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Recognizing Art Style Automatically in painting with deep learning
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The artistic style (or artistic movement) of a painting is a rich descriptor that captures both visual and historical information about the painting. Correctly identifying the artistic style of a paintings is crucial for indexing large artistic databases. In this paper, we investigate the use of deep residual neural to solve the problem of detecting the artistic style of a painting and outperform existing approaches to reach an accuracy of 62% on the Wikipaintings dataset (for 25 different style). To achieve this result, the network is first pre-trained on ImageNet, and deeply retrained for artistic style. We empirically evaluate that to achieve the best performance, one need to retrain about 20 layers. This suggests that the two tasks are as similar as expected, and explain the previous success of hand crafted features. We also demonstrate that the style detected on the Wikipaintings dataset are consistent with styles detected on an independent dataset and describe a number of experiments we conducted to validate this approach both qualitatively and quantitatively.

Introduction

The Metropolitan Museum of New York has recently released over 375,000 pictures of public domain art-work that will soon be available for indexation (met, 2008). However, indexing artistic pictures requires a description of the visual style of the picture, in addition to the description of the content which is typically used to index non-artistic images.

Identifying the style of a picture in a fully automatic way is a challenging problem. Indeed, although standard classification tasks such as facial recognition can rely on clearly identifiable features such as eyes or nose, classifying visual styles cannot rely on any definitive feature. As pointed by [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF] the problem is particularly difficult for nonrepresentational art-work.

Several academic research papers have addressed the problem of style recognition with existing machine learning approaches. For example [START_REF] Florea | Pandora: Description of a painting database for art movement recognition with baselines and perspectives[END_REF] evaluated the performance of different combinations of popular image features (Histograms of gradients, spatial envelopes, discriminative color names, etc.) with different classification algorithms (SVM, random forests, etc.). Despite the size of the dataset and the limited number of labels to predict (only 12 art movements in total), they observed that several styles remain hard to distinguish with these techniques. They also demonstrate that adding more features does not improve the accuracy of the models any further, presumably because of the curse of dimensionality.

In 2014, Karayev et al. observed in that most systems designed for automatic style recognition were built on hand-crafted features, and manage to recognize a larger variety of visual style using a linear classifier trained with features extracted automatically using the deep convolutional neural network (CNN). The CNN they used was AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] and was trained on ImageNet to recognize objects in non-artistic photographs. This approach was able to beat the state-of-the-art, but the authors obtained even better results on the same datasets using complex hand-crafted features such as MC-bit [START_REF] Bergamo | Meta-class features for large-scale object categorization on a budget[END_REF]. More recently [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF] addressed the problem using a variation of the same neural network and managed to achieve the best performance with a fully automatic procedure for the first time, with an accuracy of 54.5% over 25 styles.

In this paper, we further improve upon the state of the art and achieve over 62% accuracy on the same dataset and using a similar experimental protocol. This important improvement is due to two important contributions described below.

First, we demonstrate that Residual Neural Networks which have proven to be more efficient on object recognition tasks, also provide great performance on art style recognition. Although it may be expectable, this result is not immediately implied by the success of Resnet on object recognition, since art style recognition requires different types of features (as it will be shown in the paper). As a matter of fact, state-of-the-art neural network architectures for object recognition have not always been state-of-the-art for art style recognition. (See, [START_REF] Karayev | Recognizing image style[END_REF] discussed above.)

Second, we demonstrate that a deeper retraining procedure is required to obtain the best performance from models pre-trained on ImageNet. In particular, we describe an experiment in which we have retrained an increasing number of layers -starting from retraining the last layer only, to retraining the complete network -and show that the best performances with about 20 layers retrained (in contrast with previous work where only the last layer was retrained). This result suggests that high level features trained on image net are not optimal to infer style.

In addition, the paper contains a number of other methodological insights. For example, we show that the styles learnt using one dataset are consistent with the styles from another independent dataset. This shows that 1) our classifier does not overfit the training dataset 2) styles are consistent with the artistic style defined by art experts.

The rest of the paper is organized as follows : in Section 2 we formally state the problem that is being addressed in this paper and we present various baselines we used to assess the performance of our new approach, then, in Section 3 we describe our approach, and present experimental results in Section 4. Finally we conclude with some comments and future directions.

Related works

Creative work have attracted much attention in the AI community, maybe because of the philosophical questions that it raises or because of the potential applications. As a result, a number of publications have discussed the problem of art generation and art style recog-nition in several artistic domains such as visual arts [START_REF] Gatys | A neural algorithm of artistic style[END_REF] or music [START_REF] Van Den Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Huang | Deep learning for music[END_REF].

In the domain of visual art generation, [START_REF] Gatys | A neural algorithm of artistic style[END_REF] were able to build a model of a specific painting style and then transfer it to non-artistic photographs1 . From a technical perspective, art generation is not very different from art style recognition: in both cases, the first step is to accurately model one or several artistic styles. [START_REF] Gatys | A neural algorithm of artistic style[END_REF] started by training a deep VGG net [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] with a large number of pictures from a given artistic style. Then they generated an image that compromised the matching of the style with the matching of the original input image. However, one important difference with the problem of art style recognition, is that the model needs to separate style from content as much as possible in order to successfully transfer the style to a new content. In style recognition, we use the description of the content as an additional feature to recognize the style (e.g., a person is more likely to appear in an impressionist painting than in an abstract painting).

The problem of art style recognition has been directly addressed by a number of other publications. The techniques proposed usually work either with pre-computed features such as color histograms, spacial organisation and lines descriptions [START_REF] Florea | Pandora: Description of a painting database for art movement recognition with baselines and perspectives[END_REF][START_REF] Liu | Inferring painting style with multi-task dictionary learning[END_REF], or directly with the image itself [START_REF] Saleh | Large-scale classification of fine-art paintings: Learning the right metric on the right feature[END_REF][START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF]. [START_REF] Liu | Inferring painting style with multi-task dictionary learning[END_REF] have been able to achieve good results using pre-computed features using multi-task learning and dictionary learning. To achieve this result, they propose to discover a style-specific dictionary by jointly learning an artist-specific dictionary across several artists having painted with the same style.

Although working with pre-computed features can be useful to better understand the behaviour of the classifier, the resulting classifiers do not generally achieve the best accuracy. Learning the features automatically from the images (with convolutional neural networks) generally obtain better results as shown by the work by [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF] which achieved 54% top-1 accuracy on 25 classes.

Problem statement & methodology

In this paper, we are interested in developing a machine learning method able to recognize the artistic style of a painting directly from an image of this picture (i.e. a 2-dimensional array of RGB pixels). We evaluate the performance of various deep artificial neural networks at this task, including the state-of-the-art deep residual neural networks proposed by [START_REF] He | Deep residual learning for image recognition[END_REF]. In this section, we describe the datasets and the training methodology that we have used to design a new art style classifier that we call RASTA which stands for Recognising Art STyle Automatically.

Datasets

To train our models, we use the Wikipaintings dataset, a large image dataset collected from WikiArt following the experimental protocol used by [START_REF] Karayev | Recognizing image style[END_REF] and by [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF]. To test the models, we use two datasets: one from Wikipaintings and another one from an independent source. The first 66,549 images of this collection are used to form the wikipaintings-train dataset (i.e. about 80% of the full dataset). The next 7,383 images (about 10% of the train dataset) are used to form the wikipaintings-validation dataset and the final 8,222 images (10% of the full dataset) are used to form the wikipaintings-test dataset. The class distribution is kept the same in all three datasets, and the full dataset distribution is visible in Figure 2. 

The ErgSap and ErgSap-minus-wikipaintings testing datasets

Styles may be very coherent within the Wikipainting datasets, but may not correspond to any style recognizable by experts outside the WikiArt community. In order to evaluate the generality of the styles identified by the models trained with the Wikipaintings datasets, we need extra datasets collected from an independent source.

To achieve this, we use a dataset provided by the author of ErgSap3 , a visual art gallery application. The dataset contains almost 60,000 images of paintings which are available in the public domain.

Not all the classes from the Wikipainting dataset are represented in the data provided by ErgSap, and some classes have different names. In order to make the datasets compatible we remove classes from ErgSap that are not represented in Wikipaintings. We end up with a dataset of 14 classes : Neoclassicism, Romanticism, Impressionism, Baroque, Mannerism (Late Renaissance), Realism, Rococo, Post impressionism, Expressionism, Symbolism, Cubism, Art Nouveau, Symbolism, Ukiyo-e, Naive Art. The resulting ErgSap dataset contains 40,437 images distributed in the 14 classes as shown in Figure 3 (a).

There is no guarantee that the paintings in the ErgSap dataset are absent from the wikipaintings-train dataset as a training example. In fact, this is likely to happen since many images are pictures of famous paintings. We estimate the overlap between the two datasets by simply comparing meta data and removing the images with meta data similarities (author name, picture name and year).

Using this procedure, we estimated an overlap between Wikipaintings and ErgSap to 53%. To accurately estimate the accuracy on a fully independent dataset, we build a new dataset with only the images from ErgSap that do not appear in the Wikipaintings dataset. We call this new dataset ErgSap-minus-wikipaitings. The dataset contains 19,077 images distributed in the 14 classes as shown in Figure 3 

Neural networks architecture

We used two types of networks, first a network based on AlexNet architecture which was used in [START_REF] Karayev | Recognizing image style[END_REF], then we used the state-of-the-art residual neural network as described in (He et al., 2016) (ResNet). Residual neural networks provide very interesting results on object detection tasks, and pre-trained weights are available (on Keras framework). It is now the state-of-the-art network for many image related tasks and in some applications, it has been shown that using a ResNet instead of a more classical network boosted the performances of the method [START_REF] Cazenave | Residual networks for computer go[END_REF].

AlexNet

The input of the AlexNet network is a 227 × 227 × 3 matrix. Its structure is made of five convolutional layers and three fully connected layers. Convolutional layers have respectively filter of size 11 × 11, 5 × 5, 3 × 3, and 3 × 3. They each respectively generate 96, 256, 384, 384, and 256 feature maps. Three max-pooling layers follow the first, third and fifth convolutional layer. Then there are 4096 neurons in the 2 following fully connected layers. Dropout is implemented after each of those two fully-connected layers.

ResNet

The ResNet has input dimensions of 224 × 224 × 3. Its architecture is composed of different blocks, where each block uses a "shortcut connection". This shortcut connection can be a simple identity connection (id-block), or a connection with a convolutional layer (convblock). The shortcut-ed part of the block uses 3 convolutions, with various number of filters for each block. The first and third convolution of this group use filters sizes of 1 x 1, and the second one is usually 3 x 3. At the end of a block, the features of the shorcut part and the shortcut-ed part are added. Each convolutional layer is followed by a batch-normalization layer.

We mainly used a ResNet50 architecture in our experiments. The ResNet50 starts with a convolutional layer with a filter size of 7x7, generating 64 filters, followed by a batchnormalization layer, an activation layer and a max-pooling layer. Then there are 4 groups of blocks, each starting with a conv-block. Each group contains respectively 1, 3, 5 and 2 id-blocks. The ResNet50 contains in total 53 convolutional layers, hence its name.

We also used a ResNet34 architecture in our experiments, which is very similar to the ResNet50, except that the shortcut-ed part of the blocks uses 2 convolutional layers instead of 3, which reduces the total number of convolutional layers to 34.

In both types of architectures (ResNet and AlexNet), rectified Linear Unit (ReLU) is used as the activation function for all weight layers, except for the last layer that uses softmax regression. A fully-connected layer ends each network, of which the number of neurons corresponds to the number of classes. [START_REF] Goodfellow | Deep learning[END_REF] estimate that to achieve human-level classification performance, a neural network needs to be trained with about 5,000 labels per class. Despite being a relatively large dataset compared to other dataset in art style recognition, the wikipaintingstrain dataset only has about 2,662 images per class on average.

Training procedure

To overcome this limitation, Tan et al. ( 2016) used models pre-trained for object recognition on ImageNet. In order to predict style instead of content occurrences, the last softmax layer is retrained for style recognition using the Wikipaintings dataset. In their experiments, [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF] show that this technique performs better than a model fully trained from scratch using only the Wikipaintings dataset.

This result demonstrates that features generated to recognize objects can also be used to recognize style. Following the results in [START_REF] Yosinski | How transferable are features in deep neural networks? In Advances in neural information processing systems[END_REF], we conjecture that this not always true.

To validate this hypothesis, we retrain a variable number of layers ranging from one layer only (as in [START_REF] Yosinski | How transferable are features in deep neural networks? In Advances in neural information processing systems[END_REF]) to the complete network. We start from the last layer, to the very bottom one. As we will show in the experimental section the best performance is obtained when we retrain approximately 20% of the layers. This provides evidence that building new features that are specific to the task was indeed necessary.

Additional training and testing improvements

Bagging

In order to increase accuracy and stability of our classifier we introduced the bagging technique as described by [START_REF] Cazenave | Residual networks for computer go[END_REF] for the game of Go. It consists in averaging the output of different predictions produced by the model on several variations of input data. As shown by Cazenave, bagging can increase overall accuracy without degrading the efficiency of the classifier too much. In case of art style recognition, we generate two variations of the input data (the picture) by flipping the picture horizontally, (intuitively, the style of a picture should be invariant to horizontal flip) and average the results.

Dataset augmentation

Image augmentation often used to limit the cost of tagging images manually. It consists in using images that are already in the training dataset and manipulating them to create many altered versions of the same image [START_REF] Sebastien C Wong | Understanding data augmentation for classification: when to warp?[END_REF]. In contrast with bagging, dataset augmentation but operates during the training phase.

In order to increase the robustness of our models and their ability to generalise to a broad range of unknown pictures, we augmented the training dataset by applying distortions to the input images. We used the following distortions: random, horizontal flips, rotations, axial translations and zooming.

Horizontal image flip happens with a user defined probability which we empirically set to 0.5. For rotations, axial translations and zooming, a random variable is drawn uniformly each time an image is selected as a training example, and controls the extent of the distortion. For horizontal and vertical transitions, a variable is drawn between 0 and the image width or the image height respectively and controls the number of pixel shifted. For rotations the variable is drawn between 0 and 90 • . For zooming, a variable is drawn between a factor 0 (no zoom) and 2 (2× zoom).

Experiments and results

In this experimental section, we aim at answering the following scientific questions. Q1: How do residual neural network architectures which are state-of-the-art in object recognition compare to the AlexNet architectures (used in [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF]) when they are used to recognize image style? This question is discussed in Section 4.2. Q2: What proportion of the network should be retrained to obtain the best performance? This question is discussed in Section 4.3. Q3: What is the impact of the optimizations described in Section 3.4 and how does it perform in our test datasets? This question is addressed in Section 4.4. After addressing these questions with quantitative experiments and results, we also provide a qualitative analysis of the results in Section 4.5

Experimental protocol

In this experimental section, we conduct our experiments on the datasets described in Section 3. The wikipaintings-train set is used for training the models, the wikipaintingsvalidation set is used for validation operations such as early stopping and parameter tuning, and the test sets are used to measure final accuracy. In some of our experiments, we used models pre-trained on ImageNet. To pre-train a model, we simply load the model parameters (i.e. the weights) computed by their original authors instead of reproducing the full training procedure on ImageNet. This saves computation time and also guarantees that the models are state-of-the-art. The weights of the models were downloaded for AlexNet4 and found in the Keras framework for the ResNet with 50 convolutional layers (ResNet50)5 .

The implementation was written in Python, using the Keras framework with Tensorflow as a backend. The experiments were run on Nvidia GTX 1080Ti GPUs. All datasets and weights as well as a fully functional web application are available online6 . 

Performance of residual neural network at image style recognition

In this experiment, we assess the performance of various convolutional neural network for the problem of recognizing artistic style. We compare the AlexNet network which was used by [START_REF] Karayev | Recognizing image style[END_REF] and by [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF] with the two Residual Neural Network configurations with 34 and 50 convolutional layers. For AlexNet and ResNet50, we compare the performance of models pre-trained on ImageNet with models trained from scratch with the wikipaintings training set. Note that we did not evaluate the performance of ResNet34 pre-trained on ImageNet as no pre-trained model was available in Keras. In this first experiment, only the last layer of the residual neural network is retrained following the procedure described by [START_REF] Wei Ren Tan | Ceci n'est pas une pipe: A deep convolutional network for fine-art paintings classification[END_REF].

The results of these experiments are presented in Figure 4 and 5, and the final Top-1, Top-3 and Top-5 accuracy for the best models are provided in Table 1.

The first thing we can observe in Figure 4 is that pre-trained models achieve better accuracy on validation set, and with a fewer number of training epochs. This result agrees with the results from Tan et al. ( 2016) on AlexNet, but also applies to the ResNet configu- ResNet34 does not overfit like ResNet50, probably because of the smallest number of parameters. However, its validation accuracy is very unstable, and the train accuracy shows a very slow convergence.

If we now focus on the models which have been pre-trained with ImageNet, ResNet50 outperforms AlexNet by 10% over the 25 classes. This is also true when we look at the Top-3 and Top-5 accuracy available in Table 1 

Impact of retraining

In the previous experiments, we have compared models pre-trained on ImageNet and with the last layer retrained for the task of art style recognition. This approach is standard and works well when the initial classification task is closely related to the target classification task. (i.e. that the same high level features can be used for both tasks).

In Section 3.3, we conjectured that a deeper retraining could contribute to improve the accuracy by generating features specific to style recognition. To validate this hypothesis, we compare the performance of the best architecture (ResNet50) with a variable number of layers retrained ranging from 1 (the top-layer) layer only to a full retrain. As mentioned in [START_REF] Yosinski | How transferable are features in deep neural networks? In Advances in neural information processing systems[END_REF], a full-retraining is not necessarily the best approach since deeper layers in image recognition tasks are very similar among different tasks. They generally describe very low-features, common to a lot of image classification tasks. Moreover, [START_REF] Yosinski | How transferable are features in deep neural networks? In Advances in neural information processing systems[END_REF] conjecture that keeping the learned weights as initializer for the trained layers can often be more efficient than retraining from a random initialization.

We retrained the pre-trained ResNet50 architecture with variable number of trainable layers, and initialized randomly the weights or kept the Imagenet weights. The rest of the layers are frozen with ImageNet weights. The results of these experiments are presented in Figure 6.

We can first notice that in both cases, the peak accuracy is achieved with almost 20 top-layers retrained out of 106 (i.e. approximately ∼ 20% of the network retrained). With less trainable layers, we can see that initializing weights randomly can give slightly better results. Around and after the peak, an ImageNet initialization outperforms the random initialization. We can suppose that ImageNet information contained in the top layers is not really transferable to our classification task. It corresponds to high-level features, that are more specific to content recognition than style classification. It could even cause the gradient descent to be stuck in a local minima. For deeper layers, since they generally describe low-level features (with filters usually resembling to Gabor filters or color blobs), This result supports the assumption that characteristics determining painting styles do not generally rely on the horizontal orientation. It is coherent with the gain observed when applying bagging to other applications where symmetries occur, as in Go [START_REF] Cazenave | Residual networks for computer go[END_REF].

Distortion

Encouraged by the positive results on bagging, we tried to augment our dataset by generating artificial data. However, the results reported in Table 3 show a mild improvement on Top-1 results and a deterioration according to Top-3 and Top-5 metrics. Behind the data augmentation, there is an assumption that a particular image will remain of the same class if we apply a distortion to it. This is true for most image recognition tasks : for example, if the task is to recognize animals, a cat should be detected in an image even if it is upsidedown. However, this is not true for all style of paintings. We remark that the images in our dataset are perfectly centered without any background or foreground around the painting.

Hence, with such a clean dataset, the data augmentation may not be necessary. If we let 2). Some noticeable values can be extracted from the confusion matrix in Figure 7. We identified some of the most important mis-classifications on our test set. For the most, the two mixed styles share some common conceptual ground. For example, 18% of images coming from Post-Impressionism are classified as its elder brother, Impressionism. 22% of Mannerism images are classified as Baroque, knowing that the Mannerism style is sometimes considered as an early stage of Baroque. 17% of High Renaissance images are classified as Northern Renaissance, which are 2 styles that come from the same root. 21% of Art Informel images are classified as Abstract Expressionism, and the Art Informel is often considered as the European equivalent of American Abstract expressionism. This way, we can perceive a glimpse of the relation between artistic styles. Our model seems to generally struggle on differentiating historically close styles, as a human would probably do.

t-SNE

Another way to evaluate the encoding quality of our model is to represent visually the dataset on a 2D space, using a t-SNE algorithm. As described in [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF], t-SNE maintains the global geometry of the data and allows us to picture the repartitions of our points following their corresponding class. In few words, t-SNE finds the coordinates of n points in a 2-dimensional space so that the distances between those points behave similarly as the distances between the original points. It formulates as the minimization of a KL divergence involving the distance matrices of both input and output data.

For each data point, we extracted the 2,048 features from the penultimate layer (before the last fully connected layer), and first reduced the dimensionality to 50 features by applying a PCA reduction. Indeed, t-SNE can lose efficiency when applied on very highdimensional data. Afterwards, a 2-dimensional representation of the dataset is found by computing the t-SNE.

Applying a dimensionality reduction using a t-SNE reduction on all the data and over 25 classes can lead to a hardly readable Figure, so we only took some subsets of 3 classes coming from the wikipainting-test dataset. We selected the 3 classes giving the best recall

Conclusion

In this paper, we successfully applied a deep learning approach to achieve over 62% accuracy on WikiArt data. This improvement is mainly due the use of a residual neural network and to the importance of retraining. However, the obtained results, we provided some empirical evidences for our choices of parameter and then brought a methodological contribution.

As suggested by our experiments, the use of bigger datasets should enable to learn more layers of our deep networks and should improve the accuracy of our models. Hence, we plan to extend our datasets so that we can perform a full retraining of our deep models.

As a future work, we plan to apply the deep network analysis proposed in [START_REF] Montavon | Deep taylor decomposition of neural networks[END_REF][START_REF] Binder | Analyzing and validating neural networks predictions[END_REF], once it will be available for ResNet, in order to have an understanding of the learnt feature. By analyzing every layer in this way, we will be able to see how the networks characterize a given style.
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 1 Figure 1: Four examples of images of the Wikipainting dataset. From left to right and top to bottom : a. Hereditarius No.1-68-A by Park Seo-Bo (Minimalism) -b. Madonna and Child by Raphael (High Renaissance) -c. The Mystic Marriage of St Catherine by Annibale Carracci (Baroque) -d. Benzaiten Shrine at Inokashira in Snow by Hiroshige (Ukiyo-e)

Figure 2 :

 2 Figure 2: Class distribution of the Wikipainting dataset.

  (b).

  Figure 3: Class distribution of Ergsap dataset and Ergsap-minus-wikipaintings dataset.

Figure 5 :

 5 Figure 4: Baseline comparison (validation set)

Figure 6 :

 6 Figure 6: Validation accuracy with respect to the number of retrained layers Evaluation type Top-1 Top-3 Top-5 Without bagging 0.601 0.858 0.933 With bagging 0.611 0.863 0.936

Table 1 :

 1 Top-k accuracies for retrained models rations. Furthermore, after 25 epochs, we can see that several models trained from scratch begin to overfit to the training set. This is particularly visible for ResNet50 which reaches over 90% accuracy on the training set, but does not perform any better on the validation set. This is likely due to the limited number of training examples (60,000 images) and the large number of parameters in ResNet50.

	Architecture	Top-1 Top-3 Top-5
	Pre-trained AlexNet accuracy (6th layer features)	0.378	0.627	0.733
	Pre-trained ResNet50 accuracy	0.494 0.771 0.874

Table 2 :

 2 Impact of bagging on the accuracy an ImageNet initialization can be very useful, and induces some speed in training, and a gain in accuracy. It confirms the assumption that deeper layer neurons are not specialized to only one specific task. Moreover, training too many layers (regarding the size of our train set) can lead the model to overfit, which explains the accuracy drop in both curves after 20 trainable layers.As we can see in Table2, bagging makes our model gain almost 1% on Top-1 accuracy.

	4.4. Improving accuracy
	4.4.1. Bagging

Table 3 :

 3 Distortions effects on accuracy

	Dataset	Top-1 Top-3 Top-5
	Wikipaintings-test	0.628	0.860	0.933
	Ergsap	0.630	0.859	0.931
	Ergsap-minus-wikipaintings 0.629	0.852	0.925

Table 4 :

 4 Test accuracy on different test sets users upload their own picture of paintings, data augmentation may become necessary to cope with the data variability.4.4.3. Results on test set and new datasetUp to this point, the model selection and the different optimizing parameters (number of layers, distortion rate) have been selected regarding the results on the wikipaintingsvalidation set. To avoid any data leakage and ensure unbiased results, we have to evaluate our final model with an unseen dataset. Moreover, since the wikipaintings-test dataset comes from the same source, we evaluate the performance of our model on an external dataset (Ergsap and Ergsap-minus-wikipaintings). Results are presented in Table4. As we can see, we obtain very similar results on Ergsap, Ergsap-minus-wikipaintings and wikipaintings-test, so our model is not specific to Wikipaintings or the validation set.As shown in Table5, styles like Ukiyo-e, Minimalism or Color Field Painting have very distinct visual appearance and show in general the best results. To be as fair as possible, we provide results of Recall and Precision as the class repartition on the test set is unbalanced. As a remark, the classes having the worst performances (e.g. High Renaissance and Mannerism or Abstract art and Art informel) correlate to classes that are visually and historically close and for which few data are available (see Figure

	4.5. Qualitative analysis
	4.5.1. Per class analysis

Table 5 :

 5 Accuracy, recall and precision per class (sorted by accuracy)

	Style	Accuracy Recall Precision
	Ukiyo-e	99.695	88.034	90.4
	Minimalism	99.146	76.984	70.3
	Color Field Painting	99.110	72.800	70.0
	Early Renaissance	99.061	66.165	73.3
	Magic Realism	98.927	53.465	56.8
	High Renaissance	98.915	43.307	76.4
	Art Informel	98.793	33.333	47.8
	Pop Art	98.781	56.250	55.3
	Mannerism (Late Renaissance)	98.671	42.857	55.4
	Abstract Art	98.427	47.000	38.2
	Naive Art (Primitivism)	98.220	59.406	65.2
	Rococo	98.208	65.104	61.0
	Northern Renaissance	98.098	83.750	63.2
	Cubism	97.976	61.905	50.5
	Neoclassicism	97.964	62.593	71.9
	Abstract Expressionism	97.891	51.196	60.1
	Baroque	96.878	68.170	67.8
	Art Nouveau (Modern)	96.196	62.500	62.5
	Symbolism	96.000	49.015	62.2
	Surrealism	93.989	68.894	49.0
	Post-Impressionism	93.806	43.907	60.5
	Romanticism	93.513	62.652	58.9
	Expressionism	93.281	51.370	52.9
	Impressionism	91.623	70.970	72.1
	Realism	89.745	62.934	57.6

The work has been popularised by the application developed by[START_REF] Johnson | neural-style[END_REF].

www.wikiart.org 

www.ergsart.com 

http://files.heuritech.com/weights/alexnet_weights.h5

See https://keras.io/applications

http://www.lamsade.dauphine.fr/ ~bnegrevergne/webpage/software/rasta/rasta-web/src/ frontend/?
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As we can see on Figure 8, the second t-SNE illustrates a great overlap between Mannerism and Baroque. The Ukiyo-e is better separated from the two others classes, but it still has some mixed points. Such a visual analysis correlates with the results in Table 5.