d'ordre  ; relatif aux grandeurs de référence ; Symboles f relatif au film; relatif à l'onde liée a la diffusion ; défini par [A]=A + -A - opérateur gradient de surface ;

Le gaz situé au-dessus du film n'intervient que par sa pression, supposée constante et uniforme. Aucun échange n'est envisagé avec ce gaz.

L'ensemble liquide-film est soumis â une onde de gravité de faible amplitude: On admet une pro propagation bidimensionnelle et isotherme de l'onde et un comportement de fluide parfait pour le liquide (Fig. 1). L'évolution d'un film à la surface d'un liquide composé d'un seul constituant et soumis à une onde de gravité a été étudiée antérieurement pour différentes lois de comportement du film (film élastique ou viscoélastique, film a tension constante) et pour différents types d'échanges (film imperméable ou poreux) [START_REF] Dudeck | Persistence of a film on a liquid in the presence of disturbance propagation[END_REF][START_REF] Dudeck | Equation de dispersion d'un fluide avec film dc surface[END_REF]. Les études effectuées précédemment par d'autres auteurs et portant sur I'influence de la diffusion [START_REF] Zelazo | Dynamic interactions of mono-molecular films with imposed electric fields[END_REF][START_REF] Hansen | Propagation characteristics of capillary ripples. I The theory of velocity dispersion and amplitude attenuation of plane capillary waves of viscoelastic films[END_REF] admettent généralement l'équilibre entre la concentration dans le film et la concentration dans le liquide au voisinage du film. Dans notre modèle, nous avons admis au contraire une adsorptiondésorption hors d'équilibre, une tension du film fonction de la masse surfacique totale et de la masse surfacique de l'espèce A et. de plus, la possibilité d'un glissement du film sur le liquide.

MISE EN EQUATION

Trois équations de bilan sont nécessaires pour caractériser l'évolution isotherme du film, ce sont les équations de bilan de la masse globale, de bilan de la masse de l'espèce A et de bilan de la quantité de mouvement.

Pour a masse globale, on obtient [START_REF] Barrère | Equations Fondamentales de l'Aérothermochimie[END_REF] :

( t   +    -  v v ˆ( )   0 =  - + ξ V v 1  ) (1) avec: dt d dérivée particulaire égale à ( )   +   v t ; opérateur « diabolo » défini par ( ) ( )ξ ξ V ξ ξ 1  -   -
et , ξ vecteur unitaire normal l'interface. Le film n'échange pas de matière avec le gaz, le terme entre crochets représente donc la masse de l'espèce A adsorbée par unité d'aire et de temps.

Aucune réaction chimique n'est envisagée entre le film et le liquide.

La masse d'espèce A absorbée par la réaction (2) s'exprime par son taux de production ( ) Le flux de masse échangé entre le film et le liquide est donc:

C k C Ĉ k D S a A - =  M  ( 3 
( )   ( )    V -  =  - =  -ξ v ξ V v 1  (4) 
( )

C k C Ĉ k D S a A - = M (5) 
Le nombre de sites occupés par l'espèce A adsorbée, plus le nombre de sites actifs inoccupés est égal au nombre total de sites qui sera supposé constant par unité d'aire, soit : 

) ( ) T K k k C Ĉ Ĉ C ˆD a t = = - (7) 
Afin de conserver un débit d'adsorption non nul, l'équilibre doit être considéré comme un cas limite où les deux conditions suivantes sont vérifiées :

( ) ( ) 0 1 → - - C Ĉ Ĉ T K C ˆt (8)  → S a A C Ĉ k M
(9) Le deuxième cas limite est celui du figeage pour lequel le débit d'adsorption est nul, soit :

( ) 0 = -  -   V ξ v 1 (10) 
Le figeage impose les conditions:

( ) ( ) C Ĉ Ĉ T K C ˆt - - 1 fini, ( 11 
) 0 → S a A C Ĉ k M ( 12 
)
La condition (10) est analogue à celle du film imperméable pour lequel les projections sur la normale ξ de la vitesse barycentrique du liquide et de la vitesse géométrique du film sont égales.

En admettant que la diffusion dans le liquide est traduite par la loi de Fick, l'équation de bilan de la masse de l'espèce A dans le film s'écrit :

( C dt C d ˆ+  -  v v ˆ( )   0 =  - - + ξ V v V 1 C C ) D (13)
où D représente le coefficient de diffusion.

On suppose qu'aucun effet de viscosité n'apparaît dans le liquide [START_REF] Zelazo | Dynamic interactions of mono-molecular films with imposed electric fields[END_REF] et que le tenseur des tensions de surface est tel que :

( )

ξ ξ 1 γ  - = γ
(14) L'équation de bilan de la quantité de mouvement du film, compte tenu de l'équation de bilan de masse s'écrit :

- t d dv   ( ) ( )   g ξ V v v v 1   =  -  - + + p ( 15 
)
où p représente le champ dc pression dans le liquide. Cette équation de bilan tient compte de l'inertie du film. La tension γ du film est reliée à la niasse surfacique globale σ et à la concentration surfacique C ˆen espèce A par la loi de comportement : . L'équation de bilan de la masse de l'espèce A dans le liquide s'écrit 

( ) ( ) 0 0 0 0 0 C Ĉ Ĉ ˆF E - - - - =      ( 
C C t C  =   +   D v (19) 
0 v = 0 ˆ et 0 v = 0 (21)
Lorsque l'ensemble liquide-film est soumis à une perturbation de faible amplitude ε, la modification de la forme du film entraine une variation de sa tension et de sa concentration en espèce A. Il y a alors échange dc masse entre le film et le liquide par un phénomène d'adsorption-désorption.

Tous les termes figurant dans les équations sont développés suivant les puissances croissantes du paramètre de perturbation ε, toute grandeur ψ admettant un développement de la forme Ψ(x, y, t)= Ψ0(x, y) +ε Ψ1(x, y, t) +O(ε 2 ) Lorsque les termes d'ordre ε sont seuls retenus, on obtient l'ensemble d'équations suivant :

surface du liquide

y=ε f(x, t) ; ( 22 
)
bilan de masse globale dans le film ( )

' f v u ˆx , t , 1 1 0 1 0 1 - = + -    en y=0 (23)
bilan de concentrations en espèce A dans le film, la diffusion de l'espèce A dans le film est négligée, ( )

y , t , t , C D _ ' f v C u Ĉ Ĉ ˆ1 1 1 0 1 0 1 - = + - en y=0;
(24) bilan de quantité de mouvement du film suivant l'axe des x,

g f C Ĉ ˆF E u ˆx , x , x , t , 0 1 1 0 1 0 1 0     + + + en y=0;
(25) bilan de quantité de mouvement du film suivant l'axe des y,

- = + - 1 1 0 1 0 p g f v ˆxx , t ,    en y=0, ( 26 
)
avec 1 0 0 p g p p   + + = adsorption-désorption ( )         - + = - - 0 1 0 1 0 1 0 1 1 0 C Ĉ Ĉ Ĉ Ĉ C C k M ' f v S S d A  en y=0 ; (27) 
bilan dc masse de l'espèce A dans le liquide où les termes de convection sont négligés car d'ordre 2 suivant ε ; (32) conditions d'amortissement de la perturbation pour la variable y tendant vers -

0 1 = C et 0 1 = v ( 33 
) La solution du problème couplé de transfert de masse et de quantité de mouvement à l'ordre un est alors complètement déterminé par les équations (20)-(33).

EQUATIONS D'ONDE

Les équations de propagation de l'onde mécanique (30) et de l'onde de diffusion (28) excluent toute solution monochromatique pour les grandeurs 1  et C1 ou toute solution de la forme

( ) ( ) ( )   t kx-ω i my C my C exp exp exp 1 1 1 1         =         (34)
La solution est recherchée à partir de la propagation de deux ondes : une onde mécanique et une onde de diffusion, soit :

( )   t _ i    r K  = exp 1 (35) ( )   t _ i C C  r K  = exp 1 (36) avec       =       = y x y x ' K ' K ' , K K K K et       = y x r
Les quantités liées au film

1 1 1 u , f ,  et 1
C ˆ apparaissent alors comme des combinaisons linéaires de ces deux ondes, soit :

( )   ( )   t ' _ ' i C U F t _ i c u f C û ˆf     r K r K                +                =               1 1 1 (37)
Cette solution est compatible avec le système d'équations linéarisées si deux équations d'onde sont vérifiées. Les équations (23)-(2?) et ( 29)-(32) permettent d'établir les deux équations suivantes:

0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 =          +       -  +  +                 +       -   -          +  +  -           +   +  -           * C * C x * C x * C * C x x F x B i B B B i i B i (38) ( ) ( ) ( ) ( )   1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -   +  +   +  -  -  + +       -   +   +  - x x x * F x F * D x * C * D F x * F ' ' ' ' ' ' ' ' ' B ' ' ' i '            (39) 
Les équations (26 et (24) conduisent aux relations suivantes entre les valeurs d'onde complexes :

Δx 2 +Δy 2 =0 (40) Δ'x 2 +Δ'y 2 = ( ) ' B * D  -0 2 1 1   (41)
Les quantités sans dimensions introduites dans les équations (38)-(4l) sont les suivantes:

Variables sans dimensions    =  ( C '   = 
) pulsation réduite où   est une pulsation de référence ( )

' c ' K ' , c K x x x x     =  = 
nombre d'onde suivant x où  c est une vitesse de référence associée au film, ( )

' c ' K ' , c K y y y y     =  = 
nombre d'onde suivant y ; la pulsation de référence   øt la vitesse de référence sont définies par (42)

Paramètres sans dimensions (  )

    c c = tension initiale du film      0 2 0 2 . c = ,   c c E E = caractéristique d
0 1 1 2 2 2 2 2 2 2 =  +           -   +  -  - x x F x E i    (43) 
pour l'onde mécanique. Les équations (39) et (41) conduisent alors à une propagation horizontale pour l'onde de diffusion (Section 52).

RESU LTATS ET DlSCUSSION

Les équations d'onde (38)-(41) ont été résolues numériquement par la méthode de Jenkins-Traub. Les solutions recherchées correspondent à une propagation dirigée suivant les valeurs croissances de x et à un amortissement de l'onde dans le sens de la propagation.

Les vitesses de phase et les coefficients d'amortissement de l'onde sont définis par: (  )

y y y x x x y y y x x x ' A i ' C ' , ' A i ' C A i C , A i C + =  + =  + =  + = 
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 = -  -          +          -  + +   +              +        - +  + +  - -  B i B i B i B B i B B * C * C x * C F x C * C F x            (45) avec x y i - =  .
Cette équation conduit à un ou deux modes de propagation dans la direction des x croissants Pour un coefficient B supérieur à l'unité deux modes de propagation apparaissent (modes I et II, Fig. 2). Pour les faibles fréquences, la vitesse de phase du mode I correspond à celle des oscillations du liquide avec surface libre Cx=Ω -1 . Pour les grandes pulsations de ce mode, la vitesse Cx, tend vers la valeur limite ηF*(B) 1/2 .Le deuxième mode, qui n'existe que pour B supérieur à l'unité, correspond à une vitesse éga1e à (B-1) 1/2 pour les faibles pulsations et admet une vitesse infinie pour une pulsation finie. Les Fig. 3 La cinétique d'adsorption-désorption est traduite par le paramètre sans dimension ηC*. A l'équilibre, c'est à-dire pour ηC* tendant vers l'infini, on obtient une première solution Cx=Ω -1 et une deuxième solution définie pour B>1 :

( ) ( )   2 1 2 1 4 1 2 - +  +  - = B B C x (46)
Ces deux solutions correspondent à un amortissement nul suivant l'axe des x. L'évolution de la vitesse de phase entre les deux cas limites (adsorption-désorption figée et à l'équilibre) est présentée sur 1a Fig. 5 pour   nul.

Equation d'onde de diffusion

Lorsque le paramètre η est. nul, les équations (39)et (41) conduisent à la deuxième équation d'onde suivante :

( ) ( ) ( ) ( ) ( ) ( ) 0 1 1 1 1 1 2 2 2 0 2 2 2 3 0 2 0 2 2 2 3 2 2 2 2 2 2 2 3 = +  + - - +  -       - + -  -  -  +  -  -  +  + -  ' B B i ' B i B ' ' ' B ' ' i ' * F * F * D * C * C * C * F * C * D y * C * F * F F * F * C F                  (47) 
L'influence de la diffusion sur la propagation associée a été principalement étudiée. Pour une diffusion nulle dans le liquide ( ηD*= 0), la vitesse de propagation est nulle suivant l'axe des y et l'équation (39) devient : La solution de la deuxième équation d'onde dépend du signe de la quantité ηD* 2 -2 ηF*(B) 1/2 . Trois modes de propagation sont obtenus.

Le mode I est tel que A'y est négatif pour ηD* 2 <2 ηF*(B) 1/2 . Pour ηD* 2 >2 ηF*(B) 1/2 , l'onde n'est amortie pour y-> - que pour Ω'<Ω'1. Pour ce mode, la vitesse de propagation C'y est toujours négative. Dans la plan (C'y, Ω') deux branches sont obtenues pour ηD* 2 <2 ηF*(B) 1/2 (une seule correspond à un amortissement suivant x) et une seule branche apparait pour ηD* 2 >2 ηF*(B) 1/2 (solution a suivant x), Dans le plan (C'y, Ω') deux branches apparaissent pour ηD* 2 <2 ηF*(B) 1/2 , seule la branche associée aux faibles pulsations est amortie suivant les x croissants. Pour ηD* 2 >2 ηF*(B) 1/2 , seule subsiste la branche associée à une onde amortie.

Le mode 2 n'est jamais compatible avec la condition aux limites pour y-> l'infini. Ce mode est associé une onde amortie pour les x croissants sauf pour Ω' voisin de zéro.

Le mode 3 n'est amorti suivant y que pour Ω>Ω'2 . Cc mode admet deux branches dans le plan (C'y, Ω') seulement pour ηD* 2 <2 ηF*(B) 1/2 

  ONDE DE GRAVITE DANS UN LIQUIDE AVEC FILM SUPERFICIEL ET DIFFUSION M. Dudeck ct R. Prud'homme Laboratoire d'Aérothermique du CNRS. 4 ter, route des Gardes 92190, Meudon, Fr RESUME La propagation d'une onde de gravité de faible amplitude dans un liquide recouvert par un film est présentée en tenant compte d'un phénomène d'adsorption-désorption à l'interface liquide-film. Deux types d'onde liés respectivement au phénomène de diffusion sont étudiés : le premier type conduit à un seul mode de propagation et le second à deux modes compatibles partiellement avec les conditions aux limites suivant le signe de la quantité amortissement réduit ; concentration dans l'état de référence ; vitesse de référence ; vitesses de phase réduites ; concentration de l'espèce A (moles/unité de volume) ; concentration des sites actifs inoccupés dans le film (moles/ unité d'aire ; concentration totale des sites dans le film (moles/ unité d'aire) ; coefficient de diffusion dans le liquide ; coefficient d'élasticité du film ; fonction définissant la géométrie du film ; accélération due à la gravité ; paramètre caractérisant l'effet des concentrations sur la tension du film ; vitesse d'adsorption ; vitesse de désorption ; constante d'équilibre d'adsorptiondésorption ; pression dans le liquide; vecteur vitesse barycentrique (u, v); vitesse de déplacement géométrique du film coordonnée horizontale; coordonnée verticale ; Symboles grecs tension du film ; vecteur nombre d'onde réduit ; paramètre de perturbation ; paramètre de recouvrement en sites actifs ; onde réduite ; .masse volumique ; masse surfacique du film ; potentiel des vitesses : pulsation réduite (fréquence) ; Paramètres sans dimensions coefficient de tension initiale du film ; coefficient d'élasticité du film ; coefficient représentant l'effet de la concentration sur la tension du film ; coefficient de cinétique d'adsorptiondésorption ; coefficient de diffusion .1. INTRODUCTION La PROPAGATION d'une onde de gravité de faible amplitude dans un liquide est modifiée par la présence d'un film superficiel. Ces modifications sont étudiées ici en présence d'un phénomène d'adsorption-désorption à l'interface liquide-film. Dans le modèle étudié, le liquide admet une profondeur infinie et comprend deux constituants A et B. Le film superficiel est considéré comme un milieu sans épaisseur caractérisé par des grandeurs internes telles que sa vitesse, sa masse surfacique, sa concentration et sa tension. La possibilité d'un décollement du film sur le liquide est supposée exclue et l'étude des conditions de rupture n'est pas envisagée. L'échange entre le liquide et le film s'effectue par un processus d'adsorptiondésorption du constituant A seul. Cet échange produit une modification de la concentration dans le film, modifie sa tension, et provoque un phénomène de diffusion dans le liquide.

Fig. 1 .

 1 Fig. 1. Milieu liquide-film-gaz

  ) S ˆ représente un site actif et  représente l'espèce A adsorbée; ka et kd sont respectivement la vitesse d'adsorption et la vitesse de désorption de l'espèce A ; C est le nombre de moles de l'espèce A par unité de volume dans le liquide, S C ˆest le nombre de sites actifs (multiplié par le nombre d'Avogadro par unité d'aire et MA est la masse molaire de l'espèce A.

  cas limites seront envisagés l'équilibre et le figeage d'adsorption-désorption. L'équilibre est défini par :

(

  

  3. EQUATIONS LINEAIRESDans l'état de référence (indice 0) le liquide au repos est recouvert du film qui est alors plan et immobile, il y a équilibre chimique et équilibre mécanique entre le film et le liquide. L'équilibre d'adsorption-désorption entraîne (

  'influence de la masse surfacique sur la tension du film, influence de la masse surfacique de l'espèce A sur la tension du ce terme représente le taux de recouvrement des sites actifs. L'équation (20) re!ie 0  ˆà la concentration C0 de I'espèce A dans le liquide. Le coefficient B représente le rapport de deux longueurs caractéristiques, l'une associée à la masse globale et l'autre à la masse de l'espèce A.L'équation d'onde pour un film imperméable[START_REF] Dudeck | Equation de dispersion d'un fluide avec film dc surface[END_REF] s'obtient, à partir de (38) et (

  de ces grandeurs est principalement étudiée en fonction de la pulsation réduite Ω (et Ω') ou de la longueur d'onde réduite Λ=C/Ω (et Λ'= C'/Ω').

Fig. 2 . 1 .

 21 Fig. 2. Vitesse de phase en fonction de la pulsation trait fin : surface libre 1 1 = = =  = - * C

  et 4 présentent les variations du coefficient d'amortissement associé aux modes I et II en fonction de la longueur d'onde réduite : seul le mode I correspond à urne onde amortie pour les valeurs croissantes de x.

Fig. 3

 3 Fig. 3 Coefficient d'amortissement réduit en fonction de la longueur d'onde réduite (mode I).

Fig 4 .

 4 Fig 4. Coefficient d'amortissement réduit en fonction de la longueur d'onde réduite (mode II).

Fig. 5 .

 5 Fig. 5. Influence de la cinétique d'adsorption-désorption sur la vitesse de phase réduite pour ηC* variant de 0 à l'infini, ηE=ηF=0, ηF*=1 et B=5.

Fig. 6 .

 6 Fig.6. Vitesse de phase en fonction.de la pulsation pour ηD*→0.

  de propagation nulle suivant l'axe des y. Les variations de la vitesse de propagation C'x de l'onde suivant l'axe des x sont présentées sur la Fig.6en fonction de la pulsation réduite Ω' pour B=1 et pour différentes valeurs du paramètre ηF*. Pour ηF* plus grand que l'unité, le mode de propagation obtenu n'est défini que pour Toutes les courbes obtenues passent par le point défini par Ω'=B -1/2 , C'x=B 1/2 ('=B), ces solutions sont non amorties suivant x.

  de propagation de l'onde, A'x est positif et A'y négatif.

Fig. 7 .

 7 Fig. 7. Caractéristiques du vecteur d'onde suivant l'axe des x,

  16) où le coefficient E traduit le caractère élastique du film et le coefficient F exprime l'influence de la concentration en A dans le film sur la tension.Le liquide est considéré comme un fluide partait, incompressible et irrotationnel, les équations classiques de Bernoulli et de Laplace sont donc vérifiées.

	t   	+	v 2 2	+	p 	+	g	y	=	C	( ) t	(17)
	et											
		=	0									(l8)
	où  représente le potentiel des vitesses tel que	v	=							

  . Pour Ω' tendant vers zéro, C'y tend vers la valeur ηD* 2 / (ηF* 2 -1) et l'onde est toujours amortie suivant x. L'évolution des grandeurs est représentée en fonction de Ω' sur les Figs.7et 8 , pour ηD* 2 >2 ηF*(B) 1/2 . Pour ηD* tendant vers l'infini, un seul mode de propagation est obtenu, il est défini par :

	' C	x	,	' C	y	,	' A	x	et y ' A