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Abstract. Schottky barrier height (SBH) has been characterized on 4H-SiC Schottky diodes with 

metal contact of Ti/W by Current-Voltage (I-V) and Capacitance-Voltage (C-V) measurements 

between 80 K and 400 K. Multi-barrier has been recognized and calculated according to different 

models. No clear difference has been found between single barrier diode and diode with multi-barrier 

from DLTS tests. Evolution on the I-V characteristics has been observed after high temperature 

annealing. The effect of annealing at room temperature (RT) and high temperature DLTS scan (stress 

under high temperature) have also been studied on both static characteristics and DLTS results. 

Introduction 

Inhomogeneous barrier, which manifests as abnormal high current under low forward bias namely 

double or multi barrier phenomenon, has attracted attention among Schottky barrier diode (SBD) 

characterization for a long history, and not restricted to SiC devices. Similar phenomenon has been 

reported especially at low temperature, and it was highlighted that these ‘non-ideal’ diodes occurred 

regardless of growth technique, pre-deposition cleaning method, or contact metal [1-2]. Schottky 

barrier height (SBH) has been characterized on Ti/W 4H-SiC Schottky diodes by I-V and C-V 

measurements under wide temperature range. The evolution on forward I-V characteristics has been 

observed and investigated by high temperature annealing and accelerated stress with the help of Deep 

Level Transient Spectroscopy (DLTS). 

Experimental Setup 

Three 4H-SiC SBDs with metal contact of Ti/W have been investigated and labeled diode #1, #2 

and #3. All SBDs with a square surface of 2.48 mm2 were provided by our collaborator with a process 

of etch after sputtering. I-V and C-V characteristic have been measured in the cryostat between 80 K 

and 400 K with a step of 20 K in the dark to rule out the influence of light, with a Keithley K2410 and 

a Keysight E4990A Impedance Analyser. Forward characteristics have been measured every 0.01 V 

with a limitation of 30 mA which is high enough for the study of exponential region of the diodes. 

Applied voltage varies from 0 V to -5 V with a frequency of 100 kHz to extract the linear performance 

on the plot of 1/C2 vs. V. On top of that, the DLTS tests have been realized with FT-1230 HERA DLTS 

(High Energy Resolution Analysis Deep Level Transient Spectroscopy) system provided by 

PhysTech. 

Results and discussion 

SBH Identification on Diode #1. As shown in Fig. 1, the forward I-V curves of diode #1 present a 

second barrier for temperatures below 240 K. The ideality factor n and saturation current IS could be 

extracted from the ‘linear’ region in forward characteristic. 



 

Modified Richardson plot. With the help of shallow doping concentration ND and barrier height 

calculated from C-V measurements, flat-band SBH (ΦBF) and the modified Richardson constant A* 

can be obtained according to modified Richardson plot, as illustrated in Fig. 2 [3]. Two distinct ΦBF 

are extracted with a higher SBH of 1.20 eV over the whole temperature range studied and the other 

SBH of 0.72 eV shows up at low temperature only. If considering the constant A* over both paths and 

the effective surface of low SBH region should account for 10-8 of the total area. However, its 

influence on forward I-V characteristics could be the major factor especially at low temperature. 
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Fig. 1. Forward I-V characteristic on diode #1 

between 80 K and 400 K. 

0.002 0.004 0.006 0.008
-100

-90

-80

-70

-60

-50

-40

-30

BF: 1.20 eV

A*: 565 A·cm-2·K-2

ln
(I

S
/T

2
)+

(1
-1

/n
)l
n
(N

C
/N

D
) 
(A

*K
-2
)

1/nT (K-1)

BF: 0.72 eV

A*: 5.26×10-6 A·cm-2·K-2

 

Fig. 2. Modified Richardson plot based on ΦBF 

for diode #1. 

Gaussian Distribution Model. Assuming that SBH is normally distributed on Gaussian [4], its 

mean barrier height and standard deviation can be extracted with the zero-bias barrier height Φ0 

calculated based on the A* obtained above, as shown in Fig. 3. 

Potential Fluctuation Model. To explain the temperature dependence of the ideality factor, 

Werner et al. assumed the SBH to be normally distributed, but the mean and standard deviation vary 

linearly with voltage [5]: 

0 2B B V   . and 2 2

0 3S S V    .                                                                                                (1) 

Those parameters can be calculated with the plot illustrated in Fig. 4. 
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Fig. 3. Φ0 as a function of q/2kT on #1. 
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Fig. 4. 1/n-1 as a function of q/2kT on #1. 

Discussion. Two different SBHs are recognized from various models. However, unlike Φ0 that is 

strongly depend on temperature as shown in Fig. 3, the recalculated ΦBF at each temperature based on 

its definition almost keeps constant and is closed to the SBH obtained by C-V (~1.19 eV). In addition, 

similar behavior between Gaussian distribution and potential fluctuation model is forecasted. 

 

I-V Characteristics Evolution on Diode #2. During DLTS study, several temperature scans have 

been applied on diode #2 as shown in Fig. 5 with that of diode #1 as a reference. Even with almost the 

same results on DLTS spectra which indicates that no clear difference on trap levels can be found 

among the temperature investigated, the I-V characteristics could be rather different, as illustrated in 



 

Fig. 6. Considering that samples are reserved in the vacuum dark chamber of DLTS system, the 

evolution of I-V characteristic could only result from the multi DLTS temperature scan applied. 
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Fig. 5. DLTS signal (correlation b1) between 60 K and 

550 K on diode #1 and #2 before and after double barrier 

shown up. The DLTS parameters selected for all the 

measurements are marked in the plot. No remarkable 

difference shows up on current DLTS between 20 K and 

180 K either (not shown here). 
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Fig. 6. Forward I-V curves on diode #2 

during (a): 1st scan and (b): 3rd scan. 
 

Table 1. Measurement steps and their conditions on diode #3. 

Step Measure Temperature [K] Condition Label 

1 I-V 60 – IV-0 

2 DLTS scan 60 – 300 2.5 h Tempscan-1 

3 I-V 60 – IV-1 

4 Annealing 550 AC track signal, 200 min – 

5 I-V 60 – IV-2 

6 DLTS scan 60 – 300 2.5 h Tempscan-2 

7 Annealing 300 Bias = –0.1 V, 3 day – 

8 I-V 60 – IV-3 

9 DLTS scan 60 – 550 6 h Tempscan-3 

10 I-V 60 – IV-4 

11 DLTS scan 60 – 550 UP = 0.5 V, 6 h Tempscan-4 

12 I-V 60 – IV-5 

13 DLTS scan 60 – 300 3 h Tempscan-5 

14 Annealing 300 Bias = –0.1 V, 100 h – 

15 I-V 60 – IV-6 

16 DLTS scan 60 – 300 3 h Tempscan-6 

 



 

Annealing and Stress Investigation on Diode #3. In order to investigate the origin of the evolution 

on I-V characteristics, additional measurements have been adopted on diode #3 as listed in Table 1. 
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Fig. 7. Evolution on I-V characteristic on #3. 
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Fig. 8. Evolution on DLTS on diode #3. 

Evolution on Forward I-V Characteristics. Fig. 7 shows the measured I-V at 60 K on diode #3 

with labels illustrated in Table 1. It is clear that low temperature DLTS scans have no influence on I-V 

curve. However, multi-barrier shows up after high temperature annealing, while annealing at RT has 

no obvious effect on I-V characteristic. Furthermore, high temperature DLTS scans reshape the I-V 

curve, which indicates that possible pinch-off of low SBH takes place under both high temperature 

and bias stress, this could be annealed at RT to some degree. 

Evolution on DLTS signals. Those DLTS signals (b1) are illustrated in Fig. 8. It is worth 

highlighting that the peak at around 190 K of the DLTS signal which can be annealed at high 

temperature will recover at RT. Meanwhile, this defect level is eliminated after high temperature 

DLTS scan, or in other words the accelerated bias stress due to high temperature, and no recovery is 

found after RT annealing. 

Summary 

Multi-barrier has been identified by different models on 4H-SiC Ti/W SBD. No trap level found can 

contribute to the evolution on multi-barrier formation. However, a second barrier shows up after 

annealing at high temperature, and cannot be annealed at RT. High temperature DLTS scan, which 

regarded as accelerated bias stress owing to high temperature, also influences the SBH by reforming 

the low SBH region, and can be recovered a little at RT. High temperature DLTS scan will also wipe 

out several defect levels, while annealing at high temperature has only temporary effects on them. 

Furthermore, the characterization of metal/semiconductor interface is preferred in the future work. 
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