̃ ∈ C0(BR). The uniqueness (up to multiplication
by a scalar) of the principal eigenvalue given by the Krein-Rutman theorem 2.1 implies
that λ̃ = λR, hence the result.

We now prove that the sequence of principal eigenvalues (λR)R>0 converges to the
periodic principal eigenvalue λ1.

Proposition 2.4. The sequence (λR)R>0 is increasing and it converges to λ1 as R
goes to +∞.

Proof. Step 1. The sequence (λR)R>0 is increasing.
Let 0 < R < R′ be fixed, and let λR, λR′ be the principal eigenvalues of the op-
erators LR, LR′ respectively. Let φR, φR′ denote some associated positive principal
eigenfunctions. Define

M? := min{M > 0 : MφR′ ≥ φR on BR}.

Then, by continuity, there is x0 ∈ BR such that M?φR′(x0) = φR(x0). Hence,

λRφR(x0) = LRφR(x0) ≤ LR(M?φR′)(x0) < M?LR′φR′(x0) = λR′M
?φR′(x0).

The strict inequality comes from the fact that V ≥ 0, V 6≡ 0. This implies that

λR < λR′ .

We prove similarly that
λR < λ1,

where λ1 is the principal periodic eigenvalue of the operator L defined by (1.18).

Step 2. Convergence to λ1.
We let φp > 0 be a periodic principal eigenfunction of L associated with the eigenvalue
λ1. Owing to the Rayleigh-Ritz formula (2.27) for λR, we have, for every R > 0,

λR ≥
∫
BR
LRφp(x)φp(x)γ(x)dx∫
BR
φ2
p(x)γ(x)dx

.

Let us prove that∫
BR
LRφp(x)φp(x)γ(x)dx∫
BR
φ2
p(x)γ(x)dx

−→
R→+∞

∫
[0,1]N

Lφp(x)φp(x)γ(x)dx∫
[0,1]N

φ2
p(x)γ(x)dx

= λ1. (2.29)

14



Because the sequence (λR)R>0 is bounded from above by λ1, proving (2.29) will yield
the result. Observe that, because φp, Lφp and γ are periodic, we have

1

|BR|

∫
BR

φ2
p(x)γ(x)dx −→

R→+∞

∫
[0,1]N

φ2
p(x)γ(x)dx

and
1

|BR|

∫
BR

Lφp(x)φpγ(x)dx −→
R→+∞

∫
[0,1]N

Lφp(x)φp(x)γ(x)dx.

Therefore, to prove (2.29), it is sufficient to show that

1

|BR|

(∫
BR

(LRφp(x)− Lφp(x))φp(x)γ(x)dx

)
−→
R→+∞

0,

or, equivalently, that

1

|BR|

∫
x∈BR

∫
y∈BcR

V (x, y)φp(y)φp(x)γ(x)dxdy −→
R→+∞

0.

We have (we let C > 0 denote an arbitrary constant, independent of R)

1
|BR|

∫
x∈BR

∫
y∈BcR

V (x, y)φp(y)φp(x)γ(x)dxdy

≤ C
|BR|

∫
x∈BR−√R

∫
y∈BcR

V (x, y)dxdy + C
|BR|

∫
x∈BR\BR−√R

∫
y∈BcR

V (x, y)dxdy

≤ C sup|x|≤R−
√
R

(∫
y∈BcR

V (x, y)dy
)

+ C
|BR\BR−√R|

|BR|
supx∈RN

(∫
y∈RN V (x, y)dy

)
≤ C sup|x|≤R−

√
R

(∫
y∈BcR

V (x, y)dy
)

+ C√
R

supx∈RN
(∫

y∈RN V (x, y)dy
)
.

To conclude, let us show that sup|x|≤R−
√
R

(∫
y∈BcR

V (x, y)dy
)
goes to zero as R goes

to +∞. If this were not the case, we could find ε > 0 and a sequence (xn)n∈N such
that |xn| ≤ n−

√
n for every n ∈ N and

lim inf
n→+∞

∫
y∈Bcn

V (xn, y)dy > ε. (2.30)

We can define a sequence (kn)n∈N ∈ ZN such that xn − kn ∈ [0, 1)N for every n ∈ N.
Hence, owing to the hypotheses (1.11), (1.5) we get∫

y∈Bcn
V (xn, y)dy =

∫
y∈Bcn(−kn)

V (xn − kn, y)dy ≤
∫
|y|≥

√
n
2

V (xn − kn, y)dy −→
n→+∞

0,

which contradicts (2.30). This proves the convergence and concludes the proof.

We can now turn to the proof of Proposition 2.2. We mention that a similar
result was obtained by H. Berestycki, J. Coville and H.-H. Vo in [4] in the context of
non-local reaction-diffusion equations, however, the situation considered here allows
for a simpler proof.
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Proof of Proposition 2.2. Let ε > 0 be fixed. Let φp > 0 be a positive principal
periodic eigenfunction of L. Owing to Proposition 2.4, we can find R > 0 large
enough so that λR > λ1− ε

2
, where λR is the principal eigenvalue of the operator LR.

Let φR be a positive principal eigenfunction of LR associated with λR. For η > 0, to
be determined after, let χR ≤ 1 be a continuous function such that χR > 0 on BR,
χR = 1 on BR−η, and χR = 0 on Bc

R. We define

φε(x) :=

{
φR(x)χR(x) for x ∈ BR,

0 for x ∈ Bc
R.

The function φε is continuous on RN , strictly positive in BR, zero elsewhere and
compactly supported. For x ∈ BR, we have

L(φε)(x) =
∫
BR
V (x, y)φR(y)χR(y)dy

≥ λRφR(x)− ‖φR‖L∞
(∫

BR\BR−η
V (x, y)dy

)
≥ (λR − ε

2
)φR(x)χR(x) + ε

2

(
minx∈BR φR(x)

)
−‖φR‖L∞

(
supx∈BR

∫
BR\BR−η

V (x, y)dy
)
.

Therefore,for η small enough, independent of x, we have

∀x ∈ BR, L(φε)(x) ≥ (λ1 − ε)φε(x).

For x ∈ Bc
R, this inequality is readily verified, hence the result.

2.2 Long-time behavior of solutions of (1.2)
This section is dedicated to the proof of Theorem 1.4. For convenience, we let T
denote the nonlinear operator

(Tu)(x) :=

∫
RN
V (x, y)g(u(y))dy. (2.31)

The operator L, defined by (1.18), is the linearization of T . We start with a technical
lemma.

Lemma 2.5. Assume that λ1 > 1, where λ1 is the principal periodic eigenvalue of L.
Let u ∈ C0(RN), u > 0, be such that

T (u) ≤ u.

Then
inf
RN

u > 0.

Proof. Assume that λ1 > 1 and that u ∈ C0(RN), u > 0, is such that Tu ≤ u. Let
ε > 0 be such that ε < λ1 − 1. Owing to Proposition 2.2, we can find R > 2

√
N (N

is the space dimension) and φε ∈ C0(RN), φε > 0 on BR, φε = 0 elsewhere, such that

(λ1 − ε)φε ≤ L(φε).
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We define
η? := max{η > 0 : u ≥ ηφε}.

We start to assume that η? is such that

η? ≤ 1

C‖φε‖L∞
, (2.32)

where C > 0 stands in the whole proof for the constant from (1.10).
By definition of η?, and by continuity, u ≥ η?φε and there is a contact point

x0 ∈ BR such that u(x0) = η?φε(x0). Owing to the hypothesis (1.10), we have

T (η?φε) ≥ L(η?φε)− CL(η?2φ2
ε)

≥ η?(1− Cη?‖φε‖L∞)L(φε)
≥ η?(1− Cη?‖φε‖L∞)(λ1 − ε)φε.

Therefore, because T is order-preserving,

η?(1− Cη?‖φε‖L∞)(λ1 − ε)φε ≤ T (η?φε) ≤ T (u) ≤ u.

Observe that it is not possible to have

1 ≤ (1− Cη?‖φε‖L∞)(λ1 − ε).

Indeed, this would imply that

η?φε ≤ T (η?φε) ≤ T (u) ≤ u,

and then, evaluating at x0, we would get T (η?φε)(x0) = T (u)(x0), which would yield,
owing to the non-negativity of V , that g(η?φε) ≡ g(u). Because of the hypotheses on
g, this would imply that η?φε ≡ u, which is not possible because u is positive on RN ,
while φε is compactly supported. Therefore

(1− Cη?‖φε‖L∞)(λ1 − ε) < 1,

i.e.,
λ1 − 1− ε

C‖φε‖L∞(λ1 − 1)
< η?.

In other terms, we have proven that, if η? satisfies (2.32), then η? is greater than
a positive constant independent of u. Clearly, this is also the case if (2.32) is not
verified: in this case, we have directly η? ≥ 1

C‖φε‖L∞
. To sum up, in both cases, we

have proven that there is κ > 0, independent of u, such that

κφε(x) ≤ u(x), for x ∈ RN .

Because we took R > 2
√
N , we have [0, 1]N ⊂ BR

2
, hence

∀x ∈ [0, 1]N , 0 < κ

(
min
BR

2

φε

)
≤ u(x). (2.33)
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Because κ is independent of u, we can apply (2.33) to u(· + k), for any k ∈ ZN , to
find that

∀x ∈ RN , 0 < κ

(
min
BR

2

φε

)
≤ u(x),

hence the result.

We now prove that λ1 characterizes the existence of non-null solutions to (1.17).

Proposition 2.6. Let λ1 be the principal periodic eigenvalue of the operator L.

• If λ1 > 1, the equation (1.17) has a unique non-negative, non-zero bounded
solution. Moreover, this solution is periodic.

• If λ1 ≤ 1, the equation (1.17) has no non-negative non-zero bounded solutions.

Proof. Case λ1 > 1. Existence of a non-zero periodic solution.
Let φp > 0 be a positive principal periodic eigenfunction associated to λ1. For ε > 0,
we have, owing to the hypothesis (1.10),

T (εφp) ≥ L(εφp)− CL(ε2φ2
p).

Because
L(φ2

p) ≤ ‖φp‖L∞L(φp),

we find that, up to taking ε small enough, we have

T (εφp) ≥ ε(1− Cε‖φp‖L∞)λ1φp ≥ εφp.

We now define a sequence of positive, continuous periodic functions (Un)n∈N by

Un+1 = T (Un), U0 = εφp. (2.34)

Because U1 = T (U0) ≥ U0 and because T is order-preserving, it is readily seen that
the sequence (Un)n∈N is non-decreasing. Moreover, it is bounded independently of
n ∈ N by ‖g‖L∞ supx∈RN

(∫
RN V (x, y)dy

)
, therefore it converges pointwise as n goes

to +∞ to some periodic function U . In addition, because U ≥ U0, the function U
is not everywhere equal to zero. The uniform boundedness of the sequence together
with hypothesis (1.11) yield that (Un)n∈N is locally equicontinuous. The Ascoli-Arzelà
theorem then implies that the convergence of Un to U is locally uniform. An easy
computation yields that, for every x ∈ RN , T (Un)(x) converges to T (U)(x). Taking
the limit n→ +∞ in (2.34), we find that U is a periodic, positive, continuous solution
of (1.17).

Case λ1 > 1. Uniqueness of the positive solution.
Let U be the positive continuous periodic solution of (1.17) given by the first step.
Let Ũ be a bounded non-negative, non-zero solution, not necessarily periodic. Let us
prove that U ≡ Ũ . First, observe that Ũ is continuous owing to (1.11). Moreover,
Lemma 2.5 yields that the infimum of Ũ is positive. Therefore, we can define

η? := max{η > 0 : Ũ ≥ ηU} > 0.
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It is sufficient to prove that η? ≥ 1. Indeed, this will imply that Ũ ≥ U , and inverting
the roles of Ũ and U will yield the equality between the two solutions. We argue by
contradiction, we assume that η? < 1.

By continuity, we have that η?U ≤ Ũ , and there is a sequence (xn)n∈N such that
η?U(xn) − Ũ(xn) → 0 as n → +∞. Because the operator T is order-preserving, we
have

T (η?U) ≤ T (Ũ) = Ũ .

Because we assume that η? < 1, the hypothesis (1.9) implies that η?g(z) ≤ g(η?z),
for every z > 0. Hence, η?T (U) ≤ T (η?U), and then

∀x ∈ RN , η?U(x) = η?T (U)(x) ≤ T (η?U)(x) ≤ T (Ũ)(x) = Ũ(x). (2.35)

We let (kn)n∈N, (zn)n∈N be such that xn = kn + zn, with kn ∈ ZN and zn ∈ [0, 1)N .
Up to extraction, we find z ∈ [0, 1]N such that zn → z as n goes to +∞. We define
the sequence of translated functions

Ũn := Ũ(·+ kn).

The periodicity hypothesis (1.5) yields that T (Ũn) = Ũn. The sequence (Ũn)n∈N is
bounded independently of n (because Ũ is bounded). Therefore, owing to hypothesis
(1.11), the sequence (Ũn)n∈N is equicontinuous, hence we can apply the Ascoli-Arzelà
theorem to find that, up to extraction, Ũn converges locally uniformly as n goes
to +∞ to some Ũ∞. Owing to Lemma 2.5, Ũ∞ 6≡ 0. Evaluating (2.35) at x+ kn and
taking the limit n→ +∞, we find that

∀x ∈ RN , η?U(x) = η?T (U)(x) ≤ T (η?U)(x) ≤ T (Ũ∞)(x) = Ũ∞(x).

Moreover, we have
η?U(z) = Ũ∞(z).

Arguing as above, we find that this yields

∀x ∈ RN , g(η?U(x)) = η?g(U(x)).

Owing to the hypothesis (1.9), this is impossible because U 6≡ 0 and η? < 1. We have
reached a contradiction, hence Ũ ≡ U .

Case λ1 ≤ 1. Non-existence of positive solutions.
Assume that λ1 ≤ 1 and that there is a bounded solution U ≥ 0 of (1.17). Let φp
be a principal periodic eigenfunction associated with λ1. Because U is bounded and
because infRN φp > 0, we can define

M? := inf{M ≥ 0 : Mφp ≥ U}.

Then, by continuity, U ≤ M?φp and there is a sequence (xn)n∈N ∈ RN such that
M?φp(xn)− U(xn)→ 0 as n goes to +∞. Owing to (1.10), we have

U = T (U) ≤ T (M?φp) ≤ L(M?φp) = λ1M
?φp ≤M?φp. (2.36)
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We define two sequences (kn)n∈N and (zn)n∈N as in the previous step, that is, xn =
kn+zn, with kn ∈ ZN and zn ∈ [0, 1)N . We let z ∈ [0, 1]N be a limit, up to extraction,
of zn as n goes to +∞. Evaluating (2.36) at x = xn and taking the limit n → +∞,
we find that, up to extraction,

T (M?φp)(z) = L(M?φ)(z),

which implies that (remember that we assume g′(0) = 1)

M?φp ≡ g(M?φp).

Owing to hypothesis (1.9), this is possible only if M? = 0, that is, if U ≡ 0.

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. Let u be the solution of (1.2). Owing to Proposition 1.3, it
converges to u∞, solution of (1.14). Assume that λ1 > 1, and let U be the unique
positive periodic solution of (1.17) given by Proposition 2.6. We take a diverging
sequence (xn)n∈N ∈ RN such that

|u∞(xn)− U(xn)| −→
n→+∞

lim
R→+∞

(
sup
|x|≥R

|u∞(x)− U(x)|

)
. (2.37)

We choose (kn)n∈N ∈ ZN and (zn)n∈N ∈ [0, 1)N such that xn = kn + zn. Because
xn diverges, so does kn. Up to extraction, we assume that zn converges to some
z ∈ [0, 1]N as n goes to +∞. We introduce the translated functions

un := u∞(·+ kn).

Because u∞ is solution of (1.14), un solves

un(x) =

∫
RN
V (x, y)g(un(y))dy + f∞(x+ kn), x ∈ RN . (2.38)

Observe that, because f∞ ≥ 0, we can apply Lemma 2.5 to get that there is κ > 0
such that un ≥ κ, for every n ∈ N.

Because f∞ is bounded and uniformly continuous and owing to hypothesis (1.11),
we find that the sequence (un)n∈N is bounded and equicontinuous. Owing to the
Ascoli-Arzelà theorem, we can extract a sequence that converges locally uniformly
to some function Ũ . We have Ũ ≥ κ > 0, hence Ũ is not everywhere equal to zero.
Moreover, because |kn| goes to +∞ as n goes to +∞, f∞(x + kn) converges to 0
locally uniformly as n goes to +∞, owing to hypothesis (1.13). Taking the limit
n → +∞ in (2.38), we find that Ũ is a bounded non-negative, non-zero solution
of (1.17). Proposition 2.6 then yields that Ũ ≡ U , where U is the unique positive
periodic solution of (1.17).

Owing to (2.37), and using the fact that U is periodic and that un converges
locally uniformly to Ũ , we have

limR→+∞
(
sup|x|≥R |u∞(x)− U(x)|

)
= limn→+∞ |un(zn)− U(zn)|
= |Ũ(z)− U(z)|
= 0.

This proves the result when λ1 > 1. When λ1 ≤ 1, the proof is similar.
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We have now proven Theorem 1.4: the principal periodic eigenvalue of L char-
acterizes the long-time behavior of solutions of (1.2). Our proof used the symmetry
hypothesis (1.19). As mentioned in Section 1.4.2, this hypothesis is somewhat neces-
sary. Indeed, we have the following:

Proposition 2.7. We consider the 1-dimensional case. Define

Γ(t, x, y) =
1√
4πt

e−
(x−y)2

4t e−(x−y)e−
3
2
t, t > 0, x, y ∈ R. (2.39)

We also fix g(z) = 1 − e−z and f(t, x) = f0(x) ∈ C2(R), where f0 ≥ 0, f0 6≡ 0 is
compactly supported.

Then, the solution u of (1.2) with Γ, f, g as above does not propagate. However,
the principal periodic eigenvalue λ1 of L defined by (1.18) is strictly greater than 1
(it is equal to 2).

In other terms, Theorem 1.4 does not hold for such kernels.

Observe that the kernel Γ in the theorem satisfies all the hypotheses needed for
Theorem (1.4), except the symmetry one, (1.19).

Proof. Let us start with proving that u, the solution of (1.2) with such Γ, f, g does
not propagate. Observe that the kernel Γ(t, x, y) is the fundamental solution of the
operator

∂t − ∂xx − 2∂x +
1

2
.

Therefore, we have

∂t(u− f0)− ∂xx(u− f0)− 2∂x(u− f0) +
1

2
(u− f0) = g(u),

hence
∂tu = ∂xxu+ 2∂xu+ (1− e−u)− 1

2
u+ h, (2.40)

where h = −∂xxf0 − c∂xf0 + 1
2
f0 is a continuous, compactly supported function.

Now, observe that, for A > 0 large enough, the function

s(x) = Ae−x

is supersolution of (2.40). Up to increasing A, we ensure also that s ≥ u(0, ·) = f0.
The parabolic comparison principle implies that

u(t, x) ≤ s(x), ∀t > 0, x ∈ R.

Hence, we do not have propagation of the epidemic: limx→+∞ lim supt→+∞ u(t, x) = 0.
On the other hand, the principal periodic eigenvalue of the operator L is strictly

greater than 1. Indeed, in the case considered here,

V (x, y) =
1√
6
e−
√

3
2
|x−y|e−(x−y).

Observe that this is the Green function of the elliptic operator −∂xx − 2∂x + 1
2
. The

function everywhere constant equal to 1 is a principal periodic eigenfunction, and
then we compute that λ1 = 2.This concludes the proof.
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Let us say a word about this result. It proves that hypothesis (1.19) can not be
totally removed. Two questions then arise: what is the optimal condition on Γ that
could ensure that the principal periodic eigenvalue characterizes the propagation?
For general Γ, can we find another criterion that ensures that we have propagation
or fading out?

For the first question, observe that we used hypothesis (1.19) only one time, it
was in the proof of Lemma 2.3, and we used it only to say that the operator L is
conjugated to a symmetric operator acting on C0

per. We leave it as an open question
to find more general conditions.

Concerning the second question, finding a more general criterion, it is enlightning
to observe that this phenomenon (the fact that the principal periodic eigenvalue
does not characterizes the long-time behavior of the system when the problem is not
symmetric) was already observed in the setting of reaction-diffusion equations, see
[10] for instance. Our proof is an adaptation of this fact. However, when studying
reaction-diffusion equations, a notion called generalized principal eigenvalue has been
introduced, by Berestycki, Nirenberg and Varadhan [8] and later extended in [5, 10],
and was used successfully to study non-symmetric reaction-diffusion equations. We
leave it for later works to extend such a notion for integral operators.

3 Traveling waves
This section is dedicated the proofs of Theorems 1.5 and 1.6. We define the two
following operators:{

T u :=
∫
RN
∫ +∞
0

Γ(τ, x, y)g(u(t− τ, y))dτdy,

Lu :=
∫
RN
∫ +∞
0

Γ(τ, x, y)u(t− τ, y)dτdy.

We still assume, without loss of generality, that g′(0) = 0. Owing to the hypothesis
(1.10), the operator T is “controlled” by its linearization L in the sense that there is
C > 0 such that:

Lu− CLu2 ≤ T u ≤ Lu, for all u ≥ 0. (3.41)

With these notations, the equation (1.3) for traveling waves rewrites u = T u. We
say that the function u is a subsolution (resp. supersolution) of (1.3) if is satisfies
u ≤ T u (resp. u ≥ T u).

We recall that, in this whole section, we assume that Γ satisfies (1.20). This
hypothesis may be actually relaxed, it is sufficient to assume that, for every ρ ≥ 0,
for every e ∈ SN−1 and for every c ≥ 0, the kernel

Γρ,c,e(τ, x, y) := Γ(τ, x, y)e−ρ(cτ+(y−x)·e) (3.42)

satisfies hypothesis (1.11), locally uniformly in (ρ, c). It is easy to check that (3.42)
is a consequence of (1.20), together with the periodicity hypothesis (1.5) and with
(1.11). In the homogeneous framework, a similar hypothesis was assumed by Diek-
mann [14].
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The strategy of proof we employ here is inspired by some techniques developped
for the study of KPP reaction-diffusion equations, see [30] for instance.

To build traveling waves solutions to (1.3), we will use a supersolution-subsolution
algorithm. A key-point is the following computation: let ρ, c > 0 and e ∈ SN−1 be
chosen. Then, for φ ∈ C0

per(RN), we have

L(φ(x)e−ρ(x·e−ct)) =
∫ +∞
0

∫
RN Γ(τ, x, y)e−ρ(y·e−c(t−τ))φ(y)dydτ

=
(∫

RN

(∫ +∞
0

Γ(τ, x, y)e−ρcτdτ
)
e−ρ(y−x)·eφ(y)dy

)
e−ρ(x·e−ct)

= Sρ,c,e(φ)e−ρ(x·e−ct),
(3.43)

where Sρ,c,e is defined by (1.21). For notational simplicity, we assume that the direc-
tion e ∈ SN−1 is fixed, and we omit it in the indices from now on. We recall that
λ1(ρ, c) denotes the principal periodic eigenvalue of Sρ,c. We let φρ,c be an associated
positive principal periodic eigenfunction. It follows from the computation (3.43) that

L(φρ,c(x)e−ρ(x·e−ct)) = λ1(ρ, c)φρ,ce
−ρ(x·e−ct).

Clearly, if λ1(ρ, c) ≤ 1, (3.41) implies that φρ,c(x)e−ρ(x·e−ct) is a supersolution of (1.3).
We conclude these remarks with a technical result:

Proposition 3.1. The function

(ρ, c) ∈ [0,+∞)× [0,+∞) 7→ λ1(ρ, c) ∈ R

is continuous. Moreover, for ρ > 0, the function

c ∈ [0,+∞) 7→ λ1(ρ, c) ∈ R

is strictly decreasing.

Proof. The strict monotonicity of c 7→ λ1(ρ, c) for ρ > 0 can be proven exactly as in
the proof of Proposition 2.4, Step 1, therefore we do not repeat it. The continuity
follows from hypothesis (3.42). Indeed, take (ρ, c) ∈ [0,+∞)2 and two sequences
(ρn)n∈N, (cn)n∈N, where ρn, cn ≥ 0, such that ρn → ρ, cn → c. Let φn denote the
principal eigenfunction of Sρn,cn normalized so that supφn = 1. Letting xn, x̃n be
some points of [0, 1]N where φn is respectively minimal and maximal, we see that∫

RN

∫ +∞

0

Γρn,cn(τ, xn, y)dτdy ≤ λ1(ρn, cn) ≤
∫
RN

∫ +∞

0

Γρn,cn(τ, x̃n, y)dτdy.

We can assume that, up to extraction, the sequences (xn)n∈N, (x̃n)n∈N con-
verge to some x∞, x̃∞ ∈ [0, 1]N . Owing to hypothesis (3.42), we have that∫
RN
∫ +∞
0

Γρn,cn(τ, xn, y)dτdy converges to
∫
RN
∫ +∞
0

Γρ,c(τ, x∞, y)dτdy > 0 as n goes
to +∞, and then we find that (λ1(ρn, cn))n∈N is bounded from below by a positive
constant. It is also bounded from above. Up to performing an extraction, we assume
that it converges to some λ > 0. For every n ∈ N, we have

Sρn,cn(φn) = λ1(ρn, cn)φn.
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Owing to the hypothesis (3.42) and to the normalization, we find that the sequence
(φn)n∈N is equicontinuous. The Ascoli-Arzelà theorem gives us that φn converges up
to extraction to some positive φ∞ ∈ C0

per(RN) that satisfies

Sρ,c(φ∞) = λφ∞.

The uniqueness of the principal periodic eigenvalue implies that λ = λ1(ρ, c), hence
the result.

3.1 Existence of traveling waves.

The next result gives the existence of supersolutions and subsolutions to equa-
tion (1.3).

Proposition 3.2. Assume that λ1 > 1. Let U denote the positive periodic solution of
(1.17) provided by Proposition 2.6. For c > c?(e), there are 0 ≤ u ≤ u, subsolution
and supersolution respectively to (1.3), such that

sup
x·e−ct≥δ

u(t, x) −→
δ→+∞

0 and sup
x·e−ct≤δ

|u(t, x)− U(x)| −→
δ→−∞

0 (3.44)

and such that there are α, β ∈ R, α < β such that

inf
t∈R

(
inf

α≤x·e−ct≤β
u(t, x)

)
> 0. (3.45)

Proof. Step 1. Construction of the supersolution u.
Take c > c?(e). Owing to Proposition 3.1, we can find ρ > 0 so that λ1(ρ, c) ≤ 1.
Define

w(t, x) := φρ,c(x)e−ρ(x·e−ct)

and
u(t, x) := min{w(t, x), U(x)}.

It follows from (3.41) that

T (w) ≤ L(w) = λ1(ρ, c)w ≤ w.

Then
T (u) ≤ min{T (w), T (U)} ≤ u,

hence u is a supersolution of (1.3), and it is readily seen that it satisfies (3.44).

Step 2. Construction of the subsolution u.
Take c > c?(e). Because λ1(0, c) = λ1 > 1 and because ρ 7→ λ1(ρ, c) is continuous,
owing to Proposition 3.1, we find ρ, ρ′ such that

0 < ρ < ρ′ < 2ρ

and
λ1(ρ, c) ≥ 1 and λ1(ρ

′, c) < 1.
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We define
v(t, x) := φρ,c(x)e−ρ(x·e−ct) −Mφρ′,c(x)e−ρ

′(x·e−ct),

where M is large enough so that

v(t, x) ≤ 0 when x · e− ct ≤ 0.

Observe that

v(t, x) −→
x·e−ct→+∞

0 and v(t, x) −→
x·e−ct→−∞

−∞.

For x · e− ct ≥ 0, we have

v2(t, x) ≤ φ2
ρ,c(x)e−2ρ(x·e−ct) ≤

∥∥∥∥ φ2
ρ,c

φρ′,c

∥∥∥∥
L∞

φρ′,c(x)e−ρ
′(x·e−ct).

We define
u := max{v, 0}.

Then
T (u) ≥ L(u)− CL(u2)

≥ L(v)− CL(v2)

≥ L(v)− C
∥∥∥ φ2ρ,cφρ′,c

∥∥∥
L∞
L(φρ′,c(x)e−ρ

′(x·e−ct))

≥ L(v)− C
∥∥∥ φ2ρ,cφρ′,c

∥∥∥
L∞

λ1(ρ
′, c)φρ′,c(x)e−ρ

′(x·e−ct).

Because

L(v) = λ1(ρ, c)φρ,c(x)e−ρ(x·e−ct) −Mλ1(ρ
′, c)φρ′,c(x)e−ρ

′(x·e−ct),

we finally get

T (u) ≥ λ1(ρ, c)φρ,c(x)e−ρ(x·e−ct)

−
(
Mλ1(ρ

′, c) + C

∥∥∥∥ φ2
ρ,c

φρ′,c

∥∥∥∥
L∞

λ1(ρ
′, c)

)
φρ′,c(x)e−ρ

′(x·e−ct).

Owing to our choice of ρ, ρ′, we can increase M if needed to ensure that

Mλ1(ρ
′, c) + C

∥∥∥∥ φ2
ρ,c

φρ′,c

∥∥∥∥
L∞

λ1(ρ
′, c) ≤M,

which yields
T (u) ≥ v.

Because u ≥ 0, we have T (u) ≥ 0, and then

T (u) ≥ u,

that is, u is a subsolution of (1.3). By construction, it satisfies (3.45). Moreover, up
to increasing M , we can ensure that u ≤ u.
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We will need the following technical lemma in the sequel.

Lemma 3.3. For every ε > 0, there is δ > 0 such that, for every u ∈ C0(RN+1), for
every t1, t2 ∈ R and x1, x2 ∈ RN such that |t1 − t2|+ |x1 − x2| ≤ δ, we have

|T (u)(t1, x1)− T (u)(t2, x2)| ≤ ε.

This lemma implies that the image of C0(RN+1) by T is a set of equicontinuous
functions.

Proof. Step 1. Uniform continuity with respect to t. Let u ∈ C0(RN+1) and define
v := T u. Let us prove that:

∀ε > 0, ∃δ > 0 such that |t2 − t1| ≤ δ =⇒ sup
x∈RN

|v(t2, x)− v(t1, x)| ≤ ε. (3.46)

We argue by contradiction. We assume that there are ε > 0 and three sequences
(tn1 )n∈N, (t

n
2 )n∈N, (xn)n∈N, tn1 , tn2 ∈ R, xn ∈ RN , such that, for every n ∈ N, tn1 < tn2 ,

|tn1 − tn2 | ≤ 1
n
and

|v(tn2 , xn)− v(tn1 , xn)| ≥ ε.

First, up to a change of variable, we have

v(t, x) =

∫ t

−∞

∫
RN

Γ(t− τ, x, y)g(u(τ, y))dydτ.

Hence, for every t1 < t2 and x ∈ RN , we have

|v(t2, x)− v(t1, x)| ≤
∫ t1

−∞

∫
RN
|Γ(t2 − τ, x, y)− Γ(t1 − τ, x, y)|g(u(τ, y))dydτ

+

∫ t2

t1

∫
RN

Γ(t2 − τ, x, y)g(u(τ, y))dydτ.

Owing to the boundedness of g, we find that, up to another change of variable,

|v(t2, x)− v(t1, x)| ≤ ‖g‖L∞
∫ +∞

0

∫
RN
|Γ(t2 − t1 + τ, x, y)− Γ(τ, x, y)|dydτ

+ ‖g‖L∞
∫ t2−t1

0

∫
RN

Γ(τ, x, y)dydτ.

Let us define ηn := tn2 − tn1 . From the above computations, it follows that

ε ≤ ‖g‖L∞
∫ +∞

0

∫
RN
|Γ(τ + ηn, xn, y)− Γ(τ, xn, y)|dydτ

+ ‖g‖L∞
∫ ηn

0

∫
RN

Γ(τ, xn, y)dydτ.
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Owing to the periodicity hypothesis (1.5), we have

ε ≤ ‖g‖L∞
∫ +∞

0

∫
RN
|Γ(τ + ηn, x̂n, y)− Γ(τ, x̂n, y)|dydτ

+ ‖g‖L∞
∫ ηn

0

∫
RN

Γ(τ, x̂n, y)dydτ, (3.47)

where x̂n ∈ [0, 1)N is such that xn − x̂n ∈ ZN . By compactness, we assume that x̂n
converges to some x̂ ∈ [0, 1]N as n goes to +∞. Observe that∫ +∞

0

∫
RN
|Γ(τ + ηn, x̂n, y)− Γ(τ, x̂n, y)|dydτ ≤

2

∫ +∞

0

∫
RN
|Γ(τ, x̂n, y)−Γ(τ, x̂, y)|dydτ+

∫ +∞

0

∫
RN
|Γ(τ+ηn, x̂, y)−Γ(τ, x̂, y)|dydτ.

The first term on the right-hand side goes to zero as n goes to +∞, because x̂n goes
to x̂ and thanks to (1.11). The second term goes to zero as n goes to +∞ because
Γ(·, x̂, ·) is in L1.

A similar argument shows that
∫ ηn
0

∫
RN Γ(τ, x̂n, y)dydτ goes to zero as n goes to

+∞. This contradicts (3.47). Hence (3.46) holds true.

Step 2. Uniform continuity. Take t1, t2 ∈ R and x1, x2 ∈ RN . We have

|v(t1, x1)− v(t2, x2)| ≤ sup
x∈RN

|v(t1, x)− v(t2, x)|+ |v(t2, x1)− v(t2, x2)|

≤ sup
x∈RN

|v(t1, x)− v(t2, x)|+ ‖g‖L∞
∫ +∞

0

∫
RN
|Γ(τ, x1, y)− Γ(τ, x2, y)|dydτ.

Therefore, owing to the first step and to hypothesis (1.11), the result follows.

We are now in position to construct traveling waves solutions to (1.3).

Proposition 3.4. Assume that λ1 > 1 and let U denote the unique positive periodic
solution of (1.17) given by Proposition 2.6. For every direction e ∈ SN−1 and for
every speed c > c?(e), there is a traveling wave solution to (1.3) connecting 0 to U .

Proof. Step 1. Construction of a solution.
Let e ∈ SN−1 and c > c?(e). Let u, u be given by Proposition 3.2. We define a
sequence of functions (un)n∈N by

u0 = u and un+1 = T un for n ≥ 0.

Because u is a supersolution of (1.3) and because T is order-preserving, it is readily
seen that the sequence of functions (un)n∈N is decreasing. We define its pointwise
limit

v(t, x) := lim
n→+∞

un(t, x).

Because u is subsolution of (1.3) and because u ≤ u, we have that u ≤ un for every
n ≥ 1, and then

u ≤ v ≤ u. (3.48)
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Owing to Lemma 3.3, and using the Ascoli-Arzelà theorem, we find that the conver-
gence of un to v is locally uniform in (t, x) ∈ RN+1 as n goes to +∞. This implies
that, for (t, x) ∈ RN+1, T un(t, x)→ T v(t, x) as n goes to +∞.

Step 2. Proving that v is a wave.
Because of (3.48), we have that

sup
x·e−ct≥δ

v(t, x) ≤ ‖φρ,c‖L∞e−ρδ −→
δ→+∞

0.

It remains to prove that

sup
x·e−ct≤δ

|v(t, x)− U(x)| −→
δ→−∞

0.

We consider two sequences tn and xn such that

xn · e− ctn → −∞ and |U(xn)− v(tn, xn)| → lim
δ→−∞

(
sup

x·e−ct≤δ
|U(x)− v(t, x)|

)
.

We take (kn)n∈N ∈ ZN such that xn − kn := zn ∈ [0, 1)N and we define

vn(t, x) := v(t+ tn, x+ kn).

Owing to the periodicity hypothesis (1.5), we have vn = T vn. Thanks to Lemma 3.3,
we can extract from vn a sequence that converges locally uniformly to a limit v∞.
Moreover, up to another extraction, we assume that zn converges to some z ∈ [0, 1]N

as n goes to +∞. Now, because v ≤ U by construction and by definition of the
sequences (tn)n∈N, (xn)n∈N, we have

∀t ∈ R, ∀x ∈ RN , U(x)− v∞(t, x) ≤ U(z)− v∞(0, z),

hence
∀t ∈ R, v∞(0, z) ≤ v∞(t, z).

Observe that, by construction, v is time-increasing, and so is v∞. Therefore

∀t ≤ 0, v∞(t, z) = v∞(0, z).

Because v∞ = T v∞, evaluating at (t1, z) and (t2, z), with t1 < t2 ≤ 0, we find that∫
RN

∫ +∞

0

Γ(τ, z, y) (g(v∞(t2 − τ, y))− g(v∞(t1 − τ, y))) dτdy = 0.

Because v∞(t, y) is increasing with respect to t ∈ R, we eventually infer that

∀t ≤ 0, ∀x ∈ RN v∞(t, x) = v∞(0, x).

Therefore,
v∞(0, ·) = Tv∞(0, ·),
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where T is defined in (2.31). Owing to Proposition 2.6, it follows that either
v∞(0, ·) ≡ 0 or v∞(0, ·) ≡ U . Let us show that v∞(0, ·) is not identically equal
to zero.

Because v is time non-decreasing, we have, for s ≤ t,

u(s, x) ≤ v(s, x) ≤ v(t, x),

hence
sup
s≤t

u(s, x) ≤ v(t, x).

It is readily seen from the shape of u (given by Proposition 3.2) that there are δ ∈ R
and η > 0 such that

η ≤ sup
s≤t

u(s, x) for x · e− ct ≤ δ.

Then, by definition of vn, we have

η ≤ vn(t, x) for x · e− ct+ xn · e− ctn ≤ δ.

Because xn · e− ctn → −∞ as n goes to +∞, we find that

∀t ∈ R, ∀x ∈ RN , η ≤ v∞(t, x),

which implies that v∞ ≡ U . Hence,

lim
δ→−∞

(
inf

x·e−ct≤δ
|v(t, x)− U(x)|

)
= 0,

this concludes the proof.

3.2 Non-existence of waves

This section is dedicated to proving Theorem 1.6, that is, the non-existence of trav-
eling waves for (1.3) with speed lesser than c?(e).

The key idea is to build subsolutions to (1.3), with support contained into a set
of the form {x ∈ RN : x · e ∈ [ct, ct+ A]}, for some A > 0 and for c < c?(e). Then,
by comparison, any traveling wave would have to move faster than these subsolutions.

The strategy we employ to build these subsolutions is inspired by a similar one
in the theory of KPP reaction-diffusion equations (see [19] for instance): the idea is
to build subsolutions of the form φ(x)e−ρ(x·e−ct) - just like we did for supersolutions
above, but now with φ, ρ complex. It relies on some arguments from complex analysis
and petrubation theory.

In order to build subsolutions for our equation, we need to work with a penaliza-
tion of Γ. For δ ∈ (0, 1), we introduce

Γδ(t, x, y) := (1− δ) max{Γ(t, x, y)− δ, 0}.
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Owing to hypothesis (1.20), Γδ is compactly supported in the sense that there is
R > 0 such that

Γδ(t, x, y) = 0 for |x− y| > R. (3.49)

Up to taking δ > 0 small enough, the kernel Γδ ≤ Γ satisfies the same hypotheses
than Γ (we need δ > 0 to be small enough in order to have the non-degeneracy
condition: Γδ(t, x, y) > ε when t + |x − y| < r, for some r, ε > 0). We define the
penalized operator

Lδu :=

∫
RN

∫ +∞

0

Γδ(τ, x, y)u(t− τ, y)dτdy.

We also define the operator Sδρ,c in a similar way, and we let λδ1(ρ, c) denote its
principal periodic eigenvalue, and then we let c?δ(e) denote the spreading speed defined
by formula (1.22), with λδ1(ρ, c, e) instead of λ1(ρ, c, e). Using the same arguments as
in the proof of Proposition 3.1, we can show that λδ1(ρ, c, e) converges to λ1(ρ, c, e)
locally uniformly in c ≥ 0 when δ goes to zero. This implies that, for every e ∈ SN−1,

c?δ(e) −→
δ→0

c?(e).

The key result of this section is the existence of subsolution for the penalized linear
equation:

Proposition 3.5. Let δ ∈ (0, 1) and e ∈ SN−1 be fixed. Then, if c < c?δ(e) is close
enough to c?δ(e), there is a function v(t, x) that is continuous in t, x, non-negative,
non-zero and such that there is A > 0 such that v(t, x) = 0 when |x · e − ct| > A,
which satisfies

∀t ∈ R, ∀x ∈ RN , Lδv(t, x) ≥ v(t, x). (3.50)

Before presenting the proof of Proposition 3.5, let us explain how it yields Theo-
rem 1.6.

Proof of Theorem 1.6. We argue by contradiction. Assume that there is a traveling
wave u solution of (1.3) in the direction e ∈ SN−1 with speed c ∈ [0, c?(e)), connecting
U to 0 for some U > 0, U ∈ C0

per(RN). Let δ > 0 be small enough so that c?δ(e) > c.
Owing to Proposition 3.5, we can find c ∈ (c, c?δ(e)) such that there is a function

v such that
Lδv ≥ v,

and that travels with speed c in the direction e. Let ε > 0 be such that, up to a
translation in time, we have,

∀t ≤ 0, εv(t, ·) ≤ u(t, ·).

Moreover, up to decreasing ε > 0, we ensure that

1− δ ≤ 1− Cε‖v‖L∞ ,

where C is the constant in (1.10). We define

T ? := max{T ≥ 0 : εv(t, ·) ≤ u(t, ·) for all t ∈ [0, T ]}.
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It is readily seen that, for t ≤ T ? and for x ∈ RN ,

εv(t, x) ≤ Lδ(εv)(t, x) ≤ (1− δ)
(1− Cε‖v‖L∞)

T (εv)(t, x)

≤ T (εv)(t, x) ≤ T (u)(t, x) = u(t, x). (3.51)

Now, assume that there is x? such that

εv(T ?, x?) = u(T ?, x?).

Then, evaluating (3.51) at t = T ? and x = x?, we would find that T (εv)(T ?, x?) ≤
T (u)(T ?, x?), which would imply that εv(t, x) = u(t, x) for every t ≤ T ?, x ∈ RN ,
which is not possible, because v(t, x) has support contained in a set |x · e− ct| < A,
for some A > 0.

If there is not such x?, we can find a sequence (xn)n∈N such that

u(T ?, xn)− εv(T ?, xn) −→
n→+∞

0,

and arguing as in the proof of Proposition 2.6, second case, we would again reach a
contradiction.

Before turning to the proof of Proposition 3.5, we start with two intermediary
results. In order to simplify the notations, we assume that δ is fixed and we omit it
in the computations, that is, we drop the index δ everywhere.

We just have to keep in mind that Γδ is compactly supported in the sense of
(3.49). This is actually only used in the proof of Proposition 3.5, and not in the
following intermediary results, that are true for general kernels Γ.

We start with a technical result. For z ∈ C, we let <(z),=(z) denote the real and
imaginary parts of z.

Proposition 3.6. For ρ, c ≥ 0, let λ1(ρ, c) and φρ,c denote the principal periodic
eigenvalue and eigenfunction of Sρ,c, normalized so that φρ,c(0) = 1. For every c ≥ 0,
the maps

ρ 7→ λ1(ρ, c) ∈ C
and

ρ 7→ φρ,c ∈ C0
per(RN ,C)

can be holomorphically extended to a complex neighborhood of the positive real axis
{ρ ≥ 0}. The complex-valued functions still satisfy Sρ,cφρ,c = λ1(ρ, c)φρ,c. In addition,
ρ 7→ <(φρ,c) and ρ 7→ =(φρ,c) are continuous (with respect to the C0(RN) topology).

Since the operator Sρ,c is compact and holomorphic with respect to ρ, and since the
principal eigenvalue λ1(ρ, c) is isolated and has multiplicity equal to 1 (owing to the
Krein-Rutman Theorem), the proposition above follows from standard perturbation
theory, we refer to [21, Chapter 7] for the details.

Lemma 3.7. We have
λ1(ρ, c) −→

ρ→+∞
+∞,

and this limit holds locally uniformly in c ≥ 0.
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Proof. Take x such that φρ,c(x) = minRN φρ,c, where φρ,c is a positive principal peri-
odic eigenfunction associated with λ(ρ, c). Then

λ1(ρ, c) ≥
∫
τ>0

∫
y∈RN

Γ(τ, x, y)e−ρcτe−ρ(y−x)·edydτ

=

∫
τ>0

∫
z∈RN

Γ(τ, x, x+ z)e−ρcτe−ρz·edzdτ.

Now, by hypothesis on Γ (see Section 1.4.1), we have that there are r, ε so that Γ > ε
if t+ |x− y| < r. Hence

λ1(ρ, c) ≥
∫
τ∈(0, r

2
)

∫
|z|< r

2

Γ(τ, x, x+ z)e−ρcτe−ρz·edzdτ ≥ ε
1− e− ρcr2

ρc

∫
|z|≤ r

2

e−ρz·edzdτ.

The rightmost term in these inequalities goes to +∞ as ρ goes to +∞ locally uni-
formly in c ≥ 0.

We are now in position to prove Proposition 3.5. Let us explain how we build the
subsolutions v.

First, observe that, owing to Lemma 3.7, to the definition (1.22) of c?(e) and to
the continuity of λ1(ρ, c), we have that there is ρ? such that

λ1(ρ
?, c?(e)) = 1.

Owing to Proposition 3.6 and to Rouché’s theorem, there is η > 0 such that, for
every c ∈ (c?(e)− η, c?(e)], there is ρ(c) ∈ C that satisfies λ1(ρ(c), c) = 1. Moreover,
ρ(c)→ ρ? as c goes to c?(e). We define

vc(t, x) := <(φρ(c),c(x)e−ρ(c)(x·e−ct)). (3.52)

Therefore, we have Lvc = vc. We let φR, φI denote the real and imaginary parts of
φρ(c),c (these are real continuous periodic functions) and ρR, ρI the real and imaginary
parts of ρ(c). As c goes to c?(e), we have φR → φρ?,c?(e), φI → 0, uniformly in x, and
ρR → ρ? and ρI → 0. We take c close enough to c?(e) such that

min
[0,1]N

φR > max
[0,1]N

|φI |.

We can rewrite (3.52) as follows:

vc(t, x) =
(
φR(x) cos(ρI(x · e− ct)) + φI(x) sin(ρI(x · e− ct))

)
e−ρR(x·e−ct). (3.53)

Observe that, if x · e− ct = ± 3π
4ρI

, then

vc(t, x) =

√
2

2
(−φR(x)± φI(x))e

∓ 3πρR
4ρI < 0.

We define

v+c (t, x) =

{
max{vc(t, x), 0} if |x · e− ct| ≤ 3π

4|ρI |
,

0 elsewhere.
(3.54)

32



Then, v+c is continuous, non-negative, not everywhere equal to zero. Let us show that
it is the good candidate to prove Proposition 3.5, that is, let us show that

Lv+c ≥ v+c .

Remember that we dropped the index δ, and that Γ (that is, Γδ) is compactly sup-
ported in the sense of (3.49). It is used in the following proof.

Proof of Proposition 3.5. For notational simplicity, we define ε := |ρI |. Up to taking
c closer to c?(e), we can make ε as small as needed. Clearly, (3.50) holds true for (t, x)
such that vc(t, x) ≤ 0. If (t, x) is such that |x · e− ct| ≤ 3π

4ε
and such that vc(t, x) ≥ 0,

then v+c (t, x) = vc(t, x) = Lvc(t, x). Therefore, to prove that (3.50) holds true, it is
sufficient to show that, for (t, x) such that |x · e− ct| ≤ 3π

4ε
,∫

RN

∫ +∞

0

Γ(τ, x, y)v+c (t− τ, y)dτdy ≥
∫
RN

∫ +∞

0

Γ(τ, x, y)vc(t− τ, y)dτdy.

To compare those two integrals, we break them into three parts. We define
I1 :=

∫
y·e∈[ct−π

ε
,ct+ 3π

4ε
]

∫ +∞
0

Γ(τ, x, y)(v+c (t− τ, y)− vc(t− τ, y))dτdy,

I2 :=
∫
y·e∈[ct+ 3π

4ε
,ct+π

ε
]

∫ +∞
0

Γ(τ, x, y)(v+c (t− τ, y)− vc(t− τ, y))dτdy,

I3 :=
∫
|y·e−ct|≥π

ε

∫ +∞
0

Γ(τ, x, y)(v+c (t− τ, y)− vc(t− τ, y))dτdy.

Let us prove that we can take ε > 0 small enough so that, for every t ∈ R, x ∈ RN ,
I1+I2+I3 ≥ 0. First, because we assume that |x ·e−ct| ≤ 3π

4ε
, we see that, if y is such

that |y · e − ct| ≥ π
ε
, then |x − y| ≥ π

4ε
. Therefore, up to taking ε small enough, we

have Γ(τ, x, y) = 0 (thanks to the hypothesis that Γ is compactly supported), then
I3 = 0, for every t ∈ R, and every x such that |x · e− ct| ≤ 3π

4ε
.

Step 1. Estimate on I1.
Let y ∈ RN be such that y · e ∈ [ct− π

ε
, ct+ 3π

4ε
]. We define τ1, τ2 such that

y · e = c(t− τ1) +
3π

4ε
, y · e = c(t− τ2) +

5π

4ε
.

We now estimate v+c (t − τ, y), vc(t − τ, y) for τ in [0, τ1], [τ1, τ2] and [τ2,+∞]. By
definition of v+c , we have

v+c (t− τ, y) ≥ vc(t− τ, y) for τ ∈ [0, τ1].

Indeed, for such τ , we have y ·e−c(t−τ) ∈ [−π
ε
, 3π
4ε

]. When y ·e−c(t−τ) ∈ [−3π
4ε
, 3π
4ε

],
the definition of v+c implies that v+c ≥ vc. If y · e − c(t − τ) ∈ [−π

ε
,−3π

4ε
], we have

vc(t− τ, y) ≤ 0 = v+c (t− τ, y).

Define κ :=
√
2
2

(minφR −max |φI |) > 0. It follows from (3.53) that

vc(t− τ, y) ≤ −κe−ρR(y·e−c(t−τ)) for τ ∈ [τ1, τ2].
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Finally, it is readily seen from (3.53) that, for M := maxφR + max |φI |,

vc(t− τ, y) ≤Me−ρR(y·e−c(t−τ)) for τ ∈ [τ2,+∞].

Now, we compute∫ +∞

0

Γ(τ, x, y)(v+c (t− τ, y)− vc(t− τ, y))dτ ≥ −
∫ +∞

τ1

Γ(τ, x, y)vc(t− τ, y)dτ

≥ κ

∫ τ2

τ1

Γ(τ, x, y)e−ρR(y·e−c(t−τ))dτ −M
∫ +∞

τ2

Γ(τ, x, y)e−ρR(y·e−c(t−τ))dτ.

Let us show that this is non-negative, up to taking ε small enough (independant of
x, t, y). To do this, define Tε = τ2 − τ1 = π

2cε
and

h(s) = κ

∫ s+Tε

s

Γ(τ, x, y)e−ρR(y·e−c(t−τ))dτ −M
∫ +∞

s+Tε

Γ(τ, x, y)e−ρR(y·e−c(t−τ))dτ.

We have

h′(s) = e−ρR(y·e−c(t−s))
(
κ
(
Γ(s+ Tε, x, y)e−ρRcTε − Γ(s, x, y)

)
+MΓ(s+ Tε, x, y)e−ρRcTε

)
.

Therefore, owing to hypothesis (1.23), up to taking ε small enough, independent
of t, x, y, we can ensure that h′(s) ≤ 0, and because h(s) → 0 as s goes to +∞,
then h(τ1) ≥ 0, hence

∫ +∞
0

Γ(τ, x, y)(v+c (t − τ, y) − vc(t − τ, y))dτ ≥ 0, for every
t ∈ R, x, y ∈ RN . Therefore, I1 ≥ 0.

Step 2. Estimate for I2.
Consider now the situation when y ·e−ct ∈ [3π

4ε
, π
ε
]. Then, in this case, v+c (t−τ, y) = 0

for all τ ≥ 0, and

vc(t− τ, y) ≤ −κe−ρR(y·e−c(t−τ)) for τ ∈ [0, τ2],

where τ2 is defined as in the previous step. Therefore, we still have in this case that∫ +∞

0

Γ(τ, x, y)(v+c (t− τ, y)− vc(t− τ, y))dτ

≥ κ

∫ τ2

τ1

Γ(τ, x, y)e−ρR(y·e−c(t−τ))dτ −M
∫ +∞

τ2

Γ(τ, x, y)e−ρR(y·e−c(t−τ))dτ,

and we can conclude as in the previous step: up to taking ε small enough, for every
t, x such that |x · e− ct| ≤ 3π

4ε
, we have

I2 ≥ 0.

This concludes this step and the proof.
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4 Application to the SIR model (1.7)
We now apply our results on the renewal equations to the SIR model (1.7). In the
whole section, µ, α,K satisfy the hypotheses of Theorem 1.9, that is µ, α ∈ C0

per(RN),
α, µ > 0 and K ∈ C0(RN × RN) is periodic, non-negative, non-zero, symmetric and
decays faster than any exponential.

Let us first explain how the SIR model (1.7) rewrites as the integral equations
(1.2). This fact was observed by several authors in different contexts (see [11, 14] for
instance) - we prove it in our setting for the sake of completeness.

Proposition 4.1. Let S0 ∈ C0
per(RN), I0 ∈ C0(RN), with S0 > 0 and I0 non-negative

and bounded.

• If (S(t, x), I(t, x)) solves (1.7) with initial datum (S0, I0), then u(t, x) :=

− ln
(
S(t,x)
S0(x)

)
solves (1.2) with Γ, f, g given by (1.8).

• If u solves (1.2) with Γ, f, g given by (1.8), then S(t, x) := S0(x)e−u(t,x) and
I(t, x) := −

∫ t
0
e−µ(x)(t−τ)∂tS(τ, x)dτ+I0(x)e−µ(x)t solve (1.7) with initial datum

(S0, I0).

Before turning to the proof of this proposition, observe that, combining it with
Proposition 1.3 gives the existence and uniqueness of solutions of the SIR system (1.7).

Proof of Proposition 4.1. Let us show the first point. Observe that, if (S, I) is solu-
tion to (1.7), then the function u(t, x) := − ln(S(t,x)

S0(x)
) is continuous and positive on

(0,+∞)× RN . The second equation of (1.7) rewrites

∂tI(t, x) + µ(x)I(t, x) = −∂tS(t, x).

Therefore,

I(t, x) = −
∫ t

0

e−µ(x)τ∂tS(t− τ, x)dτ + I0(x)e−µ(x)t.

Plotting this in the first equation of (1.7) yields

∂tu(t, x) = −∂tS(t, x)

S(t, x)
= −α(x)

∫ t

0

∫
y∈RN

K(x, y)e−µ(y)τ∂tS(t− τ, y)dydτ

+ α(x)

∫
y∈RN

K(x, y)I0(y)e−µ(y)tdy. (4.55)

By definition of u, integrating with respect to the t variable between 0 and T and
changing the order the integrals yields

u(T, x) = −α(x)

∫ T

0

∫
y∈RN

K(x, y)e−µ(y)τ (S(T − τ, y)− S0(y))dydτ

+ α(x)

∫ T

0

∫
y∈RN

K(x, y)I0(y)e−µ(y)tdydt.
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Now, remembering that g(z) := 1− e−z, we have

u(T, x) = α(x)

∫ T

0

∫
y∈RN

S0(y)K(x, y)e−µ(y)τg(u(T − τ, y))dydτ

+ α(x)

∫ T

0

∫
y∈RN

K(x, y)I0(y)e−µ(y)tdtdy.

which proves the first point.

The second point can be proved using the same computations. One has to observe
that, if u is the unique solution of (1.2) - provided by Proposition 1.3 - with Γ, f, g
given by (1.8), then, the functions (S, I) defined as fonctions of u in the second point
have the required regularity to be considered solutions of (1.7).

We now turn to the proofs of Theorems 1.9, 1.10. The idea is to use the change
of functions presented in Proposition 4.1 and to apply Theorems 1.4, 1.5 and 1.6 to
the renewal equation thus obtained.

First, observe that, if Γ, f, g are given by (1.8) (with α, µ,K, S0 satisying the
above hypotheses), they satisfy the hypotheses required to apply Theorems 1.4, 1.5
and 1.6 (these hypotheses are given in Section 1.4).

Proof of Theorem 1.9. Let S0, I0 be such that S0 is continuous periodic and strictly
positive, and I0 is continuous, non-negative, non-zero, and compactly supported. Let
(S, I) the solution of (1.7) arising from this initial datum.

Owing to Proposition 4.1, we have that u(t, x) = − ln(S(t,x)
S0(x)

) is the solution of
(1.2) with Γ, f, g given by (1.8).

Let λ1 be the principal periodic eigenvalue of the operator

φ 7→
∫
RN

α(x)S0(y)

µ(y)
K(x, y)φ(y)dy.

Let us prove that the epidemic propagates in the sense of Definition 1.7 when λ1 > 1.
In this case, Theorem 1.4 tells us that the epidemic propagates for (1.2) (in the sense
of Definition 1.1). Hence, u(t, x) converges to some u∞(x), that satisfies, for some
ε, R > 0,

u∞(x) > ε, for |x| ≥ R.

Because S(t, x) = S0(x)e−u(t,x), we see that S(t, x) converges to S∞(x) :=
S0(x)e−u∞(x), and

S∞(x) < S0(x)e−ε, for |x| ≥ R,

hence
sup
|x|>R

(S∞(x)− S0(x)) < 0.
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Moreover, because S(t, x) is strictly decreasing with respect to t for every x, the result
follows by continuity of S∞ and S0.

To conclude, let S := S0e
−U , where U is given by Theorem 1.4. Then, we have

|S∞(x)− S(x)| ≤ ‖S0‖L∞|e−u∞(x) − e−U(x)| ≤ ‖S0‖L∞|u∞(x)− U(x)|,

and Theorem 1.4 allows to conclude.
The proof for the fading out when λ1 ≤ 0 follows the same lines.

We now turn to the existence and non-existence of waves.

Proof of Theorem 1.10. Let α, µ,K and S−∞ satisfy the hypotheses of Theorem 1.10.

Step 1. Existence of waves.
Assume that λ1 > 1. Let c > c?(e). Then, Theorem 1.5 tells us that the renewal
equation (1.3) with Γ, g given by (1.8) (with S0 replaced by S−∞) admits a traveling
waves connecting 0 to some U with speed c in the direction e. Let u be such a wave.

Let us define

S(t, x) = S−∞e
−u(t,x), I(t, x) := −

∫ t

−∞
e−µ(x)(t−τ)∂tS(τ, x)dτ.

Up to doing the same computations as those done in the proof of Proposition 4.1, it
is readily seen that S, I solve (1.7). Let us prove that these are traveling fronts in
the sense of Definition 1.8.

Limit when x · e− ct→ −∞.
We have

sup
x·e−ct≤−δ

|u(t, x)− U(x)| −→
δ→+∞

0.

Hence

supx·e−ct≤−δ |S(t, x)− S−∞(x)e−U(x)| = supx·e−ct≤−δ |S−∞(x)(e−u(t,x) − e−U(x))|
≤ ‖S−∞‖L∞ supx·e−ct≤−δ |u(t, x)− U(x)| −→

δ→+∞
0.

Let us show that
sup

x·e−ct≤−δ
I(t, x) −→

δ→+∞
0. (4.56)

We have

I(t, x) = −
∫ t

−∞
∂tS(τ, x)eµ(x)(τ−t)dτ,

and then

I(t, x) =

∫ t

−∞
S(τ, x)µ(x)eµ(x)(τ−t)dτ − S(t, x).
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Let (xn)n∈N ∈ (RN)N and (tn)n∈N ∈ RN be such that xn · e− ctn := −δn → −∞ as n
goes to +∞. Then

I(tn, xn) =

∫ tn

−∞
S(τ, xn)µ(xn)eµ(xn)(τ−tn)dτ − S+∞(xn) + S+∞(xn)− S(tn, xn)

=

∫ tn

−∞
(S(τ, xn)− S+∞(xn))µ(xn)eµ(xn)(τ−tn)dτ + S+∞(xn)− S(tn, xn)

≤ ‖S−∞‖L∞‖µ‖L∞
(∫ tn− δn2c

−∞
µ(xn)eµ(xn)(τ−tn)dτ

)

+

(∫ tn

tn− δn2c

µ(xn)eµ(xn)(τ−tn)dτ

)
sup

x·e−ct≤− δn
2

|S(t, x)− S+∞(x)|

+ |S+∞(xn)− S(tn, xn)|

≤ ‖S−∞‖L∞‖µ‖L∞e−µ(xn)
δn
2c + sup

x·e−ct≤− δn
2

|S(t, x)− S+∞(x)|+ |S+∞(xn)− S(tn, xn)|.

This goes to zero as n goes to +∞, hence (4.56) follows.

Limit when x · e− ct→ +∞.
We have

sup
x·e−ct≥δ

|u(t, x)| −→
δ→+∞

0.

Hence

supx·e−ct≥δ |S(t, x)− S−∞(x)| = supx·e−ct≥δ |S−∞(t, x)(1− e−u(t,x))|
≤ ‖S−∞‖L∞ supx·e−ct≥δ |u(t, x)| −→

δ→+∞
0.

To prove that
sup

x·e−ct≥δ
|I(t, x)| −→

δ→+∞
0,

we could argue as in the first step, however, there is here a simpler argument. Observe
that, for t > 0 and x ∈ RN ,

∂tS(t, x) + ∂tI(t, x) ≤ 0,

hence
0 ≤ sup

x·e−ct≥δ
I(t, x) ≤ sup

x·e−ct≥δ
|S−∞(x)− S(t, x)|,

and the result follows.

Step 2. Non-existence of waves.
Assume by contradiction that c < c?(e) and that there is a traveling wave solution
to (1.7) with this speed in direction e. Let S(t, x) be the wave of susceptibles. Then,
doing computations similar to those in the proof of Proposition 4.1 would yield that
u(t, x) = − ln( S(t,x)

S−∞(x)
) is a traveling wave solution of (1.3) with speed c in the direction

e. This is impossible owing to Theorem 1.6, hence the result.
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