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2
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Abstract

In the eternal domination game, an attacker attacks a vertex at each turn and a
team of guards must move a guard to the attacked vertex to defend it. The guards may
only move to adjacent vertices and no more than one guard may occupy a vertex. The
goal is to determine the eternal domination number of a graph which is the minimum
number of guards required to defend the graph against an infinite sequence of attacks.
In this paper, we continue the study of the eternal domination game on strong grids.
Cartesian grids have been vastly studied with tight bounds for small grids such as 2×n,
3 × n, 4 × n, and 5 × n grids, and recently it was proven in [Lamprou et al., CIAC
2017, 393-404] that the eternal domination number of these grids in general is within
O(m + n) of their domination number which lower bounds the eternal domination
number. Recently, Finbow et al. proved that the eternal domination number of strong
grids is upper bounded by mn

6 + O(m + n). We adapt the techniques of [Lamprou et
al., CIAC 2017, 393-404] to prove that the eternal domination number of strong grids
is upper bounded by mn

7 + O(m + n). While this does not improve upon a recently
announced bound of dm3 ed

n
3 e+ O(m

√
n) [Mc Inerney, Nisse, Pérennes, HAL archives,

2018; Mc Inerney, Nisse, Pérennes, CIAC 2019] in the general case, we show that our
bound is an improvement in the case where the smaller of the two dimensions is at
most 6179.
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1 Introduction

1.1 Background

The graph security model of eternal domination was introduced in the 1990’s with the
study of the military strategy of Emperor Constantine for defending the Roman Empire
in a mathematical setting [1, 19, 20, 21]. The problem which is studied in these papers,
roughly put, is how to defend a network of cities with a limited number of armies at
your disposal in such a way that an army can always move to defend against an attack
by invaders and do so for any sequence of attacks. In the original version of eternal
domination (also called “infinite order domination” [4] and “eternal security”[11] in
earlier works), k guards are placed on the vertices of a graph G so that they form a
dominating set. An infinite sequence of vertices is then revealed one at a time (called
“attacks”). After each attack, a single guard is allowed to move to the attacked vertex.
If, after each attack, the guards maintain a dominating set, then we say that k guards
eternally dominate G. The minimum k for which k guards can eternally guard G for
any sequence of attacks is called the eternal domination number of G, and is denoted
γ∞(G).

A subsequently introduced model, and the one we study here, allows any number
of guards to move on their turn. The minimum number of guards required to eternally
dominate a graph G in this model (called the “all-guards move” model) is denoted
γ∞all(G), and is called the m-eternal domination number of G. Typically, one requires
that no two guards occupy the same vertex. If one allows more one guard to occupy
a vertex at a given time, then the corresponding parameter typically appears in the
literature as γ∗∞all (G); we do not consider this model here. For more variants and a
background on results related to eternal domination, the reader is referred to [15]. We
also point out that eternal domination can also be considered a special case of the Spy
Game, where an attacker (spy) moves at speed s on the graph, while the guards are
said to “control” the spy if one is distance at most d from the spy at the end of their
turn (see e.g., [6, 7, 8]). Eternal domination is then the special case of the Spy Game
with s = diam(G) and d = 0.

1.2 Recent results

As mentioned, we consider only the “all guards move” model. The cases of paths and
cycles for this variant of the game are trivial. In [14], a linear-time algorithm is given
to determine γ∞all(T ) for all trees T . In [3], the eternal domination game was solved
for proper interval graphs. In recent years, significant effort has been made in an
attempt to determine the eternal domination number of cartesian grids, γ∞all(Pn�Pm)
(see Figure 1). Exact values were determined for 2 × n cartesian grids in [12] and
4× n cartesian grids in [2]. Bounds for 3× n cartesian grids were obtained in [10] and
improved in [9], while bounds for 5×n cartesian grids were given in [22]. For generalm×
n cartesian grids, it is clear that γ∞all(Pn�Pm) must be at least the domination number,

γ(Pn�Pm), and so by the result in [13] it follows that γ∞all(Pn�Pm) ≥ b (n−2)(m−2)
5 c−4.

The best known upper bound for γ∞all(Pn�Pm) was determined in [16], where it was
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Figure 1: The cartesian grid P4�P4 (left) and strong grid P4 � P4 (right).

shown that γ∞all(Pn�Pm) ≤ mn
5 +O(m+ n), thus showing that γ∞all is within O(m+ n)

of the domination number.
Recently, Finbow et al. studied the eternal domination game on strong grids, Pn �

Pm, which are, roughly, cartesian grids where the diagonal edges exist (also known
as “king” graphs)(see Figure 1). They obtained an upper bound of mn

6 + O(m + n)
for the eternal domination number of Pn � Pm [5]. Note that it is trivially known
that γ(Pn � Pm) = dm3 ed

n
3 e. During the preparation of this paper, a parallel work

announced the following general lower and upper bounds of bn3 cb
m
3 c + Ω(n + m) ≤

γ∞all(Pn�Pm) ≤ dm3 ed
n
3 e+O(m

√
n), where n ≤ m, and thus showing, for large enough

values of n and m, that γ∞all(Pn � Pm) ≈ γ(Pn � Pm) (up to low order terms) [17, 18].

1.3 Our results

We show that γ∞all(Pn�Pm) ≤ mn
7 +O(m+n) for all integers n,m ≥ 9 by adapting the

techniques used in [16]. In Section 2, we establish the basic strategy used in the proofs
which follow. It can loosely be thought of as a strategy where those guards which
occupy the corners of 8× 8 grids stay in place while the guards on the interior of the
grid rotate in such a way that a symmetric configuration to the original is obtained.
In Section 3, we show that this strategy easily works for the infinite Cartesian grid,
and obtain the main result of the paper in Section 4. Finally, in Section 5, we compare
our results with those reported in [17, 18]. In the spirit of the aforementioned papers
focused on “skinny” Cartesian grids (those where the smallest dimension is bounded
by or is equal to some constant), we show that the strategy presented here gives a
better upper bound for γ∞all(Pn � Pm) in the case where n ≤ m and n is at most some
constant. We also believe that the strategy presented is interesting in its own right
and could provide a path for analysis of strong grids in higher dimensions.

2 Notations and the Alternating strategy

We begin by formally defining the graph Pn � Pm. Let V (Pn) = {0, . . . , n − 1} and
V (Pm) = {0, . . . ,m − 1}. Then, each vertex in Pn � Pm is an ordered pair (i, j), and
two vertices (i1, j1) and (i2, j2) are adjacent if and only if max{|i2 − i1|, |j2 − ij |} = 1
(see Figure 1).

In order to eternally dominate Pn�Pm, we consider a strategy that cycles through
two families of dominating sets, D and D′ (see Figure 2). Let D be a set of vertices in
Pn�Pm with the property that if (i, j) is in D then so are (i+2, j+1) and (i−1, j+3).
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D D′

Figure 2: Snapshot of a 10 × 10 subgrid of a much larger grid, showing the
positions of the guards in a D (left) and a D′ (right) configuration.

This definition implies thatD has a periodic nature, where every seventh vertex in a row
or column of Pn�Pm contains a vertex in D. Hence, D can be viewed as a dominating
set that contains the vertices (i + 2k + 7l, j + k + 7l) and (i + k + 7l, j − 3k + 7l) for
some i, j ≥ 0 and all integers k, l such that the resulting vertices have an x-coordinate
and a y-coordinate greater than or equal to zero. Similarly, D′ is the dominating set
that contains the vertices (i+ k+ 7l, j + 3k+ 7l) and (i+ 2k+ 7l, j − k+ 7l) for some
i, j ≥ 0 and all integers k, l such that the resulting vertices have an x-coordinate and
a y-coordinate greater than or equal to zero.

If the guards are in a D configuration, then the strategy for the guards is to have one
guard move to the attacked vertex and for the rest of the guards to move accordingly
to move into a D′ configuration and vice versa. Note that every non-dominated vertex
is adjacent to exactly one guard except for two of the vertices that are adjacent to each
guard that are in fact also adjacent to exactly one other guard each. That is, if the
guards occupy a D or D′ configuration that contains (i, j), then (i− 1, j) and (i+ 1, j)
are adjacent to two guards (assuming (i, j) is far enough from the borders of the grid).
In the case where one of these vertices is attacked, the guard that is diagonally adjacent
will defend against the attack (not the guard at (i, j)). Due to the guards alternating
between two families of configurations D and D′, we call this strategy, the Alternating
strategy.

In the Alternating strategy, there are anchor guards which do not move from their
vertices after an attack and they are determined by which vertex is attacked and the
current configuration of the guards. Essentially, the anchor guards occupy the corners
of 8 × 8 subgrids inside which the other guards move to protect against attacks and
alternate to the next configuration.

3 Eternally dominating P∞ � P∞

Theorem 1. The Alternating strategy eternally dominates P∞ � P∞.
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Proof. Consider the guards initially beginning in a D configuration (where now coor-
dinates are permitted to be any integer). We will show how the guards can move to a
D′ configuration containing the attacked vertex for all possible attacks (within symme-
try). We omit the proof of the movements of the guards from a D′ configuration to a
D configuration that contains the attacked vertex as it is analogous to the movements
in the opposite direction.

Due to symmetry, we only have to analyse the 8 possible attacks on the vertices
adjacent to a guard that occupies (i, j). We only consider the movements of the guards
in the corresponding 8×8 subgrid of the attacked vertex as the remaining subgrids will
all be symmetric to this one and so, the movements of the guards as well. Finally, we
only have to analyze 4 of the 8 possible attacks since an attack at (i+1, j) is symmetric
to an attack at (i − 1, j − 1), an attack at (i + 1, j + 1) is symmetric to an attack at
(i− 1, j), an attack at (i− 1, j + 1) is symmetric to an attack at (i+ 1, j − 1), and an
attack at (i, j + 1) is symmetric to an attack at (i, j − 1).

Attacked vertex Anchor vertices Guard movements

(i, j − 1)

(i, j)→ (i, j − 1)
(i− 1, j + 3) (i + 1, j − 3)→ (i + 2, j − 2)
(i− 1, j − 4) (i + 3, j − 2)→ (i + 4, j − 3)
(i + 6, j + 3) (i + 5, j − 1)→ (i + 5, j)
(i + 6, j − 4) (i + 4, j + 2)→ (i + 3, j + 1)

(i + 2, j + 1)→ (i + 1, j + 2)

(i + 1, j − 1)

(i, j)→ (i + 1, j − 1)
(i− 4, j + 5) (i + 2, j + 1)→ (i + 2, j + 2)
(i− 4, j − 2) (i + 1, j + 4)→ (i, j + 3)
(i + 3, j + 5) (i− 1, j + 3)→ (i− 2, j + 4)
(i + 3, j − 2) (i− 3, j + 2)→ (i− 3, j + 1)

(i− 2, j − 1)→ (i− 1, j)

(i + 1, j)

(i, j)→ (i− 1, j + 1)
(i− 3, j + 2) (i + 2, j + 1)→ (i + 1, j)
(i− 3, j − 5) (i + 3, j − 2)→ (i + 3, j − 1)
(i + 4, j + 2) (i + 1, j − 3)→ (i + 2, j − 4)
(i + 4, j − 5) (i− 1, j − 4)→ (i, j − 3)

(i− 2, j − 1)→ (i− 2, j − 2)

(i + 1, j + 1)

(i, j)→ (i + 1, j + 1)
(i− 2, j − 1) (i + 2, j + 1)→ (i + 3, j)
(i− 2, j + 6) (i + 4, j + 2)→ (i + 4, j + 3)
(i + 5, j − 1) (i + 3, j + 5)→ (i + 2, j + 4)
(i + 5, j + 6) (i + 1, j + 4)→ (i, j + 5)

(i− 1, j + 3)→ (i− 1, j + 2)

Table 1: Movements of guards from a D to a D′ configuration in the 8×8 subgrid
corresponding to all possible attacks (less symmetric cases).

It is easy to verify that the guards’ movements are possible and that they transition
into a D′ configuration after each attack (see Figure 3). Since the grid is infinite, there
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(i, j − 1) attacked (i + 1, j − 1) attacked

(i + 1, j) attacked (i + 1, j + 1) attacked

Figure 3: Movements of guards from a D to a D′ configuration in the 8 × 8
subgrid corresponding to all possible attacks (less symmetric cases). The black
guard occupies vertex (i, j) and the four anchor guards are the guards in the
corners.

are an infinite number of guards occupying the vertices of a D or D′ configuration and
so, any time a guard is required to move to a vertex by the Alternating strategy, he will
always exist and, from Table 1 and Figure 3, we know the guards will always transition
from D to D′ or vice versa with the attacked vertex occupied. Thus, the guards can
clearly do this strategy indefinitely and hence, they eternally dominate P∞ � P∞.

4 Eternally dominating Pn � Pm

We proceed to the case where the grid is finite and show that for n,m ≥ 9, γ∞all(Pm �
Pn) ≤ mn

7 +O(m+n). In order to facilitate obtaining an exact value for the O(m+n)
term, we consider different cases which depend on the divisibility of n and m. We first
provide a strategy for the finite grid Pn �Pm when n ≡ m ≡ 2 (mod 7), which utilizes
the Alternating strategy with an adjustment to deal with the borders of the grid. We
consider first the case when n ≡ m ≡ 2 (mod 7) for n,m ≥ 9, since it permits an easier
description of the strategy (and hence, the proof) of the guards. We then generalize
this strategy to any n×m grid for n,m ≥ 9 by employing two disjoint strategies.
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Theorem 2. For any two integers n,m ≥ 9 such that n ≡ m ≡ 2 (mod 7), γ∞all(Pm �
Pn) ≤ mn

7 + 8
7(m+ n− 1).

Proof. We use the fact that n ≡ m ≡ 2 (mod 7) to reduce the analysis of the guards’
strategy to the case of a 9× 9 grid. Essentially, the non-border vertices can be parti-
tioned into (n−2)(m−2)

7 7 × 7 subgrids since n ≡ m ≡ 2 (mod 7). We place one guard
in each of the corners of the n×m grid and these guards never move. Finally, we can
partition the sides of the grid (not including the corners) into paths of 7 vertices.

We implement the Alternating strategy in all of the 7 × 7 subgrids which means
they will all have identical configurations. Hence, we can focus just on the case of the
7 × 7 subgrids that touch the border vertices of the grid to ensure that the guards
from the border can move into these grids when needed. Thus, we contract the n×m
grid into a 9× 9 grid and show a winning strategy for the guards there which ensures
the borders of the n × m grid will be protected symmetrically for each of the paths
of 7 vertices that make up the borders and that the 7 × 7 subgrids adjacent to the
borders are symmetric to all the other 7× 7 subgrids. This strategy can then be easily
“translated” to any of the 7×7 subgrids that touch the border vertices to gain a global
strategy.

We show a winning strategy for the guards in the 9× 9 grid where 4 guards remain
in the corners indefinitely, 5 guards occupy each of the paths of 7 vertices in between
the corners (on the borders of the grid), and 7 guards from the Alternating strategy
occupy the 7 × 7 subgrid in the middle (see Figure 4). The 5 guards on each of the
paths of 7 vertices initially occupy the 5 central vertices, leaving the leaves empty. If
any border vertices get attacked, then they must be one of the leaves of the paths of 7
vertices and the closest guard on the corresponding path moves to the attacked vertex.
The remaining 4 guards on the same path stay still, as well as all 7 of the guards in the
interior of the grid, and the guards on each of the other paths move to a symmetric
formation as the path that was attacked. Any subsequent attack on a border vertex
is dealt with in the same fashion, i.e., if the other leaf is attacked, then the guards on
the path move into a symmetric formation with one guard on the attacked leaf and the
other 4 guards occupying a sequence of 4 vertices non-adjacent to the fifth guard and
not including any leaf. If an attack occurs on a non-leaf vertex of the path, then the
5 guards move back into their initial formation which includes neither of the leaves.
Note that the interior guards never move if a border vertex is attacked and the guards
on each of the paths are in symmetric positions.

Now, for each guard the Alternating strategy requires to move in from a border
vertex, it requires a guard to move out from the interior vertices. The exchange is
easy to facilitate since the guard moving out of the interior will always move onto the
same border path that the guard moving in to the interior previously occupied. In all
three of the possible configurations of the guards on the border vertices, the guards
occupy a dominating set of the row or column of vertices adjacent to them in the 7× 7
subgrid. Hence, there is a guard available to move to whichever vertex requires a guard
to move to it and the guard leaving the interior can always move onto the border path
as the guards can easily maneuver to leave an adjacent vertex empty for him while
maintaining one of the three formations.

Thus, the Alternating strategy with the extra guards on the borders of the grid,
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eternally dominates Pm�Pn. This strategy uses (n−2)(m−2)
7 +(2)5

7(m−2+n−2)+4 =
mn
7 + 8

7(m+ n− 1) guards which gives our result.

Figure 4: One possible configuration of the guards in the 9× 9 strong grid with
the guards in white in the corners never moving, the guards on the paths of
length 7 between the corners in black, and the remaining guards in gray.

We now use Theorem 2 to prove γ∞all(Pm�Pn) ≤ mn
7 +O(m+n) for grids in general

when n,m ≥ 9 and to give exact values of O(m + n) in these bounds by employing
two disjoint strategies as follows. The strategy from Theorem 2 is used for the largest
a × b subgrid in the n ×m grid such that a ≡ b ≡ 2 (mod 7) and a separate strategy
is used for the remaining unguarded vertices where none of the guards from the two
strategies are ever utilised in the other strategy and never occupy a vertex that the
other strategy is responsible for protecting.

Theorem 3. For any two integers n,m ≥ 9, γ∞all(Pm � Pn) ≤ ab
7 + 8

7(a + b − 1) +
αdn2 e+ βdm2 e − αβ where a ≡ b ≡ 2 (mod 7), 0 ≤ n− a ≤ 6, 0 ≤ m− b ≤ 6, and

α =


0 if m mod 7 = 2
1 if m mod 7 ∈ {3, 4}
2 if m mod 7 ∈ {5, 6}
3 if m mod 7 ∈ {0, 1}

β =


0 if n mod 7 = 2
1 if n mod 7 ∈ {3, 4}
2 if n mod 7 ∈ {5, 6}
3 if n mod 7 ∈ {0, 1}

Proof. The ab
7 + 8

7(a + b− 1) guards follow the strategy in the proof of Theorem 2 in
the a× b subgrid which will include at least one corner of the n×m grid. Separately,
there remain n − a columns and m − b rows to protect which are all found on the
same side of the n × m grid due to the placement of the a × b grid. That is, there
are n− a consecutive remaining columns and m− b consecutive remaining rows which
overlap near one corner of the n × m grid (see Figure 5). We can guard the m − b
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remaining rows with αdn2 e guards, since one guard every two vertices can protect two
rows since the two rows are partitioned into disjoint K4 (plus some remainder due to
divisibility) and one guard is assigned to each K4 which clearly he can protect. Thus,
we use dn2 e guards for every two rows that remain and if there are an odd number of
rows remaining, then we use dn2 e guards to protect the last remaining row. Similarly,
βdm2 e corresponds to the number of guards required to protect the n − a remaining
columns.Since we have over-counted by αβ overlapping guards, the bound follows.

Figure 5: The n ×m strong grid with the area in white representing the a × b
subgrid and the area in gray representing the remaining rows and columns.

Now, we can prove our main result.

Corollary 4. For any two integers n,m ≥ 9, γ∞all(Pm � Pn) ≤ mn
7 +O(m+ n).

Proof. This follows directly from Theorem 3.

5 Comparison with other bounds

In a parallel work, Mc Inerney, Nisse, and Pérennes [17, 18] show that if m ≥ n, then
γ∞all(Pn � Pm) ≤ dm3 ed

n
3 e + O(m

√
n). The general configuration which is maintained

is to (a) fill some number of rows and columns with stationary guards so that the
dimensions of the remaining m∗ × n∗ grid satisfy necessary divisibility conditions, (b)
add additional rows and columns of guards to allow passage of guards around the
outside of the subgrid, (c) partition the subgrid into m∗×k smaller subgrids, (d) place
guards along boundary layers of each subgrid, and (e) place one guard for every 9
vertices of the interior of each subgrid in such a way that every attack has a response,
transferring guards as need be through the boundary layers.

In the best case (i.e., it is not necessary to fill some rows/columns with guards to
ensure the remaining subgrid satisfies divisibility conditions), the bound from [17, 18]
is (

m− 2α

3α− 1

)(⌈
(n− 2)(3α− 3)

9

⌉
+ 2n+ 6α− 6

)
+ 2α(m+ n− 2α). (1)

where α = k−2
3 + 1 and k is the greatest integer less or equal to

√
n for which k ≡ 2

(mod 3) (note that k >
√
n− 3).
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The worst case for our bound is when α = β = 3, a = n− 5, and b = m− 5, as this
requires packing the most stationary guards around two sides of the grid. This gives

(m− 5)(n− 5)

7
+

8(m+ n− 11)

7
+ 3

⌈m
2

⌉
+ 3

⌈n
2

⌉
− 9. (2)

The dark shaded region shown in the graph in Figure 6 gives the values of m and n
for which the bound in (2) bests the bound in (1), using k =

√
n−3 to express (1) as a

function of m and n only. Note that the bounding function as m→∞ eventually stays
strictly between n = 6179 and n = 6180, and thus our result is best for sufficiently
“skinny grids”, where n < 6180.

Figure 6: Comparison of bounds (1) and (2); m as horizontal axis, n as vertical
axis

We point out that the authors of [17, 18] did not attempt to optimize the constants
in their result (nor did we in this paper), only to show that the domination number
plus some low order terms was an upper bound for γ∞all. However, the “dense” guards
surrounding each subgrid is an integral part of their argument, leading to the O(m

√
n)

term in their result which cannot be dropped (unless a new method is found to guard
the boundaries). As a result, even with optimization of constants, our strategy should
be preferred for sufficiently “skinny” n×m strong grids.
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