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Rare variants are important for drawing inference about past demographic events in

a species history. A singleton is a rare variant for which genetic variation is carried by

a unique chromosome in a sample. How singletons are distributed across geographic

space provides a local measure of genetic diversity that can bemeasured at the individual

level. Here, we define the empirical distribution of singletons in a sample of chromosomes

as the proportion of the total number of singletons that each chromosome carries, and

we present a theoretical background for studying this distribution. Next, we use computer

simulations to evaluate the potential for the empirical distribution of singletons to provide

a description of genetic diversity across geographic space. In a Bayesian framework,

we show that the empirical distribution of singletons leads to accurate estimates of the

geographic origin of range expansions. We apply the Bayesian approach to estimating

the origin of the cultivated plant species Pennisetum glaucum [L.] R. Br. (pearl millet) in

Africa, and find support for range expansion having started from Northern Mali. Overall,

we report that the empirical distribution of singletons is a useful measure to analyze results

of sequencing projects based on large scale sampling of individuals across geographic

space.

Keywords: genetic diversity, singletons, geographic origin, range expansion, pearl millet

1. INTRODUCTION

High-throughput sequencing technologies have enabled studies of genomic diversity in model and
non-model species at a dramatically increasing rate. Conducted at population and at individual
levels, those studies have provided comprehensive surveys of common and rare variation in
model species genomes (Weigel and Mott, 2009; 1000 Genomes Project Consortium et al.,
2010; International HapMap 3 Consortium, 2010; 1000 Genomes Project Consortium, 2015). For
example, the 1000 Genomes Project Consortium (2015) reported that the majority of variants
in human genomes are rare. During the last decade, the role that rare variants play in shaping
complex traits has been hotly debated (Pritchard, 2001; Schork et al., 2009; Tennessen et al., 2012),
and accurately determining their distribution has become important for medical applications and
association studies (Lee et al., 2014; Auer and Lettre, 2015). Beyond humans, rare variation has
attracted considerable interest from genome sequencing projects for model organisms, including
plants (Zhu et al., 2011; Weigel, 2012; Memon et al., 2016).

Rare variants are also important for drawing inference about past demographic events in a
species history (Schraiber and Akey, 2015). Studies of human populations have shown that our
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species has experienced a complex demographic history, and that
a recent period of explosive growth has resulted in an excess of
those variants (Coventry et al., 2010; Keinan and Clark, 2012).
The analysis of private and rare variation has been used to reveal
signals of differential demographic history among populations,
and to refine models of human evolution (Marth et al., 2004;
Gravel et al., 2011; Mathieson and McVean, 2014). In addition,
estimating rare allele frequencies has enabled estimates of gene
flow between populations, and has facilitated inference of fine-
scale population structure (Slatkin, 1985; Novembre and Slatkin,
2009; O’Connor et al., 2015).

In this study, we define the empirical distribution of singletons
in a sample of chromosomes as the proportion of the total
number of singletons that each chromosome carries, where a
singleton is a uniquely represented allele in the sample (Fu and
Li, 1993). We provide theoretical and empirical analyses of the
distribution of singletons in a sample of chromosomes, and we
evaluate the potential for this distribution to provide an accurate
description of genetic diversity at the individual level. Using
spatial data, we use the distribution of singletons as an individual-
based estimate of genetic diversity in geographic space.

The theoretical background for the analysis of the empirical
distribution of singletons rely on the distribution of external
branch lengths for coalescent genealogies (Blum and François,
2005; Caliebe et al., 2007). First, we use coalescent and spatially
explicit simulations to evaluate individual contributions to
genetic diversity in the sample based on singletons. Then
we evaluate the use of the distribution of singletons in
an approximate Bayesian Computation (ABC) framework to
estimate the geographic origin of range expansions (Beaumont,
2010; Csilléry et al., 2010). We eventually provide an illustration
of our theory by applying the ABC approach to the plant species
Pennisetum glaucum [L.] R. Br. (pearl millet). Pearl millet is a
cereal cultivated in semi-arid regions of Africa and the Indian
subcontinent, and it is known to originate in Africa (Clotault
et al., 2012). We evaluate the geographic origin of its range
expansion by using 146 inbred lines from the whole African
range.

2. THEORY

We consider a sample of n chromosomes from a population of N
haploid organisms. We assume that there are L polymorphic loci,
and that for each locus, 0 represents the ancestral or reference
allele and 1 is the derived allele. A singleton is defined as a
derived allele carried by a single chromosome in the sample.
The total number of singletons, ξ1, is the number of uniquely
represented derived alleles in the sample, and it corresponds to
the first component of the site frequency spectrum. We assume
that the singletons are distributed over the n chromosomes in the
sample. More specifically, the number of singletons decomposes
as follows

ξ1 =

n
∑

i= 1

ξ
(i)
1 ,

where ξ
(i)
1 is the number of singletons carried by chromosome

i. For each i, we denote by pi the conditional probability that a
singleton is carried by i. The n values p1, . . . , pn sum up to one,
and those values define the empirical distribution of singletons in
the sample (see below).

Next, we assume that the sample genealogies can be described
by coalescent trees (Tavaré, 2004). For a particular locus, a
tree is described by n tips and n − 1 ancestral nodes. An
external branch of the tree connects a tip to an ancestral node.
For a given tree, we denote by τ (i) the length of the external
branch connecting chromosome i to its first ancestor node.
The L coalescent trees exhibit complex patterns of statistical
dependency along the chromosomes due to recombination
among loci (Hudson, 1990). Measuring lengths in units of twice
the total population size (N), and assuming a molecular clock
model for mutations, the number of mutations falling on a
particular branch of the tree has a Poisson distribution of rate
θ/2, where θ = 2µN and µ is the per generation mutation rate
(Tavaré, 2004). Let ℓ be an arbitrary singleton locus. For all i, we
write

ξ
(i)
1 =

ξ1
∑

k= 1

Xiℓ,

where Xiℓ = 1 if singleton ℓ is carried by chromosome i,
0 otherwise. In the above formula, the summation runs over
all singletons in the sample. Using mathematical properties of
conditional distributions for the Poisson process, we have

pi = P(Xiℓ = 1) = E

[

τ
(i)
1

τ1

]

,

where τ1 =
∑n

i= 1 τ (i). In this formula, the conditional
probability that chromosome i carries a singleton at locus ℓ

is given by the ratio of its external branch length to the total
length of external branches in the sample genealogy at this locus.
The distribution of singletons can be estimated by counting
the number of singletons carried by each chromosome and
normalizing as follows

p̂i = ξ
(i)
1 /ξ1, i = 1, . . . , n,

and the estimate is unbiased

E
[

p̂i
]

= pi .

In addition, the number of singletons carried by chromosome

i, ξ
(i)
1 , estimates the proportion of genetic diversity carried by

chromosome i

E[ξ
(i)
1 ] ≈ θpi, i = 1, . . . , n.

As a consequence of the theory presented in this section, the
individual-based estimates of genetic diversity are unbiased

Frontiers in Genetics | www.frontiersin.org 2 September 2017 | Volume 8 | Article 139

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Cubry et al. Distribution of Singletons for Geographic Samples

quantities regardless of demographic history, deviations from
Hardy-Weinberg equilibrium and linkage disequilibrium.
Limitations of the theory include the presence of closely related
individuals, which should be removed from the sample prior to
analysis. The approach is appropriate for modern sequencing
data as soon as a few hundreds of DNA sequences are generated.

The rest of this study will evaluate the use of the empirical
distribution of singletons in mapping genetic diversity in
geographic space. To provide an elementary example, let us
consider a sample of n chromosomes from a random mating
population of size N. Using mathematical results for the neutral
coalescent in a random mating population, the expected value of
the number of singletons is an unbiased estimator of the genetic
diversity in the sample (Fu and Li, 1993)

E[ξ1] = θ .

For the lengths of external branch lengths, we have

E[τ (i)] = 2/n, i = 1, . . . , n,

and E[τ1] = 2 (Blum and François, 2005). Here, we expect that
each chromosome contributes to genetic diversity equally. The
above calculations show that, in a sample of size n from a random
mating population, the distribution of singletons is uniform over
the n chromosomes

pi = 1/n, i = 1, . . . , n,

and we have

E[ξ
(i)
1 ] = E[ξ1]P(Xik = 1) = θ/n.

In other words, each individual contributes the same amount of
genetic variation to the total sample diversity.

3. SIMULATION METHODS AND DATA
SETS

3.1. Coalescent Simulations of Splitting
Populations
We used the computer program ms to perform coalescent
simulations for a two-population model (Hudson, 2002). In
our simulations, we considered a population split model, in
which two populations of sizes N1 = 50, 000 and N2 = sN1

(s ∈ (0.01; 0.5), shrink rate) diverged t generations ago (t ∈

(1, 000; 10, 000), split time). Population 1 expanded from an
ancestral population of size NA = 5, 000, and the expansion
started 10,000 generations ago. Samples of size n = 100 were
considered and subdivided into subsamples of size 50 from each
population. We simulated L = 1, 000 unlinked haplotypes using
the infinite-site model and an effective mutation rate θ ∈ (5; 10).
The ms command line was written as follows: ./ms 100 1,000
-t theta -I 2 50 50 -g 1 46.05 -n 2 shrink.rate -eg 0.2 1 0.0
-ej split.time 2 1. The simulated data sets were processed by
using the “.geno” format in the R package LEA (Frichot and

François, 2015).We summarized the distribution of singletons by
computing mean values and standard errors for each subsample.
For all simulated samples, we used the R package ape to extract
the coalescent trees generated byms, and analyze the distribution
of their external branch lengths (Paradis et al., 2004). We used
the external branch length distribution to build a theoretical
prediction for the distribution of singletons from each tree
(see section 2), and summarized the theoretical distributions by
computing mean values and standard errors for each subsample.
The L coalescent simulations were replicated 200 times.

3.2. Range Expansions in Africa
Simulations of range expansions were performed by using the
computer program SPLATCHE2 based on an array of 87 by 83
demes modeling the African continent (Currat et al., 2004). The
demographic scenarios corresponded to range expansions from a
single origin, simulated for a total duration of 1, 600 generations.
For each deme, the migration rate was equal tom = 0.07, and the
growth rate was equal to r = 0.1. Additional parameters included
an ancestral effective population size of 200 individuals, 200
generations before onset of expansion, and an effective mutation
rate of 10−5 per base pair per generation.

Four types of demographic scenarios were considered. Two
scenarios considered a “homogeneous” environment, for which
the deme carrying capacities were set to a constant value C =

100 everywhere in Africa. Two other scenarios considered a
heterogeneous environment linked to vegetation. In tropical
semi-desert areas, the carrying capacities were set to C = 60,
and in tropical extreme deserts and rain forests, the carrying
capacities were set toC = 30. Demographic histories also differed
by their geographic source of expansion. Range expansions were
started either from an origin in West Africa (Mali,−4◦ E, 13◦ N)
or from an origin in the Sahel area (Chad, 22◦ E, 20◦ N).

Ten haploid chromosomes were simulated for 30 population
samples through the geographic range considered (300
chromosomes). Genetic variation was surveyed at 30,000 loci,
and filtered out for monomorphic loci. From the resulting data
sets, we computed the empirical distribution of singletons in
each population sample, and compared this measure to expected
heterozygosity for each population sample. Data files for running
the SPLATCHE2 simulations are provided in Supplementary
File 1. We reproduced the four scenarios by using individual
sampling instead of population sampling. Here, individual
genotypes were recorded at 300 distinct geographic sites, each
obtained from a Gaussian perturbation of population centers
with standard error of 2◦. The Kriging method was used to
interpolate the values of the expected heterozygosity and the
empirical distribution of singletons on a geographic map of
Africa (Cressie, 2015).

3.3. Pearl Millet Data
Whole genome sequencing data were obtained for 146 cultivated
accessions of pearl millet (Pennisetum glaucum [L.] R. Br.)
from the species range in Africa (International Pearl Millet
Genome Sequencing Consortium, Varshney et al., 2017). A total
of 169,095 SNPs were sampled after filtering out low quality
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variants, and were used to estimate the distribution of singletons
(Supplementary Material 1).

3.4. Approximate Bayesian Computation
We used Approximate Bayesian Computation (ABC) to evaluate
the ability of the distribution of singletons to correctly estimate
the onset of expansion in a range expanding species, and to
estimate a posterior distribution for the location of this origin
for cultivated pearl millet. We performed 20,000 range expansion
simulations by considering a heterogeneous environment using
the computer program SPLATCHE2. The deme carrying
capacities were equal to C = 100 for tropical semi-desert areas,
C = 20 for tropical extreme deserts and C = 10 for rain
forests. Additional parameters included an ancestral effective
population size of 200 individuals, 200 generations before onset
of expansion, and an effective mutation rate of 10−5 per base pair
per generation.

Prior distributions allowed the geographic coordinates of the
origin of expansion to vary over the Sahel region. Longitude
ranged between −16◦E and 40◦E, and latitude ranged between
5◦N and 30◦N. Lower prior probabilities were given to
extreme latitudes and longitudes as a consequence of unsuitable
habitats (water regions). Uninformative prior distributions were
considered for the migration rate, the growth rate, the total
duration of the demographic phase, the ancestral population size
and the time before onset of expansion (Supplementary Table 1).
In simulations, genetic variation was surveyed at 146 geographic
sites corresponding to the exact sampling locations of pearl

millet accessions. Ten thousands SNPs were simulated for each
genotype.When evaluating summary statistics, a fraction of SNPs
were removed from the simulated data in order to match with the
amount of missing values observed in the original data set.

To define the summary statistics for ABC, we used a
histogram for the distribution of singletons in the sample. The
146 accessions were grouped into spatial clusters according to
a k-means algorithm and individual geographic information
(Hartigan and Wong, 1979). The k-means algorithm resulted in
14 groups with more than 6 accessions in each group (Figure 1).
To obtain a histogram, we computed the mean number of
singletons in each group, and divided this value by the total
number of singletons in the sample (Supplementary Table 2).
Then ABC analysis was performed with the R package abc

(Blum and François, 2010; Csilléry et al., 2012). Neural network
models were used to estimate posterior distributions for the
latitude and longitude of the geographic onset of expansion
whereas the other parameters were considered as nuisance
parameters without any interpretable unit. The tolerance rate
was set to 0.05 and 250 neural networks were used in the abc
function.

We first tested the accuracy of our estimates by using
simulated data sets as inputs to the inference method.
The sampling procedure and the ABC estimation were
replicated 100 times, and we evaluated the correlation between
coordinates of true origins and their estimated values. Then we
considered the pearl millet data, and represented the prior and
posterior densities of the geographic onset parameters by using

FIGURE 1 | Geographic distribution of 146 cultivated accessions of pearl millet. Fourteen geographic classes were defined as a result of a k-means procedure.
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two-dimensional kernel density estimation with 100 grid points
in each direction.

4. RESULTS

4.1. Coalescent Simulations of Splitting
Populations
To evaluate statistical bias in the estimation of the distribution
of singletons, we performed coalescent simulations of samples
from two populations with unequal genetic diversity. The two
populations diverged from an ancestral population t generations
ago (split time), and at split time, the size of population 2 shrinked
to s times the size of population 1 (shrink rate).

For each simulation, the number of polymorphic loci ranged
between 7,883 and 39,761 (average value: 25,265 loci). For a
value of the shrink rate s ≈ 1/3, the average proportion of
singletons in population 1 was about π1 = 0.0122, and the
average proportion of singletons in population 2 was about
π2 = 0.0078 (π1 + π2 = 2/n). This result reflected
that genetic diversity in population 1 was higher than in
population 2. The ratio was about π1/π2 = 1.55 (Figure 2A).
The individual proportions were concentrated around theirmean

values with relatively small standard deviations (SD1 = 0.0010,
SD2 = 0.0008).

The results from 200 replicates provided clear evidence that
the empirical distribution of singletons is an unbiased estimate of
its theoretical distribution based on coalescent trees (Figure 2B).
The split time parameter had a weak influence on the distribution
of singletons (Pearson correlation test, P = 0.64). The ratio
π1/π2 reached values between 10 and 40 when the shrink rate
was below 10%, and this parameter had a strong influence on the
empirical distribution of singletons (Figure S1).

4.2. Range Expansions in Africa
For data sets generated under range expansion scenarios, the
number of polymorphic loci ranged between 25,453 and 29,321
loci. The number of singletons ranged between 8,835 and
12,653, and the site frequency spectrum showed an excess of
rare alleles as expected under explosive population growth.
When the onset of expansion was set in Western Africa (cross
in Figure 3), the maps of the empirical distribution of singletons
and expected heterozygosity exhibited similar large-scale
geographic patterns (Figure 3, Pearson’s correlation coefficient
0.78). Because the computation of expected heterozygosities

FIGURE 2 | Coalescent simulations of two splitting populations (100 chromosomes). (A) Empirical distribution of singletons for a value of the shrink rate s = 0.33. The

dashed lines represent the averaged values for population 1 (expanding) and population 2 (skrinking). (B) Predicted and observed (empirical) values of the distribution

of singletons for population 1 (left) and population 2 (right).
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FIGURE 3 | Individual vs. population sampling after a range expansion simulation scenario (Western origin). (A,B) Homogeneous environment. Maps of the empirical

distribution of singletons (individual sampling) and expected heterozygosity (true population sampling). (C,D) Inhomogeneous environment.

was based on a perfect assignment of samples to their true
populations of origin, the interpolated maps corresponding
to this measure (Figures 3B,D) contained less uncertainty
than the maps of singletons (Figures 3A,C) that were based
on random individual sampling. Considering environmental
heterogeneity increased the variability of spatial estimates
(Figures 3C,D).

Next, we compared estimates of heterozygosity for
populations to the distribution of singletons in the same
populations (Figure 4). Differences between maps produced
with the empirical distribution of singletons and with expected
heterozygosity decreased when the sampled chromosomes were
perfectly assigned to their population of origin. The individual
and population-based measures provided concordant estimates
of genetic diversity in geographic space (Pearson’s correlation
coefficient 0.51). Similar results were observed when the onset
of expansion was set in the Sahel area (20◦ E, 22◦ N) and were
reported in Figures S2, S3.

4.3. Estimates of Expansion Onsets and
Application to Pearl Millet
First, we used the distribution of singletons in ABC to infer
origins of range expansion in 100 simulated data sets (Figure 5).
The results provided evidence of the usefulness of the statistics
to identify origins of range expansions. Estimated values for the
longitude and latitude of the onset of expansion were highly
correlated to the true values for these parameters. Pearson’s
squared correlation coefficients were equal to R2 = 0.950 for the
longitude and R2 = 0.948 for the latitude (p-values < 0.01).

Next, we used the ABC approach to provide insights on the
origin of range expansion of cultivated pearl millet in Africa. A
total number of 41,032 singletons were found for 146 individuals,
representing 24.27% of all variants. The posterior density for
the longitude exhibited a mode around −7.52◦E (CI:-11.26◦E,
0.84◦E) (Figure 6). For the latitude of origin, the posterior
density exhibited a mode around 24.2◦N and a large credible
interval (CI: 11.03◦N , 29.06◦N) (Figure 6). The most probable
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FIGURE 4 | Population sampling after a range expansion simulation scenario (Western origin). (A,B) Homogeneous environment. Maps of the empirical distribution of

singletons (true population sampling) and expected heterozygosity (true population sampling). (C,D) Inhomogeneous environment.

FIGURE 5 | Estimated coordinates of origin against their true values for 100 simulated data sets used as targets for ABC analysis. Pearson’s correlation coefficients

are reported.
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location for the origin of expansion of pearl millet in Africa was
found near the Mali-Mauritania border (Figure 7).

5. DISCUSSION

How singletons are distributed across geographic space provides
a local measure of genetic diversity that can be measured at
the individual level. In this study, we developed a theoretical
background for the empirical distribution of singletons in
a sample of chromosomes. We used simulations to provide
evidence that the empirical distribution of singletons measures
individual contributions to genetic diversity in the sample. The
main advantage of this approach is to provide individual-based
(local) estimates of genetic diversity that do not require the
definition of populations.

Incorporated in an ABC framework, the empirical
distribution of singletons led to accurate estimates of the
geographic origin of range expansions in simulations. In ABC,
the distribution of singletons was estimated by histograms
obtained from clustering algorithms, and the histograms were
used as summary statistics for Bayesian inference. Those statistics

are appropriate to analyze the results of sequencing projects
based on large scale sampling of individuals across geographic
space. The method can be viewed as an interesting alternative to
phylogenetic approaches when genomic sequences are used.

Potential factors that could bias our estimates of local
genetic diversity includes missing data, genotyping errors, related
individuals, and the use of a folded site frequency spectrum.
Missing values or genotyping errors impacts individual data
regardless of geography. By sharing genomic variation locally,
related individuals reduce the number of unique variants
drastically, and generate bias in global estimates of genetic
diversity. Though those errors increase uncertainty in estimates,
the biases on geographic estimates remain at small levels.
Our ABC analysis took the potential biases into account by
simulating the missing data, genotyping errors and the other
issues. Alternative methods that could remove the biases would
be based on genotype imputation and on the availability of
genomic data from a closely related species.

We provided an illustration of the potential of singletons
to inform demographic history by studying range expansion
of pearl millet in Africa. Pearl millet is a widely grown staple

FIGURE 6 | Prior and posterior density estimates for the longitude and latitude of the expansion onset for cultivated pearl millet in Africa.

FIGURE 7 | Geographic origin of cultivated pearl millet expansion using kernel density estimation.
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crop in Africa and India, but its precise origin is currently
unknown (Tostain, 1992; Oumar et al., 2008; Clotault et al.,
2012). When we applied an ABC approach to cultivated
pearl millet genomes, we obtained a result supporting the
Northern Mali region as the most probable geographic origin
of expansion. Although the accuracy of the ABC approach
was validated with extensive computer simulations of range
expansion, the empirical results pointed out some limitations
of our model for the data. The uncertainty around 18◦

reported for the latitude of origin was high, and improving
our estimate would require supplementary information on
past environmental conditions, carrying capacities and gene
flow between pearl millet and related species. Interestingly,
our results rejected an eastern origin for the expansion of
the domesticated cereal. This result is consistent with recent
archeological studies using both wild and cultivated samples,
that pinpointed the Mali-Niger region as the most likely origin
of domestication of pearl millet (Manning et al., 2011; Ozainne
et al., 2014).

To conclude, singletons are a major component of the site
frequency spectrum for manymodel and non-model species. The
density of singletons in genomes has recently proven useful to
detect selection in human genomes (Field et al., 2016). Here we
showed that the density of singletons in geographic space is useful
for providing local estimates of genetic diversity and key insights
on the demographic history of a species.
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Figure S2 | Individual vs. population sampling after a range expansion simulation

scenario (Sahel origin). (A,B) Homogeneous environment. Maps of the empirical

distribution of singletons (individual sampling) and expected heterozygosity (true

population sampling). (C,D) Inhomogeneous environment.

Figure S3 | Population sampling after a range expansion simulation scenario

(Sahel origin). (A,B) Homogeneous environment. Maps of the empirical distribution

of singletons (true population sampling) and expected heterozygosity (true

population sampling). (C,D) Inhomogeneous environment.
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