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In dynamic reliability, the evolution of a system is described by a piecewise determinis-
tic Markov process (It,Xt)t≥0 with state-space E×Rd, where E is finite. The main result
of the present paper is the characterization of the marginal distribution of the Markov
process (It,Xt)t≥0 at time t, as the unique solution of a set of explicit integro-differential
equations, which can be seen as a weak form of the Chapman-Kolmogorov equation.
Uniqueness is the difficult part of the result.

Copyright © 2006 Christiane Cocozza-Thivent et al. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

In dynamic reliability, a system is considered, which evolves in time according to a two-
component Markov process (It,Xt)t≥0: the symbol It corresponds to some physical state
of the system and has a finite state-space E, whereas Xt represents some “environmental”
condition (temperature, pressure, . . .) and takes its values in Rd. The transition rate be-
tween two different states i and j of E may vary with the current environmental condition
x in Rd. The transition rate from state i to state j then appears as a function from Rd to
R+, and will be denoted by a(i, j,·). The evolution of the environmental component Xt
is described by a set of differential equations, which depend on the physical state of the
item. More precisely, the dynamic of Xt is such that, given It(ω) = i for all t ∈ [a,b], we
have

d

dt
Xt(ω)= v

(
i,Xt(ω)

)
, (1.1)

for all t ∈ [a,b], where v is a mapping from E×Rd toRd. As a consequence, the trajectory
(Xt)t≥0 is deterministic between any two consecutive jumps of (It)t≥0, and (Xt)t≥0 is the
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2 Characterization of the marginal distributions of PDMP

solution of the ordinary differential equation dy/dt = v(i, y). Such processes are called
piecewise deterministic Markov processes, see Davis [7, 8].

In dynamic reliability, the process (Xt)t≥0 is usually assumed to be continuous so that
no jump is allowed for the environmental component (see [12], e.g., and other papers
by P. E. Labeau). In the present paper, this assumption of continuity is relaxed and the
process (Xt)t≥0 may jump simultaneously with the process (It)t≥0. More precisely, when
the process It jumps from state i to state j, we assume that the process (Xt) belongs to
(y, y + dy) with probability μ(i, j,x)(dy) at the jump time, given that Xt = x just before
the jump (where (i, j,x)∈ E2×Rd). In the case μ(i, j,x)(dy)= δx(dy) (for all i, j, x), the
process (Xt)t≥0 is continuous and our model meets the usual one. Our model however
includes a lot of other interesting cases such as interacting semi-Markov processes or
non-homogenous Markov processes.

The marginal distribution of the process (It,Xt)t≥0 at time t usually is a complicated
characteristic which is not analytically reachable (see, e.g., [12]). The aim of the present
paper is to characterize such a marginal distribution as the unique measure solution of
a set of explicit integro-differential equations. Such equations can actually be seen as a
weak form of the Chapman-Kolmogorov (CK) equations associated to the Markov pro-
cess (It,Xt)t≥0. In a second paper (see [3]), we use such a characterization to propose
a numerical algorithm, which is shown to converge weakly towards the right marginal
distribution in a third paper [4].

Piecewise deterministic Markov processes (PDMP) have already been studied by Davis
[8] (other references therein). However, the main part of the present work, namely, ex-
istence and uniqueness of solutions to the CK equation is not treated by Davis, who is
mainly interested in functionals of the process which do not englobe marginal distribu-
tions. PDMP have also been studied by Costa, Dufour, and Raymundo in [5, 6, 9] and
by Borovkov and Novikov in [2], with different objectives from ours. A chapter in [13] is
also devoted to PDMP.

The paper is organized as follows: notations and assumptions are given in Section 2.
In Section 3, the process (It,Xt)t≥0 is constructed, using the Markov renewal theory.

We derive that (It,Xt)t≥0 is a Markov process and give an explicit expression for its tran-
sition probabilities and for its full generator on regular functions.

In Section 4, we first give some weak form for the CK equations with regular test func-
tions. The existence of a solution to such equations is ensured by the construction of
Section 3. Then we show the uniqueness of the solution by extending the set of test func-
tions to more general set of functions. This is the main part of the paper.

Concluding remarks are given in Section 5.

2. Notations-assumptions

We use the following notations.
(1) Symbol E stands for the finite state-space of the studied item.
(2) For d ∈ N∗, symbols �(Rd) and �(E ×Rd), respectively, represent the set of

probability measures on Rd and E×Rd.
(3) Symbols Cb(F,R) and C1(F,R), respectively, stand for the set of bounded con-

tinuous functions and the set of continuously differentiable functions from a
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Banach space F to R (or R+). In the following, we use F = Rd, F = Rd ×R,
F = Rd × [0,T], C1

b(F,R)= Cb(F,R)∩C1(F,R). Symbol C1
c (F,R) stands for the

set of continuously differentiable functions with a compact support.
(4) For any set F, symbols FE and FE×E, respectively, represent the set of functions

f :

⎧
⎨

⎩
E −→ F,

i �−→ f (i),
f :

⎧
⎨

⎩
E×E −→ F,

(i, j) �−→ f (i, j).
(2.1)

For instance,Cb(Rd,R)E stands for the set of functions f : E→ Cb(Rd,R), namely,
such that f (i) is a bounded continuous function from Rd to R, for all i ∈ E.
For the sake of simplicity, we write f (i,x) or f (i, j,x) instead of ( f (i))(x) or
( f (i, j))(x), for i, j ∈ E and x in Rd or Rd ×R.

With these notations, we adopt the following assumptions, which will be referred to as
assumptions (H).

(1) The transition rate a is assumed to be such that a∈ Cb(Rd,R+)E×E, namely, non-
negative, continuous, and bounded by some real number A > 0.

(2) The velocity v which appears in (1.1) is assumed to be such that:
(i) v ∈ C(Rd,Rd)E,

(ii) the function v(i,·) is locally Lipschitz continuous (for all i∈ E),
(iii) the function div v(i,·) is almost everywhere bounded by some real value

D > 0 (for all i∈ E),
(iv) the function v(i,·) is sublinear (for all i ∈ E): there are some V1 > 0 and

V2 > 0 such that

∀i∈ E, ∀x ∈Rd,
∥
∥v(i,x)

∥
∥≤V1‖x‖+V2. (2.2)

(3) The distribution {μ(i, j,x)} which controls the jumps of (Xt)t≥0 by jump times of
(It)t≥0 is such that, for i, j ∈ E and ψ ∈ Cb(Rd,R), the function x→ ∫ ψ(y)μ(i, j,
x)(dy), x ∈Rd, is continuous (where μ : E×E×Rd →�(Rd)).

These assumptions guarantee the existence and uniqueness of the solution to the differ-
ential equations fulfilled by the environmental component. They also provide us with
some classical properties for the solution which are summed up in the following lemma.

Lemma 2.1. There exists one and only one function g ∈ C(Rd ×R,Rd)E of the class C1 with
respect to time t such that for any i∈ E,

∂g

∂t
(i,x, t)= v

(
i,g(i,x, t)

)
, ∀(x, t)∈Rd ×R, (2.3)

with an initial condition

g(i,x,0)= x, ∀x ∈Rd. (2.4)
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Moreover, this unique solution g fulfils the following properties.
(1) The function x �→ g(i,x, t) is locally Lipschitz continuous with respect to x on Rd, for

all t > 0 and i∈ E.
(2) For all x ∈Rd, (s, t)∈R×R, and i∈ E, one has

g
(
i,g(i,x,s), t

)= g(i,x,s+ t). (2.5)

3. Probabilistic construction of the process

In this section, we first construct the process (It,Xt)t≥0 in a similar way as in Davis [8].
We then derive explicit expressions for the transition probabilities of the process (It,Xt)t≥0

and for its full generator on the class of regular functions.

3.1. Construction of the process. In order to construct the process (It,Xt)t≥0 with val-
ues in E×Rd, we first define a Markov renewal process (Tn, (ITn ,XTn))n≥0 by its condi-
tional distributions. Let us denote by Q(ITn ,XTn , j,dy,du) the conditional distribution of
(ITn+1 ,XTn+1 ,Tn+1−Tn), given (Tk, (ITk ,XTk ))k≤n (or equivalently given (ITn ,XTn)). Setting
λ(i,·)=∑ j∈E a(i, j,·) for i∈ E, we define Q in the following way:

E
[
h
(
XTn+1 ,Tn+1−Tn

)
1{ITn+1= j} |

(
Tk,
(
ITk ,XTk

))
k≤n
]

=
∫∞

0
exp

(
−
∫ u

0
λ
(
ITn ,g

(
ITn ,XTn ,v

))
dv
)
a
(
ITn , j,g

(
ITn ,XTn ,u

))

×
(∫

h(y,u)μ
(
ITn , j,g

(
ITn ,XTn ,u

))
(dy)

)
du

=
∫∞

0
h(y,u)Q

(
ITn ,XTn , j,dy,du

)
.

(3.1)

Here, h is any positive measurable function on Rd ×R+ and j ∈ E.
The process (It,Xt)t≥0 is now constructed as

if Tn ≤ t < Tn+1, then It = ITn , Xt = g
(
ITn ,XTn , t−Tn

)
. (3.2)

As noted in Section 1, we can see that, given (ITn ,XTn)n≥0, the trajectory of (Xt)t≥0 is
purely deterministic on [Tn,Tn+1) for n= 0, 1, 2, . . ., with T0 = 0.

3.2. Transition probabilities. From the previous construction, we derive an explicit ex-
pression for the transition probabilities of (It,Xt)t≥0. This is based on calculations of con-
ditional expectations, using several properties of the Markov renewal process (Tn, (ITn ,
XTn))n≥0 such as

E
[
h
(
Tn+1−Tn

) | (Tk,
(
ITk ,XTk

))
k≤n
]

=
∫∞

0
h(u)exp

(
−
∫ u

0
λ
(
ITn ,g

(
ITn ,XTn ,v

))
dv
)
λ
(
ITn ,g

(
ITn ,XTn ,u

))
du.

(3.3)
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It is convenient to introduce the following notation:

ci(t,x)= exp
(
−
∫ t

0
λ
(
i,g(i,x,v)

)
dv
)
. (3.4)

Proposition 3.1. The process (It,Xt)t≥0 is a homogeneous Markov process with values in
E×Rd. Its transition probabilities Pt(i,x, j,dy) are given by

∫

h(y)Pt(i,x, j,dy)

= 1{i= j}ci(t,x)h
(
g(i,x, t)

)

+
∫ t

0
ci(s,x)a

(
i, j,g(i,x,s)

)
(∫

cj(t− s, y)h
(
g( j, y, t− s))μ(i, j,g(i,x,s)

)
(dy)

)
ds

+
∑

p≥2

∑

j1,..., jp−1

∫

···
∫

{s1≥0,...,sp≥0,s1+···+sp≤t}
ds1 ···dsp

× ci
(
s1,x

)
a
(
i, j1,g(i,x,s)

)
∫

μ
(
i, j1,g

(
i,x,s1

))(
dy1

)

×
p−2∏

i=1

cji
(
si+1, yi

)
a
(
ji, ji+1,g

(
ji, yi,si+1

))
∫

μ
(
ji, ji+1,g

(
ji, yi,si+1

))(
dyi+1

)

× cjp−1

(
sp, yp−1

)
a
(
jp−1, j,g

(
jp−1, yp−1,sp

))
∫

μ
(
jp−1, j,g

(
jp−1, yp−1,sp

))
(dy)

× cj
(
t− (s1 + ···+ sp

)
, y
)
h
(
g
(
j, y, t− (s1 + ···+ sp

)))
,

(3.5)

where h is any bounded measurable function.

Remark 3.2. These transition probabilities are the sum of different terms. The first term
corresponds to the case of no jump between 0 and t, and consequently to a deterministic
trajectory on [0, t]. The second term corresponds to the case of one single jump, and the
other terms to more than two jumps.

As usual, the transition probabilities Pt can be seen as operators on the set of measur-
able bounded functions defined on E×Rd in the following way:

∀(i,x)∈ E×Rd, Pth(i,x)= E
(
h
(
It,Xt

) | I0 = i, X0 = x
)=

∑

j∈E

∫

h( j, y)Pt(i,x, j,dy).

(3.6)

The following two corollaries can be easily checked thanks to the expression of Pt as given
by Proposition 3.1.
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Corollary 3.3. Let h∈ Cb(Rd,R)E, then for all t ∈R+, Pth∈ Cb(Rd,R)E.

Corollary 3.4. For h ∈ Cb(Rd,R)E and (i0,x0) ∈ E ×Rd, t → Pth(i0,x0), t ∈ R+, is a
continuous function.

3.3. Generator. We now exhibit sufficient conditions for a function h to be in the domain
of the full generator � of the Markov process (It,Xt)t≥0, and we give the expression of �h
for such an h. Alternative sufficient conditions may be found in [13, Theorem 11.2.2] or
[8]. In all the following, we will use the set D0 such that

D0 =
{
h : h∈ C1

b

(
Rd,R

)E
, v(i,·) ·∇h(i,·)∈ Cb

(
Rd,R

)
, ∀i∈ E}. (3.7)

Here,∇ represents the gradient with respect to the second variable (in Rd) and

v(i,·) ·∇h(i,·)=
d∑

k=1

∂h

∂xk
(i,·)v(k)(i,·) (3.8)

with v(i,·)= (v(1)(i,·),v(2)(i,·), . . . ,v(d)(i,·)).

Proposition 3.5. For h∈D0, let us define �h in the following way:

�h(i,x)=
∑

j

a(i, j,x)
∫

h( j, y)μ(i, j,x)(dy)−h(i,x)λ(i,x) +
d∑

k=1

∂h

∂xk
(i,x)v(k)(i,x)

=
∑

j

a(i, j,x)
∫
(
h( j, y)−h(i,x)

)
μ(i, j,x)(dy) + v(i,x) ·∇h(i,x).

(3.9)

Then, under assumptions (H), h ∈ D0 belongs to the domain of the full generator � of the
Markov process (It,Xt)t≥0. Equivalently, h(It,Xt)− h(I0,X0)− ∫ t0 �h(Is,Xs)ds is a martin-
gale with respect to the natural filtration of the process (It,Xt)t≥0.

Proof. Assumptions (H) imply that � is a linear operator from D0 to the set of bounded
measurable functions. For (i,x)∈ E×Rd and h∈D0, let us consider

ht(i,x)= Pth(i,x)−h(i,x)
t

=
∑

j∈E
∫
h( j, y)Pt(i,x, j,dy)−h(i,x)

t
. (3.10)

Due to classical arguments, it is sufficient to prove that limt→0+ ht(i,x)=�h(i,x), and that
ht(i,x) is uniformly bounded for (i,x)∈ E×Rd and t in a neighborhood of 0.

Based on Proposition 3.1, we have

Pth(i,x)−h(i,x)=A1 +A2 +A3, (3.11)
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where

A1 = ci(t,x)h
(
i,g(i,x, t)

)−h(i,x),

A2 =
∑

j

∫ t

0
ci(s,x)a

(
i, j,g(i,x,s)

)

×
(∫

cj(t− s, y)h
(
j,g( j, y, t− s))μ(i, j,g(i,x,s)

)
(dy)

)
ds,

A3 =
∑

j

∑

p≥2

∑

j1,..., jp−1

∫

···
∫

{s1≥0,...,sp≥0,s1+···+sp≤t}
ds1 ···dsp

× ci
(
s1,x

)
a
(
i, j1,g(i,x,s)

)
∫

μ
(
i, j1,g

(
i,x,s1

))(
dy1

)

×
p−2∏

i=1

cji
(
si+1, yi

)
a
(
ji, ji+1,g

(
ji, yi,si+1

))
∫

μ
(
ji, ji+1,g

(
ji, yi,si+1

))(
dyi+1

)

× cjp−1

(
sp, yp−1

)
a
(
jp−1, j,g

(
jp−1, yp−1,sp

))
∫

μ
(
jp−1, j,g

(
jp−1, yp−1,sp

))
(dy)

× cj
(
t− (s1 + ···+ sp

)
, y
)
h
(
j,g
(
j, y, t− (s1 + ···+ sp

)))
.

(3.12)

Denoting byM and Λ respective bounds for h and λ, it is easy to check thatA3 is bounded
byM

∑
p≥2Λ

p tp/p!. Thus,A3 divided by t is uniformly bounded for (i,x, t)∈ E×Rd ×V ,
where V is a neighborhood of 0, and tends to 0 as t tends to 0.

Under assumptions (H), A2 divided by t is bounded and tends to
∑

j a(i, j,x)
∫
h( j,

y)μ(i, j,x)(dy) as t tends to 0.
Under assumptions (H), A1 divided by t is bounded and

A1

t
= h

(
i,g(i,x, t)

)−h(i,x)
t

−h(i,g(i,x, t)
)1− ci(t,x)

t
. (3.13)

When t tends to 0, this quantity tends to

d∑

k=1

∂h

∂xk
(i,x)v(k)(i,x)−h(i,x)λ(i,x). (3.14)

This completes the proof. �

4. The marginal distributions of (It,Xt) as unique solutions of
integro-differential equations

From the previous section, we have an explicit expression for the full generator of
(It,Xt)t≥0 on regular functions (elements of D0). Now, we derive a weak form of the
Chapman-Kolmogorov (CK) equations with regular test functions in Section 4.1. Exis-
tence of a solution for such CK equations is clearly ensured by the construction of the
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process (It,Xt)t≥0 of the previous section. The aim of this section then is to prove the
uniqueness of the solution. Actually, the set D0 of test functions for the CK equations (as
provided by the previous section) soon appears as not rich enough to show such unique-
ness. We then extend D0 to a set of regular time-dependent functions in Section 4.2 and
to less regular time-dependent functions in Section 4.3. The final conclusion is made in
Section 4.4.

In this section, symbol ρ0 stands for the initial distribution of (It,Xt)t≥0 (with ρ0 ∈
�(E×Rd)).

4.1. The Chapman-Kolmogorov equations. We give here the expression of the CK equa-
tions for h in D0, which is a direct consequence from the expression for the full generator
given in Proposition 3.5.

Proposition 4.1 (Chapman-Kolmogorov equations). Let ρt(i,dx) be the marginal distri-
bution of (It,Xt)t≥0 at time t, namely, the measure on E×Rd such that

ρt(i,dx)=
∑

i0∈E

∫

Rd
Pt
(
i0,x0, i,dx

)
ρ0
(
i0,dx0

)
, ∀t ≥ 0. (4.1)

Then, for all t ∈R+ and h∈D0,

∑

i∈E

∫

Rd
h(i,x)ρt(i,dx)−

∑

i∈E

∫

Rd
h(i,x)ρ0(i,dx)

=
∫ t

0

∑

i∈E

∫

Rd

[
∑

j∈E
a(i, j,x)

(∫

Rd
h( j, y)μ(i, j,x)(dy)−h(i,x)

)

+ v(i,x) ·∇h(i,x)

]

ρs(i,dx)ds.

(4.2)

Such a proposition suggests the following definition.

Definition 4.2 (measure solution to CK equations). Let P :R+ →�(E×Rd) be such that
for all t ∈R+ and h∈D0,

∑

i∈E

∫

h(i,x)Pt(i,dx)−
∑

i∈E

∫

h(i,x)ρ0(i,dx)

=
∫ t

0

∑

i∈E

∫ [∑

j∈E
a(i, j,x)

(∫

h( j, y)μ(i, j,x)(dy)−h(i,x)
)

+ v(i,x) ·∇h(i,x)

]

Ps(i,dx)ds.

(4.3)

Then, P is called a measure solution of the Chapman-Kolmogorov equations.

Remark 4.3. If P is a measure solution of the CK equations, then P0 = ρ0. Also, for all
h∈ Cb(Rd,R)E, one may check that

∑
i∈E
∫
h(i,x)Pt(i,dx) is continuous in t.
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Due to Proposition 4.1, we already know that a measure solution of the CK equations
exists (namely, Pt(i,dx)= ρt(i,dx)), so our problem now reduces to show the uniqueness
of such a solution. If we assume that there are two measure solutions of the CK equations,
we have to show that their difference, say P̃s(i,dx), is zero, or equivalently that

∑

i∈E

∫

Rd
h(i,x)P̃s(i,dx)= 0, (4.4)

for h belonging to sufficiently large set of functions, for almost all s > 0. Alternatively, we
may also prove that

∑

i∈E

∫∫

Rd×R+

ϕ(i,x,s)P̃s(i,dx)ds= 0, (4.5)

for ϕ belonging to sufficiently large set of functions. The form of (4.3) suggests the second
form to be more appropriate to our problem. This leads us to extend (4.3) to some time-
dependent functions ϕ. Also, such functions will be taken with a compact support so that
the term

∑
i∈E
∫
ϕ(i,x, t)P̃t(i,dx) in (4.3) will vanish as t→∞.

4.2. Characterization of a measure solution of the CK equations with time-dependent
functions. The extension of (4.3) to time-dependent functions might be derived from
the following equivalence (see, e.g., [11]):

(
∀h∈D0, h

(
It,Xt

)−h(I0,X0
)−

∫ t

0
�h
(
Is,Xs

)
ds is a martingale

)

⇐⇒
(
∀ϕ∈ D̂0, ϕ

(
It,Xt, t

)−ϕ(I0,X0,0
)−

∫ t

0

(
∂ϕ

∂u
+ �ϕ

)
(
Iu,Xu,u

)
du is a martingale

)
,

(4.6)

where the new set D̂0 consists of the real continuous functions ϕ∈ C1
b(Rd ×R+,R)E such

that for each t ≥ 0, the function ϕt : (i,x)→ ϕ(i,x, t) belongs toD0. For ϕ∈ D̂0, �ϕ is then
defined by �ϕ(i,x, t)=�ϕt(i,x).

However, it is better to follow here another approach, more in the spirit of the future
developments, so that we now extend the CK equations directly from (4.3).

In the following, we use the symbol ∂t to denote the derivative with respect to the vari-
able t ∈R+, whereas we recall that ∇ stands for the gradient with respect to the variable
x ∈Rd.
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Proposition 4.4. Let P : R+ → �(E×Rd). The function P is a measure solution of the
Chapman-Kolmogorov equations in the sense of Definition 4.2 if and only if

∫ t

0

∑

i∈E

∫ [∑

j∈E
a(i, j,x)

(∫

ϕ( j, y,s)μ(i, j,x)(dy)−ϕ(i,x,s)
)

+ ∂tϕ(i,x,s)

+ v(i,x) ·∇ϕ(i,x,s)

]

Ps(i,dx)ds

+
∑

i∈E

(∫

ϕ(i,x,0)ρ0(i,dx)−
∫

ϕ(i,x, t)Pt(i,dx)
)
= 0,

(4.7)

for all t ∈R+ and ϕ∈ C1
c (Rd ×R+,R)E.

Proof. We only have to prove that (4.3) implies (4.7). The implication (4.7)⇒(4.3) is clear.
For ϕ ∈ C1

c (Rd ×R+,R)E and t ∈ R+, we first apply formula (4.3) to the function
(i,x)→ ∂tϕ(i,x, t). Then, we integrate such a formula with respect to t ∈ (0,T), and we
perform different integrations by parts. We use again formula (4.3) for the function
ϕ(·,·,T) and t = T . Thus we arrive at the desired result. �

Taking t→∞ in (4.7), we now get the following result.

Corollary 4.5. If P : R+ → �(E ×Rd) is a measure solution of the CK equations and
ϕ∈ C1

c (Rd ×R+,R)E, then the measure m(i,dx,ds)= Ps(i,dx)ds satisfies

m
(·,Rd × [0,T]

)
<∞, ∀T ∈R+,

0=
∫

R+

∑

i∈E

∫ ∑

j∈E
a(i, j,x)

(∫

ϕ( j, y,s)μ(i, j,x)(dy)−ϕ(i,x,s)
)
m(i,dx,ds)

+
∫

R+

∑

i∈E

∫
(
∂tϕ(i,x,s) + v(i,x) ·∇ϕ(i,x,s)

)
m(i,dx,ds) +

∑

i∈E

∫

ϕ(i,x,0)ρ0(i,dx).

(4.8)

In order to prove uniqueness of such an m, we assume that m̃ stands for the difference
between two solutions. We already know

∑

i∈E

∫∫

Rd×R+

ψ(i,x,s)m̃(i,dx,ds)= 0 (4.9)

with

ψ(i,x,s)=
∑

j∈E
a(i, j,x)

(∫

ϕ( j, y,s)μ(i, j,x)(dy)−ϕ(i,x,s)
)

+ ∂tϕ(i,x,s) + v(i,x) ·∇ϕ(i,x,s)

(4.10)

and ϕ∈ C1
c (Rd ×R+,R)E.

To show that m̃≡ 0, we still have to extend the CK equations to less regular functions
ϕ in order to prove that (4.9) is true for ψ belonging to sufficiently large set of functions,
such as C1

c (Rd ×R+,R)E. This is done in the following section.
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4.3. Extension of the time-dependent test-functions set for the CK equations. We first
introduce the following definitions.

Definition 4.6. For ϕ∈ Cb(Rd ×R+,R)E, let us define ϕ̃∈ Cb(Rd ×R+,R)E by

ϕ̃(i,x, t)= ϕ(i,g(i,x, t), t
)
. (4.11)

We denote by Cb(d,E,v) the set of functions ϕ∈ Cb(Rd ×R+,R)E such that the func-
tion ϕ̃ is continuously differentiable in t with derivative ∂tϕ̃∈ Cb(Rd ×R+,R)E.

Remark 4.7. Note that, thanks to Lemma 2.1, the functions ϕ and the functions ϕ̃ are in
one-to-one correspondence because

ϕ(i,x, t)= ϕ̃(i,g(i,x,−t), t
)
. (4.12)

If ϕ̃ is continuously differentiable in t and such that its derivative ∂tϕ̃∈ Cb(Rd ×R+,R)E,
then the function ϕ defined by (4.12) belongs toCb(d,E,v). Also, note that if ϕ∈ C1

b(Rd ×
R+,R)E, the function ∂tϕ belongs to Cb(Rd ×R+,R)E and is such that

∂tϕ̃(i, y,s)= ∂tϕ
(
i,g(i, y,s),s

)
+ v
(
i,g(i, y,s)

) ·∇ϕ(i,g(i, y,s),s
)
. (4.13)

This yields

∂tϕ̃
(
i,g(i,x,−s),s

)= ∂tϕ(i,x,s) + v(i,x) ·∇ϕ(i,x,s), ∀(i,x,s)∈ E×Rd ×R+, (4.14)

which is the usual expression of a partial derivative of the velocity field v(i,·).

This last expression leads to the following notation: for all ϕ ∈ Cb(d,E,v), we denote
by ∂t,vϕ∈ Cb(Rd ×R+,R)E the function defined by

∂t,vϕ(i,x,s)= ∂tϕ̃
(
i,g(i,x,−s),s

)
. (4.15)

(Recall that ∂tϕ̃ is the partial derivative of ϕ̃ with respect to its third argument.)

Remark 4.8. Suppose that ϕ ∈ C1
b(Rd × R+,R)E with ∂tϕ(i,·,·) + v(i,·) · ∇ϕ(i,·,·) ∈

Cb(Rd ×R+,R)E. Then, ϕ∈ Cb(d,E,v). In particular, any function ϕ∈ C1
c (Rd ×R+,R)E

belongs to Cb(d,E,v). Similarly, if we take any function ϕ∈ C1
b(Rd,R)E which is constant

in time and such that v(i,·) ·∇ϕ(i,·)∈ Cb(Rd,R), then ϕ∈ Cb(d,E,v).

We will also need the following result.

Lemma 4.9. If ϕ̃∈ C1
c (Rd ×R+,R)E, then ϕ∈ C1

c (Rd ×R+,R)E.

Proof. Let ϕ̃∈ C1
c (Rd ×R+,R)E. The only point to show is that the function ϕ has a com-

pact support: as ϕ̃ has a compact support, there are some constantsM > 0, T > 0 such that
ϕ̃(i,x, t) = 0 if t > T or ‖x‖ >M, for all i ∈ E. Now, let (i,x, t) be such that ϕ(i,x, t) �= 0.
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We derive that 0≤ t ≤ T and ‖g(i,x,−t)‖ ≤M. Then,

‖x‖ ≤ ∥∥x− g(i,x,−t)∥∥+
∥
∥g(i,x,−t)∥∥

≤ ∥∥g(i,g(i,x,−t), t
)− g(i,g(i,x,−t),0

)∥∥+M

≤
∫ t

0

∥
∥v
(
i,g
(
i,g(i,x,−t),s

))∥∥ds+M

≤V1

∫ t

0

∥
∥g
(
i,g(i,x,−t),s

)∥∥ds+V2t+M.

(4.16)

Moreover, for 0≤ s≤ t ≤ T , we have
∥
∥g
(
i,g(i,x,−t),s

)∥∥≤ ∥∥g(i,x,−t)∥∥+
∥
∥g
(
i,g(i,x,−t),s

)− g(i,g(i,x,−t),0
)∥∥

≤M +V1

∫ s

0

∥
∥g
(
i,g(i,x,−t),u

)∥∥du+V2s (as previously)

≤M +V2T +V1

∫ s

0

∥
∥g
(
i,g(i,x,−t),u

)∥∥du.

(4.17)

Using Gronwall’s lemma, we derive

∥
∥g
(
i,g(i,x,−t),s

)∥∥≤ (M +V2T
)
eV1s ≤ (M +V2T

)
eV1T . (4.18)

Inequality (4.16) now implies that

‖x‖ ≤V1T
(
M +V2T

)
eV1T +V2T +M, (4.19)

and hence ϕ has a compact support. This completes the proof. �

We are now ready to state the main result of this section.

Proposition 4.10. Let m be a Radon measure such that m(·,Rd × [0,T]) <∞ for all T ∈
R+, and (4.8) are fulfilled for all ϕ∈ C1

c (Rd ×R+,R)E. Then,

0=
∫

R+

∑

i∈E

∫ ∑

j∈E
a(i, j,x)

(∫

ϕ( j, y,s)μ(i, j,x)(dy)−ϕ(i,x,s)
)
m(i,dx,ds)

+
∫

R+

∑

i∈E

∫

∂t,vϕ(i,x,s)m(i,dx,ds) +
∑

i∈E

∫

ϕ(i,x,0)ρ0(i,dx),
(4.20)

for all functions ϕ∈ Cb(d,E,v) such that ϕ(·,·, t)= 0 for all t > T , for some T > 0.

Proof. We first prove the result in the case ϕ∈ Cb(d,E,v) is Lipschitz continuous with a
compact support.

We need classical mollifying functions. First, let C∞c (R) (resp., C∞c (Rd)) be the set of
real-valued infinitely differentiable functions with a compact support in R (resp., Rd).
Then, let ρ̄1 ∈ C∞c (R) be such that ρ̄1(s)= 0 for all s∈ (−∞,−1]∪ [0,+∞), ρ̄1(s)≥ 0 for
all s∈ [−1,0] and

∫
R ρ̄1(s)ds= 1. For all n∈N∗, we define the function ρ̄n ∈ C∞c (R) such

that ρ̄n(s) = nρ̄1(ns), for all s ∈ R. We also introduce a function ρ1 ∈ C∞c (Rd) such that
ρ1(x)= 0 for all x ∈Rd with |x| ≥ 1, ρ1(x)≥ 0 for all x ∈Rd and

∫
Rd ρ1(x)dx = 1. For all

n∈N∗, we then define the function ρn ∈ C∞c (Rd) by ρn(x)= ndρ1(nx), for x ∈Rd.
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Now, let ϕ ∈ Cb(d,E,v), and ϕ is assumed to be Lipschitz continuous with compact
support. We define, for n∈N∗, x̃ ∈Rd, and t̃ ∈R, the function ϕn(x̃, t̃,·,·,·) by

ϕn(x̃, t̃, i,x, t)= ϕ(i, x̃, t̃)ρn(x− x̃)ρ̄n(t− t̃), ∀(x, t)∈Rd ×R+. (4.21)

Since ϕn(x̃, t̃,·,·,·) ∈ C1
c (Rd ×R+,R)E, we may now use the function ϕn(x̃, t̃,·,·,·) in

(4.8). Integrating on R+×Rd, we get A1,n +A2,n +A3,n +A4,n = 0, where

A1,n =
∫∫

Rd×R+

∫

R+

∑

i∈E

∫ ∑

j∈E
a(i, j,x)

∫

ϕn(x̃, t̃, j, y,s)μ(i, j,x)(dy)m(i,dx,ds)dx̃dt̃,

A2,n =−
∫∫

Rd×R+

∫

R+

∑

i∈E

∫ ∑

j∈E
a(i, j,x)ϕn(x̃, t̃, i,x,s)m(i,dx,ds)dx̃dt̃,

A3,n =
∫∫

Rd×R+

∫

R+

∑

i∈E

∫
(
∂tϕn(x̃, t̃, i,x,s) + v(i,x) ·∇xϕn(x̃, t̃, i,x,s)

)
m(i,dx,ds)dx̃dt̃,

A4,n =
∫∫

Rd×R+

∑

i∈E

∫

ϕn(x̃, t̃, i,x,0)ρ0(i,dx)dx̃dt̃.

(4.22)

The notation∇x in A3,n is the gradient with respect to x.
We now study the limit of Ai,n as n→∞ for i= 1, 2, 3, 4. The continuity of ϕ implies

that

lim
n→∞

∫∫

Rd×R+

ϕn(x̃, t̃, i,x, t)dx̃dt̃ = ϕ(i,x, t), ∀(x, t)∈Rd ×R+. (4.23)

From Fubini’s theorem and the dominated convergence theorem, we derive that

lim
n→∞

∫∫

Rd×R+

∫

ϕn(x̃, t̃, j, y,s)μ(i, j,x)(dy)dx̃dt̃ =
∫

ϕ( j, y,s)μ(i, j,x)(dy), (4.24)

for all i, j ∈ E and (x,s)∈Rd ×R+. Moreover, we have

lim
n→∞A1,n =

∫

R+

∑

i∈E

∫ ∑

j∈E
a(i, j,x)

∫

ϕ( j, y,s)μ(i, j,x)(dy)m(i,dx,ds), (4.25)

and similarly

lim
n→∞A2,n =−

∫

R+

∑

i∈E

∫ ∑

j∈E
a(i, j,x)ϕ(i,x,s)m(i,dx,ds). (4.26)

We now turn to the study of A3,n, and we define

Bn(i,x, t)=
∫∫

Rd×R+

(
∂tϕn(x̃, t̃, i,x, t) + v(i,x) ·∇xϕn(x̃, t̃, i,x, t)

)
dx̃dt̃. (4.27)
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Using the property ∂tρ̄n(t − t̃) = −∂t̃ρ̄n(t − t̃) and ∇xρn(x − x̃) = −∇x̃ρn(x − x̃), and
thanks to the fact that ϕ is Lipschitz continuous with compact support, we can perform
an integration by parts (because ϕ is continuous with bounded variation). Noticing that
the integrated terms in time vanish since ϕ(i, x̃, t̃)ρ̄n(t− t̃) = 0 for t̃ > t + 1 and t̃ = 0 in
view of the definition of ρ̄1, we get Bn(i,x, t)= B1,n(i,x, t) +B2,n(i,x, t), where

B1,n(i,x, t)=
∫∫

Rd×R+

(
∂tϕ(i, x̃, t̃) + v(i, x̃) ·∇ϕ(i, x̃, t̃)

)
ρ̄n(t− t̃)ρn(x− x̃)dx̃dt̃

=
∫∫

Rd×R+

∂t,vϕ(i, x̃, t̃)ρ̄n(t− t̃)ρn(x− x̃)dx̃dt̃,

B2,n(i,x, t)=
∫∫

Rd×R+

(
v(i,x)− v(i, x̃)

) ·∇ϕ(i, x̃, t̃)ρ̄n(t− t̃)ρn(x− x̃)dx̃dt̃.

(4.28)

For B1,n, the assumption ϕ∈ Cb(d,E,v) implies that B1,n(i,x, t)→ ∂t,vϕ(i,x, t) as n→ +∞
for all (x, t)∈Rd ×R+.

For B2,n, we note that, if ∇ϕ(i, x̃, t̃)ρn(x− x̃) �= 0, then ‖x− x̃‖ ≤ 1/n≤ 1 and x̃ ∈ K , a
compact set. Hence, B2,n(i,x, t) = 0 if x /∈ ∪x̃∈KB(x̃,1), where B(x̃,1) is the ball centered
on x̃ with radius 1. Besides, as v is locally Lipschitz continuous, we may use its Lipschitz
constant Cv on ∪x̃∈KB(x̃,1). We get |v(i,x)− v(i, x̃)| ≤ Cv/n if x ∈∪x̃∈KB(x̃,1) and

∣
∣B2,n(i,x, t)

∣
∣≤ Cv

n
‖∇ϕ‖∞. (4.29)

This proves that B2,n(i,x, t)→ 0 as n→ +∞ for all (x, t)∈Rd ×R+.
We now derive that, for all (x,s)∈Rd ×R+, we have

lim
n→∞Bn(i,x,s)= ∂t,vϕ(i,x,s). (4.30)

Since v is bounded on a compact support, |∂tϕ(i, x̃, t̃) + v(i,x) ·∇ϕ(i, x̃, t̃)| is bounded by
some constant M > 0 and consequently

∣
∣Bn(i,x, t)

∣
∣=

∣
∣
∣
∣
∣
∣
∣

∫∫

Rd×R+

(
∂tϕ(i, x̃, t̃) + v(i,x) ·∇ϕ(i, x̃, t̃)

)
ρ̄n(t− t̃)ρn(x− x̃)dx̃dt̃

∣
∣
∣
∣
∣
∣
∣
≤M.

(4.31)

Now, using (4.30), Fubini’s theorem and the dominated convergence theorem, we con-
clude that

lim
n→∞A3,n =

∫

R+

∑

i∈E

∫

∂t,vϕ(i,x,s)m(i,dx,ds). (4.32)

Finally, for A4,n, by using (4.23), we find that

lim
n→∞

∫∫

Rd×R+

ϕ(i, x̃, t̃)ρn(x− x̃)ρ̄n(0− t̃)dx̃dt̃ = ϕ(i,x,0), ∀x ∈Rd. (4.33)
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Once again, Fubini’s theorem and the dominated convergence theorem imply that

lim
n→∞A4,n =

∑

i∈E

∫

ϕ(i,x,0)ρ0(i,dx). (4.34)

Gathering together (4.25), (4.26), (4.32), and (4.34) yield (4.20) for all function ϕ ∈
Cb(d,E,v) which is Lipschitz continuous with a compact support.

Now, let us assume that ϕ∈ Cb(d,E,v) is such that there exists T0 > 0 with ϕ(·,·, t)= 0
for all t > T0.

We take a function H1 ∈ C∞c (R) such that H1(x) = 1 for x ∈ [−1,1], H1(x) ∈ [0,1]
for x ∈ R, and H1(x) = 0 for x ∈ (−∞,−2]∪ [2,+∞). We also define, for n∈N∗ and
(i, y, t)∈ E×Rd ×R+,

ϕ̃n(i, y, t)=H1

(
y2

n2

)∫

Rd
ϕ̃(i, ỹ, t)ρn(y− ỹ)dỹ =H1

(
y2

n2

)∫

Rd
ϕ
(
i,g(i, ỹ, t), t

)
ρn(y− ỹ)dỹ.

(4.35)

Also, let

ϕn(i,x, t)= ϕ̃n
(
i,g(i,x,−t), t

)
, (i,x, t)∈ E×Rd ×R+. (4.36)

We now have ϕ̃n ∈ C1
c (Rd ×R+)E and ϕn ∈ Cb(d,E,v). Moreover, Lemma 4.9 implies

that ϕn has a compact support. As ϕn ∈ Cb(d,E,v) is locally Lipschitz continuous with
compact support, it is Lipschitz continuous and we may apply (4.20) to ϕn. Also, since
H1(y2/n2)= 1 for y ∈Rd and for n large enough, we get

lim
n→∞ ϕ̃n(i, y, t)= ϕ̃(i, y, t), lim

n→∞∂tϕ̃n(i, y, t)= ∂tϕ̃(i, y, t), (4.37)

for all (y, t)∈Rd ×R+. This implies that, for all (x, t)∈Rd ×R+,

lim
n→∞ϕn(i,x, t)= ϕ(i,x, t), lim

n→∞∂t,vϕn(i,x, t)= ∂t,vϕ(i,x, t). (4.38)

Taking n→∞ in (4.20) for ϕn, we now get (4.20) for ϕ, in view of the dominated con-
vergence theorem (using the fact that m(·,Rd × [0,T0]) is finite for all T0 ∈R+, and that
ϕn and ∂t,vϕn remain bounded by ‖ϕ‖∞1E×Rd×[0,T0] and ‖∂t,vϕ‖∞1E×Rd×[0,T0], resp.). This
concludes the proof of Proposition 4.10. �

4.4. The uniqueness result. We are now ready to state the uniqueness of a Radon mea-
sure m, the solution to (4.8), as exposed in the following theorem and its corollary.

Theorem 4.11. There is at most one Radon measure m on E×Rd ×R+ satisfying the con-
dition m(·,Rd × [0,T]) <∞ for all T ∈R+, and (4.8) for all ϕ∈ C1

c (Rd ×R+,R)E.

Before proving the theorem, we derive the following corollary which finally proves
the uniqueness of the measure solution to the CK equations. This corollary is a direct
consequence from Theorem 4.11, Corollary 4.5, and the continuity property of Pt with
respect to t (see Remark 4.3).
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Corollary 4.12. There is at most one function P : R+ →�(E×Rd), which is a measure
solution of the CK equations in the sense of Definition 4.2.

Proof of Theorem 4.11. Suppose that there are two Radon measures m1 and m2 such that
mi(·,Rd × [0,T]) <∞ for all T ∈R+, i= 1, 2, and which are solutions of (4.8). Let m̃ be
the difference between these two solutions. We have to prove that m̃ is equal to 0. In order
to do this, we are going to show that

∑

i∈E

∫∫

Rd×R+

ψ(i,x,s)m̃(i,dx,ds)= 0, ∀ψ ∈ C1
c

(
Rd ×R+,R

)E
. (4.39)

Note that, thanks to Proposition 4.10, we already know that

∑

i∈E

∫∫

Rd×R+

[
∑

j∈E
a(i, j,x)

(∫

ϕ( j, y,s)μ(i, j,x)(dy)−ϕ(i,x,s)
)

+ ∂t,vϕ(i,x,s)

]

m̃(i,dx,ds)=0,

(4.40)

for all ϕ∈ Cb(d,E,v) such that there exists T > 0 with ϕ(·,·, t)= 0 for all t ≥ T .
Now, let ψ ∈ C1

c (Rd ×R+,R)E. We have to show the existence of ϕ ∈ Cb(d,E,v) such
that:

(1) there exists T > 0 with ϕ(·,·, t)= 0 for all t > T ;
(2) for all i∈ E, t ∈R+, and x ∈Rd,

ψ(i,x, t)= ∂t,vϕ(i,x, t)−
∑

j∈E
a(i, j,x)

(∫

ϕ( j, y, t)μ(i, j,x)(dy)−ϕ(i,x, t)
)
. (4.41)

Alternatively (see Remark 4.7), we have to show the existence of ϕ̃ ∈ Cb(Rd ×R+,R)E

such that, for all i∈ E, s∈R+, and x̃ ∈Rd,

∂sϕ̃(i, x̃,s)= ψ(i,g(i, x̃,s),s
)

−
∑

j∈E
a
(
i, j,g(i, x̃,s)

)
(∫

ϕ̃
(
j,g(i, y,−s),s

)
μ
(
i, j,g(i, x̃,s)

)
(dy)− ϕ̃(i, x̃,s)

)
,

(4.42)

and also that

ϕ̃(·,·,T)= 0, (4.43)

where T is such that ψ(·,·, t)= 0 for all t > T .
Let R : Cb(Rd,R)E×R+ → Cb(Rd,R)E be such that, for all h∈ Cb(Rd,R)E,

R(h,s)(i, x̃)= ψ(i,g(i, x̃,s),s
)

−
∑

j∈E
a
(
i, j,g(i, x̃,s)

)
(∫

h
(
j,g(i, y,−s))μ(i, j,g(i, x̃,s)

)
(dy)−h(i, x̃)

)
.

(4.44)
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Equation (4.42) can be written as

∂sϕ̃(i, x̃,s)= R(ϕ̃(·,s),s
)
(x̃). (4.45)

Moreover,
∣
∣R(h,s)(i, x̃)−R(h′,s)(i, x̃)

∣
∣≤ 2Acard(E)‖h−h′‖∞, (4.46)

where A has been defined in assumptions (H), assertion 1. The operator R is globally
Lipschitz continuous with respect to its first argument, and one can also check that R
is continuous with respect to its second argument and that it is sublinear. Usual meth-
ods for ordinary differential equations (see, e.g., [1]) then lead to global existence and
uniqueness of a solution for (4.42)-(4.43). In particular, we get the existence of a func-
tion ϕ̃∈ Cb(Rd ×R+,R)E, solution of (4.42)-(4.43). This concludes the proof. �

Remark 4.13. This uniqueness result for the Chapman-Kolmogorov equation implies
that, for each ρ0 ∈�(E×Rd), any two solutions of the martingale problem for (�,ρ0)
have the same one-dimensional distributions. Then, general results on Markov processes
(see, e.g., [10, Theorem 4.2]) assert that the process (It,Xt)t≥0 is strong Markov. This
gives, in the framework of this paper, an alternative proof of the strong Markov property
shown by Davis [7, 8] for general piecewise deterministic Markov processes.

5. Conclusion

In this paper, we have characterized the marginal distribution of a piecewise deterministic
Markov process (It,Xt)t∈R+ as the unique solution of a set of explicit integro-differential
equations. This characterization is used in another paper [4] to construct some numeri-
cal approximation of ρt(i,dx), which is proved to converge weakly towards ρt(i,dx). The
uniqueness of the solution of the CK equations, namely, the main part of the present pa-
per, is crucial to show the convergence of the numerical approximation towards the right
distribution. Such numerical approximation has already been tested on a few analytical
benchmarks, showing the accuracy of the method (see [3]).
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Université de Marne-la-Vallée, 5, boulevard Descartes, Champs-sur-Marne,
77454 Marne-la-Vallée cedex 2, France
E-mail address: sophie.mercier@univ-mlv.fr

Michel Roussignol: Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050),
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