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Simulating transient wave phenomena in acoustic metamaterials using
auxiliary fields

C. Bellisa, B. Lombarda,∗

aAix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France

Abstract

Acoustic wave propagation in dispersive metamaterials is considered. A prototypical example stems from
the homogenization of a waveguide coupled with Helmholtz resonators and elastic membranes. The homog-
enized models of acoustic metamaterials are characterized by constitutive parameters, namely the effective
bulk modulus and the effective mass density, that are frequency dependent. In this context, the objective
considered here is to analyze such media in the time-domain and to simulate associated transient wave phe-
nomena. To do so, the governing evolution equations are recast using a set of auxiliary fields to obtain an
augmented first-order hyperbolic system. This initial-value problem is analyzed and then solved numerically
using a splitting method and a high-order finite-difference scheme. An immersed interface method is also
implemented to tackle scattering and interface problems involving metamaterial subdomains of arbitrary
shapes. Numerical experiments are performed to validate the proposed overall approach and to investigate
a variety of transient wave phenomena occurring in acoustic metamaterials.

Keywords: negative index materials, band-gap, perfect lensing, augmented hyperbolic systems, scientific
computing

Highlights

• Wave phenomena arising in dispersive acoustic metamaterials are considered.
• This problem is addressed based on an augmented time-domain formulation with auxiliary fields.
• The augmented system is shown to be mathematically well-posed with smooth solutions.
• These solutions are computed numerically using schemes that are standard for nondispersive media.
• The proposed implementation is validated using semianalytical solutions.
• Examples are discussed to highlight the flexibility and efficiency of the proposed approach.

1. Introduction

Metamaterials are man-made structures designed to manipulate the propagation of waves in ways that
does not occur in natural media [10, 11]. They involve frequency-dependent effective parameters that are
negative on some frequency ranges, which yields a Poynting vector in opposite direction with the wave
vector. It opens the door to exotic behaviors (e.g. negative refraction) and new applications: ultra-thin
acoustic barriers, acoustical lenses whose resolution surpasses the diffraction limit, acoustical cloaking, to
cite a few [20, 33, 21]. The first and most-widely known acoustic metamaterial (AMM), designed to isolate
low-frequency waves much more efficiently than the classical mass law, was proposed by Liu and co-authors
[29]. It relies on a composite medium containing microstructural elements with heavy masses surrounded by
a soft rubber annulus arranged periodically in a 3D solid matrix. The concept of double-negative acoustic
medium, involving both negative densities and bulk modulus, paves the way to perfect lenses [38]. It has been
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theoretically investigated by various authors in composite media involving different resonant mechanisms
[26, 12].

In 2006, Fang and his collaborators [14] found experimentally a negative effective bulk modulus near the
resonant frequency in a structured medium consisting of a 1D array of subwavelength Helmholtz resonators
(HRs). The design of such medium has significantly broadened the design variety of locally-resonant acoustic
materials [9]. Based on tensioned thin membranes, negative density has been predicted theoretically in
2008 by Yang and his collaborators [47], and then obtained experimentally in 2009 by Lee and coauthors
[23]. Combining HRs with elastic membranes has enabled to build double negative AMM [44]. The four
different combinations of effective density and elastic modulus can then be achieved by a judicious design
of the resonance frequencies. From a theoretical standpoint, a generalization of Newton’s second law and
continuum elastodynamics has been proposed by Milton and Willis in 2007 to describe the effective behavior
of composite media [35]. This framework provides a physical interpretation for the effective density and bulk
modulus that characterize AMM, see also [24].

The governing equations in resonant AMM are originally formulated in the frequency domain, which has
motivated the development of dedicated numerical approaches such as the transmission line method [9]. To
tackle broadband acoustic experiments it is advantageous to consider time-domain formulations. To this end,
a set of auxiliary fields can be introduced as it has been done in a number of studies on Maxwell’s equations,
see [45, 18, 19, 6, 7]. Based on this formalism, various methods have been proposed in the transient regime
for computational electromagnetism, based on the finite-element method [27], the discontinuous Galerkin
method [28] and the staggered-grid finite-difference method [46]. Moreover, for Maxwell’s equations in
dispersive metamaterials, mathematical properties such as well-posedness have been recently investigated in
[37].

In this context, our overarching goal is to investigate the broad spectrum of transient wave phenomena
that can arise in acoustic metamaterials, such as propagation regimes in double-negative materials, as well
as wave scattering or interface problems. To do so, our objective is twofold:
(i) Demonstrate that, by using auxiliary fields, the governing evolution equations can be recast as an
augmented system that is well-posed and has smooth solutions in the time-domain. Well-posedness is
proven by a direct application of Friedrichs’ theory on symmetric hyperbolic systems [17] rather than using
the classic Hille-Yoshida theory of semi-groups [6].
(ii) Show that this system can be solved numerically using methods that are standard for nondispersive
media, thus providing a practical and efficient approach to study transient phenomena in dispersive acoustic
metamaterials.

Some prototypical and frequency-dependent constitutive laws are considered in this article for the effec-
tive density and bulk modulus. For such models we investigate an equivalent time-domain formulation that
employs a set of auxiliary fields. It should be noted that the mathematical analysis of the existence of a limit
absorption principle [42] for the configurations considered is beyond the scope of this study. The obtained
augmented first-order hyperbolic system and its solutions in free-space are analyzed. Then, we propose a
novel time-domain numerical approach based on a splitting method and a high-order finite-difference ADER
scheme. The proposed time-marching scheme is characterized by an optimal numerical stability condition
that is independent of the dissipation and dispersion effects. Moreover, an immersed interface method is
introduced to tackle interface problems and scattering by metamaterials. This method allows in particular
to discretize arbitrary-shaped interfaces while preventing from the classical drawbacks of Cartesian grid
methods (spurious diffractions, loss of convergence order); see [32] and references therein. For the sake of
clarity, most developments are illustrated numerically in a 1D configuration which is representative of a
waveguide coupled with HRs and elastic membranes but a number of 2D numerical experiments are also
discussed.

The article outline is as follows. In Section 2, the physical model of interest is described and the
corresponding time-domain formulation is established with the introduction of auxiliary fields. The key
properties of the obtained augmented system and of its solutions are provided in Section 3. Section 4
focuses on the numerical modeling and these overall developments are illustrated in Section 5 in a 1D
configuration for which the simulations are validated by comparison with semianalytical solutions. A set of
2D numerical experiments is also presented, with less details, to illustrate the applicability of our approach
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to more challenging configurations.

2. Acoustic metamaterial modeling

2.1. Effective parameters
Consider the classical time-domain equations of acoustics in a homogeneous medium which, given some

source terms g and h, govern the evolution of the acoustic velocity and pressure fields v and p respectively
for x ∈ Rd and t > 0: 

ρa
∂v

∂t
(x, t) + ∇p(x, t) = ρa g(x, t),

κ−1
a

∂p

∂t
(x, t) + div v(x, t) = κ−1

a h(x, t).

(1)

The parameters ρa > 0 and κa > 0 denote the mass density and bulk modulus respectively. Accordingly,
one defines ca =

√
κa/ρa as the sound velocity. With the Fourier transform in time of a function h(t) being

denoted as ĥ(ω), in terms of the angular frequency ω, then (1) is transformed in the Fourier domain as{
iω ρa v̂(x, ω) + ∇p̂(x, ω) = ρa ĝ(x, ω),

iω κ−1
a p̂(x, ω) + div v̂(x, ω) = κ−1

a ĥ(x, ω).
(2)

Acoustic metamaterial modeling allows to replace the constitutive parameters ρa and κ−1
a at the left-hand

sides of (2) by some frequency-dependent material laws, see [26, 44, 24, 20]. Here we consider the following
prototypical mappings:

ρa ←− ρ̂(ω) = ρa

(
1− Ω2

ρ

ω2 − ω2
ρ

)
, (3a)

κ−1
a ←− κ̂−1(ω) = κ−1

a

(
1− Ω2

κ

ω2 − ω2
κ − i γ ω

)
. (3b)

The parameter γ ≥ 0 is a dissipation coefficient that accounts for physical losses, while ωρ and ωκ denote
resonance frequencies. The limit-case Ωρ = Ωκ = 0 in (3) yields ρ̂ = ρa and κ̂−1 = κ−1

a , which coincides
with the classical acoustic properties. The parameters ρ̂(ω) and κ̂−1(ω) have to be interpreted as effective
material properties that derive from the homogenization of a microstructured medium (an example of phys-
ical configuration is discussed in Section 5), to which the positive coefficients Ωρ, Ωκ, ωρ, ωκ and γ can
be related. While our objective is neither to discuss the derivation of effective constitutive properties such
as (3a) and (3b) nor their particular forms, references can be made to, e.g., [1, 15] for the homogenization
of resonant microstructures that lead to effective coefficients such as (3). In this context, the coefficients
entering (3), such as Ωρ and ωρ, follow from the resolution of cell problems at the scale of the microstructure.
The mathematical homogenization process reveals typically an infinite number of resonances but, in prac-
tice, it is sufficient to take into account only a finite number of them to tackle wave propagation problems.
Therefore and for the sake of clarity, a single resonant term is considered at first in (3a) and (3b) while a
generalization to a finite number of resonances is discussed in Section 2.3.

The insertion of the resonant parameters (3) into the equations (2) leads to a set of elliptic equations
which, to be solved, requires the formation and inversion of a (possibly large) linear system at each frequency.
In the frequency-domain, therefore, performing simulations involving broadband frequency signals can be
costly numerically, unlike in a time-domain formulation where such signals can be processed in a single
simulation. In this context, we focus on performing time-domain simulations of wave propagation phenomena
in resonant acoustic metamaterials. In other words, we address here the generic integration of frequency-
dependent laws such as (3) into a time-domain numerical scheme.
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2.2. Time-domain formulation
2.2.1. Auxiliary fields

In acoustic metamaterials, the effective physical parameters ρ and κ−1 entering the governing equations
(1) intervene through time-domain convolution operators. The numerical implementation of such nonlocal
operators would require storing the entire history of the fields, which is very consuming from a memory point
of view and thus prevents from tackling realistic problems in 2D and 3D. Therefore, to perform time-domain
simulations, the introduction of auxiliary fields can be used advantageously to obtain a set of evolution
equations in a local form. First, one defines the auxiliary field ŵ by the equation:

(ω2 − ω2
ρ)ŵ = −v̂.

Doing so and given the form of the effective density (3a), this entails:

ρ̂(ω) v̂ = ρa v̂ + ρaΩ2
ρ ŵ.

Likewise, one defines the field r̂ through

(ω2 − ω2
κ − i γ ω)r̂ = −p̂,

so that, from the bulk modulus identity (3b), one obtains for all ω ∈ R+:

κ̂−1(ω) p̂ = κ−1
a p̂+ κ−1

a Ω2
κ r̂.

Combining the previous identities with the governing equations (2) and applying the inverse Fourier trans-
form in time yields 

∂v

∂t
+ Ω2

ρ

∂w

∂t
+

1

ρa
∇p = g,

∂2w

∂t2
+ ω2

ρw = v,

∂p

∂t
+ Ω2

κ

∂r

∂t
+ κa div v = h,

∂2r

∂t2
+ γ

∂r

∂t
+ ω2

κ r = p.

To deal with a first-order system in time, one introduces the additional auxiliary fields u and q such that
∂w
∂t = u and ∂r

∂t = q. Finally, one obtains the following augmented system of evolution equations for all
x ∈ Rd and time t > 0: 

∂v

∂t
+

1

ρa
∇p+ Ω2

ρ u = g,

∂p

∂t
+ κa div v + Ω2

κ q = h,

∂u

∂t
− v + ω2

ρw = 0,

∂w

∂t
− u = 0,

∂q

∂t
− p+ γ q + ω2

κ r = 0,

∂r

∂t
− q = 0.

(4)

The ensuing analysis aims at showing that the solution (v, p, u, w, q, r) to the augmented system (4)
is unique and smooth, in a L2 sense. It should be noted that this study does not address the question of
the existence of a limiting absorption principle, see [42], for acoustic dispersive media, which is beyond its
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scope and not essential for the results given hereafter. This question requires an in-depth analysis as it has
been shown in [6] for electromagnetic dispersive media that some nonstandard resonance phenomena arise
and therefore they must be expected in acoustic dispersive media too. At these frequencies, the limiting
absorption principle fails or holds only on a subspace of source terms that needs to be characterized. The
question of the existence of a limiting absorption principle has been also studied in the context of an interface
problem involving a dispersive electromagnetic media in [5, 7].

2.2.2. Augmented first-order hyperbolic system
It is emphasized that no approximation has been made to transform (2) with the frequency-dependent

parameters (3) into the time-domain formulation (4). Nonetheless, this first-order formulation is at the
price of handling the auxiliary fields u, w, q and r instead of the two original unknowns v and p only. This
represents m = 3(d+ 1) fields overall instead of d+ 1, which increases the memory requirements. However,
the additional fields satisfy some linear ODEs (instead of PDEs), which results in an additional CPU cost
largely smaller than a factor 3. Typically, going from (1) to (4) implies, in our implementation, an extra
cost in computation time of a factor 0.3 in 1D.

Accordingly, one introduces the vector of unknown U : Rd × [0,+∞[→ Rm as

U(·, t) =
(
v(·, t), p(·, t), u(·, t), w(·, t), q(·, t), r(·, t)

)>
, (5)

for all t > 0, with an additional initial condition U(·, 0) = U0 : Rd → Rm and the associated source term
F : Rd × [0,+∞[→ Rm being defined as

F(·, t) =
(
g(·, t), h(·, t), 0, 0, 0, 0

)>
. (6)

The evolution problem associated with the augmented system (4) can be written in a compact form as
∂

∂t
U +

d∑
j=1

Aj
∂

∂xj
U = S U + F, (x ∈ Rd, t > 0)

U(x, 0) = U0, (x ∈ Rd)

(7)

with the only nonzero terms of the matrices Aj and S ofMm(R) being given for j = 1, . . . , d by

[Aj ]j, d+1 =
1

ρa
and [Aj ]d+1, j = κa,

and 
[S]j, d+1+j = −Ω2

ρ, [S]d+1, 3d+2 = −Ω2
κ, [S]d+1+j, j = 1,

[S]d+1+j, 2d+1+j = −ω2
ρ, [S]2d+1+j, d+1+j = 1, [S]3d+2, d+1 = 1,

[S]3d+2, 3d+2 = −γ, [S]3d+2, 3d+3 = −ω2
κ, [S]3d+3, 3d+2 = 1,

where [M]i,j denotes the entry (i, j) of the matrix M. Therefore, in 1D, these matrices read:

A1 =


0 1/ρa 0 0 0 0
κa 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and S =


0 0 −Ω2

ρ 0 0 0
0 0 0 0 −Ω2

κ 0
1 0 0 −ω2

ρ 0 0
0 0 1 0 0 0
0 1 0 0 −γ −ω2

κ

0 0 0 0 1 0

 .
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2.3. Generalization to multiple resonances
Exploiting the acoustic-electromagnetic analogy (see, e.g., [4, 10]) and building up from references in

electromagnetism [46], one could consider the following generalized effective parameters:

ρ̂(ω) = ρa

1−
Nρ∑
`=1

Ω2
ρ,`

ω2 − ω2
ρ,` − i γρ,` ω

 , κ̂−1(ω) = κ−1
a

(
1−

Nκ∑
`=1

Ω2
κ,`

ω2 − ω2
κ,` − i γκ,` ω

)
. (8)

The parameters γρ,` ≥ 0 and γκ,` ≥ 0 are dissipation coefficients that account for physical losses, while ωρ,`,
ωκ,` denote resonance frequencies. Again, the parameters featured in (8) could be seen as deriving from
a homogenization process for an appropriate microstructure. For example, the case of multiple resonant
scatterers investigated in [41] yields effective parameters in the form (8).

Following a derivation similar to this of Section 2.2, one can show that the acoustic equations (2) with
the frequency-dependent parameters (8) can be recast in the time-domain using a set of additional auxiliary
fields u`, w` for ` = 1, . . . , Nρ and q`, r` for ` = 1, . . . , Nκ, which satisfy the following first-order system:

∂v

∂t
+

1

ρa
∇p+

Nρ∑
`=1

Ω2
ρ,`u` = g,

∂p

∂t
+ κa div v +

Nκ∑
`=1

Ω2
κ,` q` = h,

∂u`
∂t
− v + γρ,` u` + ω2

ρ,`w` = 0, (` = 1, · · · , Nρ),

∂w`

∂t
− u` = 0, (` = 1, · · · , Nρ),

∂q`
∂t
− p+ γκ,` q` + ω2

κ,` r` = 0, (` = 1, · · · , Nκ)

∂r`
∂t
− q` = 0, (` = 1, · · · , Nκ).

(9)

This augmented system derives from (2) without any approximation and despite being written in terms of
d(2Nρ+1)+2Nκ+1 fields overall instead of d+1 only, this approach would remain advantageous numerically.
Defining a vector of unknowns by block as

U = (v, p, u1, . . . , uNρ , w1, . . . , wNρ , q1, . . . , qNκ , r1, . . . , rNκ)>,

with a corresponding source term F, then the augmented system (9) can be written in a compact form
similar to (7). The forthcoming analysis can in turn be applied to this system.

3. Key properties

3.1. Matrices and augmented system properties
We focus now on characterizing the properties of the matrices featured in the augmented system (7).

Indeed, our purpose is to apply Friedrichs’ theory on symmetric hyperbolic systems, see [17] and [13], to
prove the well-posedness of the associated initial-value problem. Moreover, some matrices properties will be
of prime importance for justifying the implementation of the splitting-based numerical scheme of Section 4.

One starts by elementary properties satisfied by the matrices Aj and S. Let define for all k ∈ Rd the
matrix A(k) as

A(k) =
d∑
j=1

kjAj . (10)
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Upon defining the notation |k|2 = k>k as well as
√· as the principal determination of the complex square

root such that √
z = |z| 12 ei arg z/2 for arg z ∈ (−π, π), (11)

then it can be checked that the following two properties hold.

Property 1. The matrix A(k) is diagonalizable for all k ∈ Rd\{0} with its spectrum being given by

sp
(
A(k)

)
=
{

0, ±|k| ca
}
,

where 0 is of multiplicity 3d+ 1.

Property 2. The spectrum of S is given by

sp
(
S
)

=
{

0, Ω±, ±i
√
ω2
ρ + Ω2

ρ

}
with Ω± =

1

2

(
−γ ±

√
γ2 − 4 (ω2

κ + Ω2
κ)
)
,

where 0 is of multiplicity d+1 and ±i
√
ω2
ρ + Ω2

ρ are each of multiplicity d. If γ = 0, then all the eigenvalues

are purely imaginary. Moreover, if γ > 0 then <e(Ω±) < 0.

Next, one introduces the positive-definite diagonal matrix E ∈Mm(R) as

E = diag

(
{ρa} ,

1

κa
,
{
ρaΩ2

ρ

}
,
{
ρaω

2
ρΩ2

ρ

}
,

1

κa
Ω2
κ,

1

κa
ω2
κΩ2

κ

)
, (12)

where the notation {·} stands for diagonal blocks of size d. If one (or a subset thereof) of the parameters
ωρ, ωκ, Ωρ, Ωκ is zero, then the augmented first-order system (4) can be rewritten in terms of a strictly
smaller subset of auxiliary fields. The analysis conducted here will be applicable to this new system when
the appropriate changes are made. Now, it is checked that the matrix E is a symmetrizer for the augmented
system (7) in the sense of the following property.

Property 3. For all k ∈ Rd\{0}, the real matrix EA(k) is symmetric. Moreover, the real matrix ES can
be decomposed as

ES = S̃− γ Ω2
κ

κa
Ĩm−1

where S̃ is skew-symmetric and Ĩm−1 denotes the matrix whose only nonzero term is the diagonal entry[
Ĩm−1

]
m−1,m−1

= 1.

Lastly, an energy analysis can be performed, see Appendix A.1, to obtain the property below.

Property 4. Let U be a solution to the augmented system (7), whose energy at time t is given by

E(t) =
1

2

∫
Rd

U(x, t)>E U(x, t) dx.

The energy writes E(t) = Ek(t) + Ep(t), where Ek(t) and Ep(t) are kinetic and potential energy quantities,
respectively given by:

Ek(t) =
1

2

∫
Rd
ρa

(
|v|2 + Ω2

ρ |u|2 + ω2
ρ Ω2

ρ |w|2
)

dx, Ep(t) =
1

2

∫
Rd

1

κa

(
p2 + Ω2

κ q
2 + ω2

κ Ω2
κ r

2
)

dx.

Then the total energy satisfies the identity:

d

dt
E(t) = −

∫
Rd

γ Ω2
κ

κa
q2dx +

∫
Rd

(
ρa v ·g +

1

κa
p h
)

dx. (13)

Since γ Ω2
κ q

2/κa ≥ 0, the above property shows that the augmented system (7) is dissipative unless
γ = 0. Indeed, if after a given time t the external sources vanish, i.e. g(·, t) = 0 and h(·, t) = 0, then
d
dtE(t) ≤ 0 so that the energy is dissipated.
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3.2. Well-posedness
We focus now on characterizing the well-posedness of the initial value problem (7) and assessing whether

it is stable. To do so, the theory of semigroups and the Hille-Yosida theorem are applicable and they were
used in [7] to investigate electromagnetic dispersive waves. See also the approach developed in [37] for
Maxwell’s equations in dispersive metamaterials. Here, an alternative approach is adopted, based on the
existence results by Friedrichs, see [17] and [13], which are relevant to symmetric hyperbolic systems.

The energy analysis provides a proper functional framework for the study of the augmented system (4),
namely by using the Hilbert space L2(Rd)m endowed with the weighted inner product defined by E, i.e. for
all V, W ∈ L2(Rd)m: (

V,W
)
L2(Rd)m

=
1

2

∫
Rd

V(x)>E W(x) dx. (14)

Moreover, Property 4 implies that an appropriate norm on L2(Rd)m to study of the augmented system (7)
is the energy norm defined by (14), for which the solution U(·, t) ∈ L2(Rd)m satisfies:∥∥U(·, t)

∥∥
L2(Rd)m

= E 1
2 (t).

Within this framework, if the source terms are such that F(·, t) ∈ L2(Rd)m for all t ≥ 0 then applying the
Cauchy-Schwarz inequality to (13) and integrating between t > t0 ≥ 0 yields

∥∥U(·, t)
∥∥
L2(Rd)m

≤
∥∥U(·, t0)

∥∥
L2(Rd)m

+

∫ t

t0

∥∥F(·, τ)
∥∥
L2(Rd)m

dτ. (15)

This inequality describes the admissible energy growth for a solution to (7) or, in other words, a stability
property for the solution. In particular, this entails that the solution to (7) is unique. Indeed, if U1, U2 are
solutions to (7) with U1(·, 0) = U2(·, 0) = U0 and the same source F, then the difference δU = U1 −U2

satisfies (7) with no source term and a null initial condition. Therefore δU satisfies (15) with a zero right-
hand side term, which implies that δU(·, t) = 0 for all t > 0.

With the system under consideration being symmetrizable according to Property 3, the theory associated
with the so-called class of Friedrichs’ symmetric systems can be used now to establish the next result.

Theorem 3.1. The augmented first-order system (7) is a symmetrizable hyperbolic system. If the initial
condition U0 and the source term F satisfy the following smoothness assumptions:

U0 ∈ H1(Rd)m and F ∈ C1
(
[0, T ] ; L2(Rd)m

)
,

for T > 0, then there exists a unique strong solution U to the initial value problem (7), and it satisfies

U ∈ C1
(
[0, T ] ; L2(Rd)m

)
∩ C0

(
[0, T ] ; H1(Rd)m

)
.

Proof. See Appendix A.2.

3.3. Dispersion and stability
The dispersion analysis in metamaterials has been described extensively by some authors, see e.g. [6, 46].

Here we only adapt the main results. Let us consider plane-wave solutions to the homogeneous counterpart
of (7), i.e. with F = 0, of the form

U(x, t) = U ei(ωt−k·x) = U ei(<e(ω)t−k·x) e−=m(ω)t, (16)

with U ∈ Cm, ω ∈ C and the wavevector k ∈ Rd. Based on (10), one defines the complex perturbation
A′(k) of A(k) by S as

A′(k) = A(k)− i S.

There exists nontrivial solutions (16) to (7) provided that

det
(
ω Id −A′(k)

)
= 0, (17)
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where Id is the identity matrix in Rd, so that ω is an eigenvalue of the perturbed matrix A′(k) ∈ Mm(C).
After straightforward but tedious calculations, one can show that Equation (17) implies the dispersion
relation:

|k|2 = ω2 ρ̂(ω) κ̂−1(ω). (18)

Note that (18) coincides with the dispersion relation of the original system (2).
The solution ω to (18) depends only on the norm |k|2 = k>k of the wavevector and this is a consequence

of the isotropy of the medium (ρ̂ and κ̂−1 being scalars). The phase velocity vp and the group velocity vg

are then respectively defined by

vp(k) = ω(|k|) k

|k|2 and vg(k) = ∇k ω(|k|).

In the inviscid case γ = 0, the parameters ρ̂ and κ̂−1 are real and therefore ω2 ∈ R. In this case, the
following regimes of propagation are found:
– If ρ̂(ω) κ̂−1(ω) < 0 then ω2 < 0 so that =m(ω) < 0 according to (11). The waves are evanescent in time,
which corresponds to a band-gap (BG).
– If ρ̂(ω) < 0 and κ̂−1(ω) < 0 then vp(k).vg(k) < 0, which yields backward propagating waves. This
property relies on the fact that ρ̂ and κ̂−1 satisfy the growing property defined in [6], which is the case
for the constitutive parameters (3) considered. In these so-called negative index materials (NIM), negative
refraction is obtained in 2D and 3D, see [20].
– The case ρ̂(ω) > 0 and κ̂−1(ω) > 0 corresponds to double-positive materials (DPM), which are character-
ized by usual propagative and dispersive behaviors.

The stability of the initial value problem (7) is already encapsulated in the energy estimate (15). However,
to justify the ensuing numerical scheme, we provide here a complementary analysis that makes use of the
properties of the matrix S.

Property 5. The initial value problem (7) is stable. Moreover, the associated augmented first-order system
(7) is nondissipative when γ = 0.

Proof. See Appendix A.3.

3.4. Interfaces conditions
In this section, we focus on establishing transmission conditions for the augmented hyperbolic system

(7). Starting from the identity (A.2), we consider a domain D ⊂ Rd composed of two open subsets D1 and
D2 that satisfy

D = D1 ∪ D2, D1 ∩ D2 = ∅, ∂D1 ∩ ∂D2 = Γ, ∂D1 ∪ ∂D2 = Γ ∪ Γc,

so that Γ denotes the interface between these two subdomains while the complementary part Γc is possibly
empty. Each of the subdomains is endowed with specific materials properties that yield, for i = 1, 2, the
corresponding matrices E(i), A

(i)
j and S(i). Moreover, for the sake of argument, let assume no material

damping, i.e. γ(1) = γ(2) = 0 and no external sources, i.e. F(1) = F(2) = 0. According to Theorem 3.1, the
solutions U(i) with i = 1, 2 to the corresponding initial value problem (7) in each subdomain satisfy

U(i) ∈ C1
(
[0,+∞[ ; L2(Di)m

)
∩ C0

(
[0,+∞[ ; H1(Di)m

)
.

When the complementary part Γc of the domain boundary is at infinity, then concatenating the two energy
identities (A.2) corresponding to D1 and D2 entails

1

2

d

dt

∫
D1

U(1)>E(1)U(1) dx +
1

2

d

dt

∫
D2

U(2)>E(2)U(2) dx

+
1

2

∫
Γ

{
U(1)>E(1)A(1)(n) U(1) −U(2)>E(2)A(2)(n) U(2)

}
ds = 0,
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using the unit outward normal n1 = −n2 to D1 as the reference normal n. The requirement that energy is
conserved entails that the following condition has to be satisfied on the interface Γ:

q
U>EA(n) U

y
= 0, (19)

where the double-bracket notation denotes jumps across Γ, i.e. JfK = f (2) − f (1). Given the definitions of
the matrices E and A(n), and using the identity Jf gK = JfK〈g〉 + 〈f〉JgK where 〈f〉 = 1

2 (f (2) + f (1)), then
a sufficient condition for equation (19) to hold is that the following transmission conditions are satisfied at
the interface:

Jv · nK = 0 and JpK = 0. (20)
It is noticeable that, despite the introduction of auxiliary fields that led to the augmented system (7), the
associated transmission conditions at an interface can be reduced to these of the original acoustic equations.

4. Numerical modeling

4.1. Splitting
A numerical scheme is proposed to compute the solution to the augmented system (7). Introducing a

uniform Cartesian grid with mesh size ∆x and time step ∆t, let Un
j1,...,jd

denote the approximation of the
solution at the point x = (j1∆x, · · · , jd∆x) and time t = n∆t. A straightforward discretization of (7)
typically leads to the following numerical CFL stability condition

∆t ≤ min

(
∆x

ca
,

2

%(S)

)
(21)

where %(S) denotes the spectral radius of S. As shown by Property 2, the usual CFL bound on the time
step, i.e. ∆t ≤ ∆x/ca, could be much reduced for some values of the parameters featured in the matrix S,
which would in turn be detrimental to performances of the numerical scheme.

To circumvent this issue, we follow here the Strang splitting approach analyzed in [25]. To implement
(7) numerically, the augmented hyperbolic system is split into a propagative part and a relaxation part as
follows: 

∂

∂t
U +

d∑
j=1

Aj
∂

∂xj
U = 0, (22a)

∂

∂t
U = S U + F. (22b)

These two equations are in turn intended to be solved alternatively. The discrete operators associated with
the discretizations of (22a) and (22b) are respectively denoted by Pα and Rβ [t] with α and β being some
parameters associated with the time-domain discretization. The operator Rβ [t] depends explicitly on time
when the forcing term F is nonzero, whereas Pα remains independent on t. Following [25], then the split
equations (22a) and (22b) are solved with adequate time increments according to the following scheme:

Algorithm 1 (Splitting algorithm).

Initialize : Un = U0

Iterate for n ≥ 1 :


U∗ = R∆t/2[tn] Un

U∗∗ = P∆t U
∗

Un+1 = R∆t/2[tn+1] U∗∗

Note that the spatial indices are omitted for brevity so that the fields featured in the above algorithm
concatenate the unknowns at all points of the computational grid. Since the matrices Aj and S do not
commute, an error associated with the splitting scheme is introduced, as shown in [25]. However, provided
that Pα and Rβ are associated with numerical schemes that are at least second-order accurate and stable,
then the time-marching Algorithm 1 constitutes a second-order approximation of the original evolution
problem (7).

10
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Figure 1: Finite-difference grid and interface separating two domains D− and D+ at x = α.

4.2. Numerical scheme
In this section, we describe the discrete operators featured in Algorithm 1.

Relaxation step. The physical parameters do not vary with time so that the matrix S is constant in time.
Accordingly, for β > 0, one defines the discrete relaxation operator as:

Rβ [t] U = eβS
(
U + β F(t)

)
. (23)

If there is no excitation (i.e. g = 0 and h = 0), then (23) is exact. The matrix exponential entering the
definition of Rβ [t] is computed in a pre-processing step using the method 2 in [36] based on a (6/6)-Padé
approximation. Property 2 ensures that the computation of this exponential is stable.

Propagation step. To integrate (22a), we use a fourth-order ADER (Arbitrary DERivative) scheme
[43]. This explicit two-step and single-grid finite-difference scheme defines the discrete propagation operator
formally as: (

P∆t U
)
j1,...,jd

= Uj1,...,jd −
+2∑

`1=−2

· · ·
+2∑

`d=−2

C`1,...,`d Uj1+`1,...,jd+`d . (24)

The matrices C`1,...,`d defining the scheme (24) are provided in Section 4 of [2] in the cases d = 1 and
d = 2 while they can be generalized in a straightforward manner to the case d = 3. The ADER-4 scheme
employed here satisfies the following CFL stability condition independently of the dimension d, i.e.

∆t ≤ ∆x

ca
. (25)

Noticeably, the stability condition (25) resulting from the splitting approach is optimal in the sense that,
contrary to condition (21), it coincides with the CFL condition of classical acoustics.

4.3. Interface discretization
Notoriously, interfaces are detrimental to the quality of finite-difference methods, for three main reasons:

(i) errors of order O(∆x) are introduced when the interfaces do not coincide with the mesh, and a naive
stair-step description of the geometries results in spurious diffractions; (ii) jump conditions are not properly
enforced by usual finite-difference schemes; (iii) solutions are not smooth across interfaces, which lowers the
convergence order of the method or even leads to numerical instabilities. To remove these difficulties, while
keeping the advantages of using a Cartesian grid, the so-called immersed interface method is implemented,
see [30, 32] and the references therein for details and analysis. For the sake of simplicity, the principle is
exposed below in 1D.

For a given finite-difference scheme, one defines irregular points as the points where the associated spatial
stencil intersects an interface. For example, consider two subdomains D− and D+ with their interface being
located at x = α, see Figure 1, and the fourth-order ADER scheme expressed at the point xj ∈ D−. The
stencil being of width 2 then the irregular points are the points {xj−2, xj−1, xj , xj+1, xj+2} of Figure 1. The
other grid points are regular points. While the relaxation operator Rβ [t] of Section 4.2 remains unchanged,
the propagation operator Pα is modified at those irregular points. Namely, instead of using in (24) the
numerical values Uj+` with ` = −2, . . . , 2, the new scheme involves some modified values U]

j+1 and U]
j+2 at

the irregular points xj+1 and xj+2 of D+. These modified values U]
j+` are constructed as smooth extensions
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of Uj+` across the interface relatively to the point xj ∈ D−. Doing so, the modified propagation scheme at
that point uses the quantities

{
Uj−2, Uj−1, Uj , U]

j+1, U]
j+2

}
. Note that, in the schematics of Figure 1,

the interface is placed at the off-grid point x = α to emphasize the fact that the geometry of the interface
can be described independently of the mesh, i.e., it may or may not coincide with grid points. In particular,
in the numerical experiments presented hereafter, the interfaces are placed at off-grid points to illustrate the
subcell resolution offered by the immersed interface method.

As shown in Section 3.4, the interface conditions (20) coincide with those of classical acoustics. Conse-
quently, it is straightforward to adapt the strategy proposed in [30, 32] for the computation of the modified
grid values.

5. Numerical experiments

R

Figure 2: Array of Helmholtz resonators with interspaced elastic membranes (in blue).

5.1. Case study
Here we investigate a simple 1D configuration that can be modeled within the framework of Section 2.1.

Consider an infinite cylindrical tube that is periodically connected with cylindrical Helmholtz resonators
(HRs) and contains equi-spaced elastic membranes (Figure 2). Radius of the tube is R, axial spacing
between resonators is D, radius and length of HRs neck are r and L, radius and height of the HRs cavity are
rh and H. Therefore the cross-sectional area of the tube is S = π R2 and that of HRs neck is A = π r2 while
their volume is V = π r2

hH. One defines the parameter ωκ as the resonance frequency of the resonators and
one introduces the parameter Ωκ so that

√
ω2
κ + Ω2

κ is the resonance frequency of the tube coupled with the
resonators. These parameters satisfy [14]:

ωκ = ca

√
A

LV
:= 2πf0, Ωκ = ωκ

√
V

S D
:= 2πf1, (26)

The elastic membranes have stiffness K and mass M . The average density of the fluid loaded with the
membrane in the tube is ρm > ρa, so that the resonance frequency of the membranes is:

Ωρ =

√
K

ρm
:= 2πfm. (27)

This system is driven in such a way that wave propagation is linear and occurs in the sub-wavelength
regime (ca/ω � D). Moreover, in order to excite only the first plane-wave mode of the tube, one must
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(a) Inviscid case (γ = 0). The curve =m{κ̂−1} = 0 is not shown in left panel.
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(b) Dissipative case (γ = 400 s−1).

Figure 3: [Left : Scaled curves of ρ̂ and κ̂−1 in (3)]. [Right : Phase velocity]. Horizontal dotted line coincide with the value
of the classical sound velocity ca. Vertical dotted lines separate the frequency domain into intervals where occur the following
phenomena: band-gap (BG), negative index material (NIM), and double-positive material (DPM). Numerical values of the
parameters are summarized in Table 1

satisfy approximately the condition ω < 1.84 ca/R, according to the cut-off frequency value given in [8].
Doing so, the 1D approximation is valid [31]. Under these assumptions, when the system considered is
homogenized then the effective parameters correspond to the frequency dependent laws (3a) and (3b) with
ωρ = 0 as shown in [44, 24, 20].

The chosen numerical values of the parameters are provided in Table 1 while ρa and ca are the standard
values for air. The membrane stiffness and geometrical parameters of the HRs are tuned so as to yield
sufficiently large frequency intervals of existence for the band-gap and negative index material behaviors,
i.e. f0 = 500Hz, f1 = 1000Hz and fm = 800Hz in (26) and (27). Note that, in particular, these parameter
values are based on the experimental values reported in [23]. For this choice of parameters, the material
laws (3) and the associated propagation regimes described in Section 3.3 based on the dispersion relation
(18) are shown in Figure 3. For this configuration, one thus has ωρ = 0 while ωκ 6= 0, Ωκ 6= 0 and Ωρ 6= 0
and the numerical values of the latter three coefficients being such that they make it possible to observe all
relevant wave phenomena given the excitation signal considered in the following section.
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ca (m s−1) ρa (kgm−3) ρm (kgm−3) K (Nm−4) γ (s−1) A/LV (m−2) V/S D
345 1.17 1.34 3.38 · 107 0 or 400 1.45 3

Table 1: Physical and geometrical parameters for the studied configuration.

5.2. One-dimensional homogeneous medium
The chosen propagation domain [−5m, 5m] is discretized using 1000 nodes. This implies that the wave-

length at 2 kHz is sampled on 16 nodes, which yields a relative error on the phase velocity lower than 0.0056%
[30]. The time step is chosen so as to satisfy the CFL condition (25) with a 0.95 threshold. The simulations
are stopped before the waves reach the edges of the computational domain, so that no outgoing condition
is required; PMLs for dispersive media are not treated here and require special treatments, see [46].

An excitation is applied to the momentum equation at the point xs = 0 such that g(x, t) = δ(x−xs)G(t)
and h = 0 in (6), with the time-domain signal G(t) being defined as follows:

G(t) =


4∑

m=1

am sin(βm ωc t) if 0 < t <
1

fc
,

0 otherwise,
(28)

where βm = 2m−1 and the coefficients am being a1 = 1, a2 = −21/32, a3 = 63/768, a4 = −1/512, which
entails the smoothness property G ∈ C6([0,+∞[). As shown Figure 4, so defined, G(t) is a wide-band signal
with a central frequency fc = ωc/2π = 700Hz that lies in the NIM region indicated on Figure 3.
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(a) Time-domain signal G(t)
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(b) Source spectrum |Ĝ(f)|.

Figure 4: Wide-band function G used as the excitation signal in the 1D numerical experiment.

For comparison, a reference semianalytical solution is computed by applying time and space Fourier
transforms to (4). With f̂ the Fourier transform of f , then the residue theorem yields identities in the
Fourier domain such as

p̂(x, ω) = sign(x− xs) ρa e−ik(ω) |x−xs| Ĝ(ω), (29)

for the pressure field and similarly for the other fields. In (29), k(ω) is the wavenumber that satisfies the
dispersion relation (18). Inspection of (18) and (3) shows that k(ω) has singularities depending on the
value of the dissipative coefficient γ. Some care must therefore be taken to compute the inverse Fourier
transform of (29). For this purpose, the integrable singularities such as 1/

√
ω − Ωρ are taken into account

analytically by using appropriate changes of variables. Outside singularities, a midpoint quadrature formula
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with automatic refinement is implemented [16]. Doing so, the solution to (4) is finally computed in the time
domain by taking the real part of the inverse Fourier transform of (29).

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.2 

−0.1 

0 

0.1 

0.2 

x (m)

p
 (

P
a)

numerics

analytics

(a) Inviscid case (γ = 0).
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(b) Dissipative case (γ = 400 s−1).

Figure 5: Snapshots of acoustic pressure p at t = 14ms in the homogeneous metamaterial domain.

Figure 5 displays snapshots of the acoustic pressure p at time t = 14ms for γ ∈ {0, 400} s−1. Very good
agreement is found between the numerical solutions computed using the numerical scheme of Section 4 and
the corresponding semianalytical ones. The effect of attenuation is clearly seen with decrease of amplitude
when γ = 400 s−1. The frequency content of the source around fc yields backward propagating waves
towards xs in a typical NIM behavior. The observed high-frequency propagating waves correspond to DPM
behavior. The noticeable small amplitude of these waves is a consequence of the weak energy content
of the source at the corresponding frequencies. Lastly, it should be noted that the existence of resonance
frequencies, i.e. singularities, in the material laws (3) do not impede the computation of smooth L2 transient
solutions in such time-domain simulations with broad frequency-band sources. Such a remarkable property
of the proposed time-domain approach is assessed by Theorem 3.1.

Based on the large frequency content of the source signal (28) one can identify the various propagation
regimes in a single time-domain experiment. For this purpose, one must measure the transmission spectrum
that characterizes the medium considered. The velocity field v(x, t) computed numerically is measured at
the source xs and at a receiver location xr = 0.5m for t ∈ [0, 0.2s]. Then the sought transmission spectrum
is defined as the modulus |Z(ω)| = |v̂(xr, ω)/v̂(xs, ω)|, expressed in terms of the Fourier transforms of
the acquired data. Note that, to avoid spurious reflections at the boundary of the computational domain,
the latter is extended up to [−20m, 20m] and meshed using 4000 nodes. Figure 6 displays the computed
transmission spectrum. In the inviscid case, the transmission coefficient is close to 1 in the frequency ranges
of NIM and DPM as expected. In the BG ranges, |Z| decreases to 0. In the dissipative case, attenuation is
observed in the NIM and DPM ranges due to the intrinsic material attenuation.

5.3. One-dimensional interface problems
In this section one focuses on numerical results for interface problems. In the first example of Figure 7,

an interface is introduced at the off-grid point α = 6.5 · 10−2 m to separate a fluid domain D1 = {x; x < α}
and a metamaterial domain D2 = {x; x > α}. Note that the interface does not coincide with a node of
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Figure 6: Transmission spectrum computed numerically. Vertical dotted lines separate the theoretical propagation regimes.
Horizontal dotted lines denote perfect transmission |Z| = 1.
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Figure 7: Seismogram of the acoustic pressure p for the fluid-metamaterial interface problem. Vertical line denotes the material
interface.
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the discretization grid and the jump conditions (20) are implemented using the immersed interface method
described in Section 4.3. The fluid is air, with density ρ(1) = 1.17 kgm−3 and sound speed c(1) = 345ms−1,
while the acoustic metamaterial is that described in the previous section.

The set of auxiliary fields and the affiliated augmented system (4) are used only in the metamaterial
domain while the classical acoustic system (1) is solved in the fluid domain. Accordingly, the computation
is initialized by an initial condition defined as U0(x) = (−1/c(1), ρ(1))>G

(
t0 − x

c(1)

)
with t0 = −4ms, which

is compactly supported within the fluid. This condition is designed so as to generate a right-going wave.
Figure 7 displays seismograms of the pressure field p, with and without attenuation. The reflected waveform
in D1 can be thought to be surprising since the fluid domain is not dispersive. In fact, this behavior is
a consequence of the frequency dependence of the reflection coefficient at the fluid-metamaterial interface.
Moreover, in the domain D2, the observed waveform is induced by backward propagating transmitted waves
within the frequency interval of the NIM regime, which generate waves reflected back at the interface.
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(b) Pressure field p at t = 14ms (γ = 0).

Figure 8: Wave propagation within a fluid-metamaterial-fluid medium.

In the second example of Figure 8, a fluid-metamaterial-fluid medium is considered with two interfaces
at the off-grid points α1 = −5.05 · 10−1 m and α2 = +5.05 · 10−1 m. The fluid subdomains surrounding the
acoustic metamaterial are endowed with the properties of air while the metamaterial is defined as previously
with γ = 0. Figure 8a shows the initial condition and a snapshot of the pressure field p at time t = 14ms is
shown Fig. 8b. Very good agreement is found between the numerical solution and the semianalytical one.

5.4. Two-dimensional scattering
Figure 9 depicts the acoustic version of the Pendry-Veselago lens. Two media characterized by a positive

acoustic index n = 1 surround a slab of negative acoustic index n < 0. In such a configuration, a time-
harmonic point source placed on one side of the slab focuses perfectly at a single point on the other side [10].
To illustrate this phenomenon, we consider the domain [−4, 4]× [−4, 4]m2 which is discretized using a grid
of 800 × 800 points. In the configuration of Figure 10, two interfaces surround a metamaterial slab which
has the properties given in Table 1. The surrounding medium is air so that this example is a 2D version
of the 1D example of Figure 8. Propagation in an infinite domain is simulated by using Perfectly-Matched
Layers (PMLs) at the boundary of the computational domain. PMLs are used only within the fluid regions.
Special dispersive PMLs are required within the metamaterial: the existence of backward waves (for which
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Source Image

n = 1 n = 1n < 0

Figure 9: Acoustic lens via negative refraction: schematics depicting the focusing of rays.

the group and phase velocities have opposite directions) in negative-index metamaterial makes classical PML
unstable, see [46] and the references therein.

The source at xs = (−1.532,−1.285)m is time-harmonic with frequency fc = 678.57Hz. Figure 10
displays the pressure field p in two configurations after a sufficiently long time, here t = 60ms. Figure 10a
corresponds to a perfect flat lens resulting from the negative index of refraction n = −1 within the metama-
terial slab as predicted theoretically, see [10]. Figure 10b illustrates the simulation of the behavior of the lens
in a geometrically perturbed configuration. Moreover, this example illustrates that the proposed Cartesian
grid finite-difference scheme can handle efficiently geometries that are non conforming to the mesh.
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(a) Perfect lensing with flat interfaces.

−4 −3 −2 −1 0 1 2 3 4
−4 

−3 

−2 

−1 

0 

1 

2 

3 

4 

x (m)

y 
(m

)

(b) Geometrically perturbed configuration.

Figure 10: Snapshots of pressure field p at time t = 60ms in a 2D layered fluid-metamaterial-fluid domain given a time-harmonic
excitation at fc = 678.57Hz. The refraction indices of are n = +1 within the fluid and n = −1 in the metamaterial.

Figure 11 corresponds to the transient simulation of the scattering by two metamaterial obstacles for a
time-harmonic source at fc = 800Hz placed at the origin. The obstacles material parameters are tuned so
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that the bottom one exhibits a stop-band behavior at the source frequency. For this time-domain simulation,
Fig. 11a illustrates that the pressure is nonzero in the bottom obstacle at the onset of the excitation while
the band-stop behavior occurs after a sufficiently long time, as seen in Fig. 11b.
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(a) Pressure field at time t = 7ms
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(b) Pressure field at time t = 100ms

Figure 11: Snapshots of pressure field p in a 2D fluid medium with two scattering metamaterial obstacles. The excitation is
time-harmonic at fc = 800Hz.

Lastly, we consider the scattering of a plane-wave by an obstacle embedded in a fluid domain. In
particular, our aim is to illustrate the different wave scattering phenomena associated with nonresonant
and resonant scatterers respectively. To do so, the domain [−3, 3] × [−3, 3]m2 is discretized on a grid
of 600 × 600 points. An interface described by cubic splines is considered, emphasizing the ability of the
immersed interface method to handle arbitrary-shaped geometries. The medium outside the interface is air
(ρ = 1.3 kgm−3, ca = 340 ms−1). The medium inside the interface is either a classical acoustic medium
characterized by ρ = 2.6 kgm−3, ca = 500 ms−1, or the acoustic metamaterial considered in the previous
examples. The computation is initialized by the right-going plane wave given by: v1

v2

p

 (x, y, t0) =

 −1/ca
0
ρa

 G(t0 − x/ca),

where G is the time evolution of the source given in (28). The time shift is set to t0 = −3 ms to ensure that
the incident plane wave does not intersect the interface at the initial time, see Figure 12. At each time step,
periodic top-bottom boundary conditions are enforced. Figure 13 displays snapshots of the acoustic pressure
at two instants. One observes in particular the complex pattern of the reflected wave in the resonant case,
which is induced by the dispersive behavior of the metamaterial and the existence of backward propagating
waves within the scatterer. These phenomena are analogous to these observed in the 1D configuration of
Figure 8.
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Figure 12: 2D simulation of scattering by an obstacle embedded in a fluid and illuminated by a plane wave. Snapshot of
pressure field p at the initial time.

6. Conclusion

We have considered acoustic metamaterials that are characterized by frequency-dependent constitutive
parameters. A time-domain formulation of the associated evolution equations is derived using a set of auxil-
iary fields and the properties of the resulting augmented system and of its solution have been analyzed. The
numerical approach then proposed ensures both computational efficiency (Cartesian grid, optimal CFL sta-
bility condition) and high accuracy (high-order scheme, immersed interface method for interface problems).
An effort has been made to validate the algorithms in comparison with semianalytical solutions. These
methods have been implemented and made available online in the software PROSPERO (http://prospero-
software.science/). With these numerical tools at hand, the broad spectrum of wave phenomena characteris-
tic of acoustic metamaterials can be investigated in the time-domain. This allows in particular the study of
interface problems as well as of wave propagation in double-negative materials which leads to perfect lenses
[26]. These tools also allow to investigate transient scattering problems involving metamaterials, which have
interesting applications in inverse problems and imaging.

From a theoretical standpoint, there is a need for an in-depth mathematical analysis of the limiting
absorption principle in the context of acoustic metamaterial. In particular, some insights could be gained by
assessing quantitatively the equivalence between the frequency and time-domain problems and the properties
of their solutions. Note that in the case of Maxwell’s equations, the limiting absorption principle has been
studied mathematically in [5] for interface problems involving a dispersive electromagnetic material.

The present study is based on a set of prototypical frequency-dependent constitutive parameters which
are handled numerically in an efficient and accurate manner. Noticeably, the mathematical derivation of
the effective properties of such metamaterials is not the focus of this paper. Future work directions include
the time-domain simulations of alternative models, in particular those arising from the homogenization of
locally resonant mechanisms [3, 39].

Lastly, among emerging applications of metamaterials, nonlinear behaviors are promising as they allow to
design nonreciprocal or tunable materials [22, 20]. Extending our time-domain approach to nonlinear acous-
tic metamaterials would therefore be a fruitful contribution to this research effort. Preliminary works have
been done on that subject: the propagation of nonlinear acoustic waves in a tube coupled with Helmholtz
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(a) Acoustic scattering obstacle.
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(b) Metamaterial scattering obstacle.

Figure 13: 2D simulation of scattering by an obstacle embedded in a fluid and illuminated by a plane wave. Snapshot of
pressure field p at times t = 3ms and t = 6ms.
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resonators has been addressed theoretically in [31, 34] and experimentally in [40], by considering one-way
propagation. Considering two-way propagation will pave the way to the simulation of wave phenomena in
nonlinear acoustic metamaterials.
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Appendix A. Proofs of some results of Section 3

Appendix A.1. Proof of Property 4
To analyze the energy of the augmented system, one considers an arbitrary bounded domain D ⊂ Rd.

From (7), it follows∫
D

{
U>E

∂

∂t
U +

d∑
j=1

U>EAj
∂

∂xj
U

}
dx =

∫
D

{
U>ESU + U>EF

}
dx. (A.1)

Exploiting the symmetry property 3 of the featured matrices, one has

U>E
∂

∂t
U =

1

2

∂

∂t

(
U>EU

)
and U>ESU = −γ Ω2

κ

κa

∣∣[U]m−1

∣∣2,
since S̃ being skew-symmetric it satisfies U>S̃U = 0. Moreover, integrating by part the second term in
(A.1) for all j = 1, . . . , d, yields the following identity by symmetry∫

D
U>EAj

∂

∂xj
U dx =

1

2

∫
∂D

U>EAjnjU ds,

where nj denotes the j-th component of the unit outward normal n on the domain boundary ∂D. Inserting
the previous identities in (A.1) entails

1

2

d

dt

∫
D

U>EU dx +
1

2

∫
∂D

U>EA(n) U ds = −
∫
D

γ Ω2
κ

κa

∣∣[U]m−1

∣∣2 dx +

∫
D

U>EF dx, (A.2)

where A(n) is defined as in (10). In the case of an unbounded domain, the integral along ∂D vanishes when
U ∈ L2(Rd)m. Finally, using the definitions (5), (6) and (12), then the above identity yields Property 4.
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Appendix A.2. Proof of Theorem 3.1
Using the positive-definite diagonal matrix E to symmetrize the augmented system (7) one obtains

E
∂

∂t
U +

d∑
j=1

EAj
∂

∂xj
U = ES U + EF, (t > 0)

U(x, 0) = U0.

(A.3)

The matrix EA being diagonalizable with real eigenvalues (by properties 1 and 3) then, by definition,
this system is hyperbolic. Yet, as all eigenvalues are not distinct, it is not strictly hyperbolic. Friedrichs’
theory on symmetric hyperbolic systems, see [17] and [13], applied to (A.3) yields the sought existence and
regularity results.

Appendix A.3. Proof of Property 5
To prove the stability property 5 one must show that the angular frequencies in (16) satisfy =m(ω) ≥ 0

and that the nondissipative property γ = 0 entails =m(ω) = 0. Considering an eigenpair (ω,v) ∈ C × Cm
of the matrix A′(k), then one has by definition

A(k)v − i Sv = ω v. (A.4)

Now, using E to symmetrize (A.4) and pre-multipliying by v† = v> entails

v†EA(k)v − i v†ESv = ω v†Ev, (A.5)

where one can assume without loss of generality that v satisfies v†Ev = 1. Owing to Property 3, the
matrices EA(k) and S̃ can be diagonalized so that there exist some matrices D, P ∈Mm(R), that depend
on k, and Σ, U ∈Mm(C) with D and Σ being diagonal, P orthogonal and U unitary such that

EA(k) = PDP> and ES = UΣU† − γ Ω2
κ

κa
Ĩm−1.

Inserting this in (A.5) yields

(P>v)†D (P>v)− i (U†v)†Σ (U†v) + i
γ Ω2

κ

κa
v† Ĩm−1 v = ω.

For all nonzero v ∈ Cn one has (P>v)†D (P>v) ∈ R while (U†v)†Σ (U†v) is a purely imaginary number
since the diagonal matrix Σ contains the eigenvalues of the skew-symmetric matrix S̃ that are either zero
or pairs of purely imaginary complex conjugates. Therefore, the previous equation entails

=m(ω) =
γ Ω2

κ

κa

∣∣[v]m−1

∣∣2, (A.6)

which concludes the proof of Property 5.
Note that, as the entry m − 1 of an eigenvector v corresponds to the auxiliary field q, the above proof

is fully consistent with the energy property (13): any eigenvector such that q = 0 corresponds to a nonat-
tenuated propagating mode with =m(ω) = 0. Conversely, as soon as q 6= 0 then the corresponding mode is
attenuated exponentially in time according to (A.6) when γ 6= 0.
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