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Abstract. When using classical methods for the availability assessment of a multi-state 

system, the precise values of state’ probabilities are required. But, in many cases the 
available data does not describe the system's components, defining the system's state, 

precisely. To cope with this problem, the imprecision can be incorporated into the method in 

terms of imprecise rates [1] (failure and repair rates) by using imprecise probability theory 

[2]. Markov chain models are known for their simplicity and their great ability to model 

reparable systems, thus, they are well adapted for modeling stochastic failure and repair 

processes, where conditional probability distribution of future states depends only on the 

present state, and then computing the system's availability. To our best of knowledge, only a 

few works were developed in the context of imprecise continuous Markov chain [3]. The idea 

in this paper is to replace precise initial distributions and transition matrices by imprecise 

ones where imprecise rates are expressed in terms of intervals which are supposed to contain 

the true unknown initial probability and transition matrix. The contribution of this work is 

twofold: first, applying interval analysis techniques on existing algorithms for availability 

assessment of multi-state systems, and second, studying the stationarity, convergence and 

ergodicity properties related to the new proposed technique.     
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1 INTRODUCTION 

     The exponential evolution of technology has increased the complexity of systems and has 

further reduced their design and manufacturing costs. Correspondingly, manufacturers rely on 

the criterion of quality to be distinguished in the market. To achieve this goal, they must 

master various tools that will enable them to keep a competitive position and take actions for 

improvement at all levels. All these reasons make operating reliability the undeniable means 

that must be mastered when designing any system. Dependability is defined as the property 

that enables system users to place a justified confidence in the service it delivers to them and 

it groups two key concepts: reliability and availability. The reliability R(t) is the ability of a 

system to remain constantly operational in a given duration, in other words, the probability 

that an item survives the time interval [0,t] and still functions at time t. The availability A(t) is 

the ability of a system to be operational at a specific moment [5]. 

The principle is to choose amongst several components with different performance, the best 

components of the system, and also find the optimal configuration, that is the connection 

between the different components entities that constitute the system. And this must be done 

while respecting that a certain level of availability is ensured by the complete system. 

      Dependability domain is extremely large and complex. In this paper we are particularly 

interested in the optimization of the availability of a product taking into account the multi-

state case which is commonly encountered in practical life. We also consider that systems and 

their components can operate in different performance levels between working and failure 

states. Availability analysis helps to calculate the ability of a system to provide a required 

level of performance depending on the level of degradation. 

     Several methods are employed to calculate the availability, amongst them, there are:  

Universal Generating Function method (UGF) [6], Inclusion-Exclusion technique [7], and 

Markov Chain approaches [3], etc. There are many probabilistic techniques that can evaluate 

this criterion, but these techniques are only effective for very specific cases, for example the 

case of binary systems. The transition to multi-state [7,8] systems drastically restricts the 

application of most of these methods. Indeed, the evaluation of the reliability of a multi-state 

system [9] is more difficult than in the binary case because we have to take into account the 

different combinations of the component failure modes. In addition to the multi-state aspect, 

there is the structural aspect of the system which illustrates the type of connection connecting 

the components and of course the existence of uncertainties. In general, most methods can be 

applied efficiently only to systems with a simple structure: series, parallel, bridge or mixed. 

Nevertheless, there is virtually no practical and effective method that relates to systems with 

complex structures. 

     In this work, we demonstrate how Markov chains can be used to study the availability of a 

system by treating uncertainties like intervals and using interval analysis techniques.  

The structure of the paper is as follows. Section 2 explains the Markovian approach with 

imprecise data for multi-state systems with several components. Section 3 introduces 

contractors and how we use them to obtain the availability. Section 4 presents some 

applications and the last section concludes the paper. 

2 MARKOVIAN APPROACH 

  Traditional binary–state reliability models allow only two possible states for a system and its 

components: perfect functioning (up) and complete failure (down). However, a system can 

have a finite number of performance rates. Also, many real–world systems are composed of 

various components which in turn can have different performance levels and for which one 

cannot formulate an "all or nothing" type of failure criterion. Failures of some system 

elements lead, in these cases, only to performance degradation. Such systems are called 
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multi–state systems (MSS). Traditional reliability theory, which is based on a binary 

approach, has recently been extended by allowing components and systems to have an 

arbitrary finite number of states.  Many methods have been proposed to study the availability 

of a MSS, in our approach we use the Markovian approach.   

2.1    General description of the Markov Model 

A stochastic process describes the evolution of a system over time using a set of probabilities 

of the system's states (or a subset of states) at time instants t {X(t), t  ≥0}[10]; where X(t) is a 

random variable that denotes the state of the process at time t. A Markov model is a class of 

stochastic processes where the future state depends only on the present state. When time is 

discrete, we have a discrete-time Markov chain; when time is continuous, we have a 

continuous-time Markov chain which is also called a Markov process. Formally, a discrete-

time Markov chain is characterized by a (discrete) set of states S and the transition 

probabilities 𝑝𝑖𝑗 ,where 𝑝𝑖𝑗  is the probability that the Markov chain moves at the next time

instant to state j, given that it is at the present time point at state i. The matrix P grouping 

elements 𝑝𝑖𝑗 is called the transition probability matrix of the Markov chain. Note that the 

definition of the 𝑝𝑖𝑗 implies that the row sums of P are equal to 1. A continuous-time Markov 

process is also described by a discrete set of states S, in this case, however, transition 

probabilities 𝑝𝑖𝑗  are replaced by transition rates 𝑞𝑖𝑗  which will be grouped into a transition 

rate matrix denoted hereafter as Q. The matrix Q is an array of numbers describing the rate a 

continuous time Markov chain moves between states, it is expressed in terms of failure rates λ 

and repair rates µ. Diagonal elements 𝑞𝑖𝑖 are defined such that: 𝑞𝑖𝑖 = − ∑ 𝑞𝑖𝑗𝑖≠𝑗  , thus the row

sums of Q are equal to 0. A Markov process is a stochastic process in which the future state 

does not depend on the past trajectory. Markov models are frequently used in RMS work 

where events, such as the failure or repair of a module, can occur at any point in time. The 

Markov model evaluates the probability of jumping from one known state into the next 

logical state (e.g., from “everything is working” state to ''first item failure'' state, then from 

“first item failure” state to “second item’s failure”, and so on,) until the system reaches the 

final or totally failed state (which depends upon the configuration of the system being 

considered). The basic assumption of a Markov process is that the behavior of a system in 

each state is memoryless. A memoryless system is characterized by the fact that the future 

state of the system depends only on its present state. 

     The state equations of a system S are defined in a discrete state space E by taking into 

account the transition rates 𝑞𝑖𝑗(t) existing between consecutive system states. By considering 

the probabilities that the system stays in its current state or moves to any of the possible states 

in E for an elementary time interval [𝑡, 𝑡 +  𝑑𝑡], we obtain a system of differential equations, 

called equations of Chapman-Kolmogorov. Thus, for each state 𝑒𝑖 [10]  𝑃𝑖(𝑡 + 𝑑𝑡) =  𝑃(S in state 𝑒𝑖 at t and in  [𝑡, 𝑡 +  𝑑𝑡]) +∑ 𝑃(S in state 𝑒𝑗  at t and in 𝑒𝑖 at [𝑡, 𝑡 +  𝑑𝑡])𝑒𝑗𝜖𝐸−𝑒𝑖  (1)

The behavior of a Markov chain is fully probabilistically described if the initial and transition 

probabilities are given, that is, if the following probabilities are known: 𝑃(𝑋0 = 𝑥𝑖) = 𝑝𝑖    and   𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑖) = 𝑞𝑖𝑗 (2) 

From (1) we obtain a system of Chapman-Kolmogorov equations: �̇�(𝑡) = 𝑃(𝑡). 𝑄  (3) 

with P is a vector representing the probabilities of being in a state at a certain time t with 
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∑ 𝑃𝑗(𝑡) = 1𝑛𝑗=1  (4) 

P is the solution of the Chapman Kolmogorov and Q is the transition matrix between the 

states of the system. The solution of (2) is expressed in exponential form as: 𝑃(𝑡) = exp(𝑄𝑡) . 𝑃(0) (5) 

Where exp (𝑄𝑡) is an 𝑛 × 𝑛 matrix and P(0) is the initial probability vector describing the 

initial state of the system.  

2.2     Stationarity 

For each system of components, the availability of being in some state, either working or 

not, will change at the end [3]. So in our study, we focus on finding the availability after an 

infinite time which is equivalent to calculating the stationarity of the system. The Chapman-

Kolmogorov equations at time 𝑡 → ∞ lead to:  𝛱. 𝑄 = 0   (6) 

where Π is the stationarity vector representing the probabilities that the system will be in a 

certain state: 𝛱 = [ 𝜋1    𝜋2     …  𝜋 𝑖   … 𝜋𝑛     ]                                       (7) 

An element 𝜋𝑖  of Π is hence the probability that the system is at state 𝑒𝑖 ∈ E, and Π verifies:  ∑ 𝜋𝑖 = 1𝑛𝑖=1                                                         (8)

2.3     Imprecise Markov Chain 

     The Markov assumption stating that 𝑋𝑡+𝑑𝑡 is conditionally independent of 𝑋𝑠,for s < t, 

knowing 𝑋𝑡 may not be realistic, especially for repair, also the transition rates may not be 

constant in time, but are usually affected by a variety of factors, and the estimation of the rates 

themselves may be difficult due to the lack of data. Particularly, under constant transition 

rates, repair times are exponentially distributed and are independent of the history of the 

system, but repairs will often follow a binomial distribution rather than an exponential 

distribution [10]; the same applies for failure rate. A full modeling of these details requires a 

lot of data and expert knowledge. Instead of ignoring this problem, a better way to cope with 

it is to incorporate the imprecision into the models. This becomes possible with the 

development of models of imprecise probabilities, such as the interval probability model , it 

seems therefore convenient to consider our transition rates as not being fixed, but instead 

being bounded by an interval. 

    Imprecision may exist on the initial probabilities or the transition matrix, and sometimes 

even on both. To model this imprecision, probabilities in (2) will be replaced by intervals. 

Thus we have the following imprecise Markov model [11]:  𝑃(𝑋0 = 𝑥𝑖) ∈ [𝑝𝑖 , 𝑝𝑖 ] and   𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑖) ∈ [𝑞𝑖𝑗 , 𝑞𝑖𝑗  ] (9) 

According to the above model, any probability vector that satisfies 𝑝𝑖 ∈ [𝑝𝑖, 𝑝𝑖 ] for each state 

with i =1,..., n , can be considered as an initial distribution, and similarly any transition matrix 

Q ∈ [𝑄, 𝑄] can be the transition matrix at  time t. 

     As stated before, the purpose is to find the availability at t→ ∞. Under the assumptions in 

(9), the stationarity of the system is hence determined in form of a vector of intervals Π = 

{𝜋𝑖}, i=1,…,n, where 𝜋𝑖 ∈ [𝜋𝑖,𝜋𝑖 ] is the probability of being in a state 𝑒𝑖 . Finding the interval 
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of stationarity for each state is not as simple as it might seem. In the case of precise data, we 

have a constant transition matrix so we can find the answer by solving a system of equations, 

but in the case of imprecise data, the bounds of the intervals of stationarity cannot be obtained 

just by taking into account the two bounds of the transition matrix as some previous work 

suggests [3].  

     Several methods have been proposed to solve this problem by finding the solution of 

equation (6) in the presence of imprecise data. The exact method is a technique where we find 

all the possible transition matrices of a system and then for each matrix we solve (6) and we 

find a vector of stationarity, to form at the end a vector of intervals which contains all of the 

obtained vectors, this method gives an exact result but its complexity increases drastically 

with the system's size since it computes all the possible state values. BUGF (Believe 

Universal Generated Function) [12] and IUGF (Interval Universal Generated Function) [11] 

are two methods based on the UGF (Universal Generated Function) but they are applied on 

intervals and therefore are used in the case of interval-modeled imprecision, these two 

methods are efficient and give good results, the IUGF is also noted as more efficient than the 

BUGF in [12]. In our approach we propose to determine the availability of the system by 

using a new technique applied on intervals, that is the technique of contractors [4] which we 

introduce in section 3.  

3 THE TECHNIQUE OF CONTRACTORS 

3.1   Definition of contractors 

    Consider 𝑛𝑥 variables 𝑥𝑖 ∈ ℝ, 𝑖 = 1, . . , 𝑛𝑥, linked by 𝑛𝑓 relations (or constraints) [4] of the 

form  𝒇𝑗(𝑥1, . . , 𝑥𝑛𝑥) = 0   ,     𝑗 ∈ 1, . . , 𝑛𝑓
(10) 

Each variable 𝑥𝑖 is known to belong to a domain 𝑋𝑖. For simplicity, these domains will be 

intervals, denoted by [𝑥𝑖]. Define the vector x as: 𝒙 = (𝑥1, . . , 𝑥𝑛𝑥)𝑇 (11) 

and the prior domain for  𝒙  is a box as: [𝒙] = [𝑥1] × … × [ 𝑥𝑛𝑥]                                                  (12)

Let 𝒇 be the function whose coordinate functions are the 𝑓𝑗 's. Equation (10) can be written in 

vector notation as:  

 f(x) = 0 (13) 

This corresponds to a constraint satisfaction problem (CSP) H, which can be formulated as:  𝐻: (𝒇(𝒙) = 0 , 𝒙 ∈ [𝒙]) (14) 

The solution set of H is defined as:  𝑆 = {𝒙 ∈ [𝒙]|𝒇(𝒙) = 0} (15) 

Contracting H means replacing [𝒙] by a smaller domain [𝒙′] such that the solution set remains 

unchanged, i.e. 𝑆 ⊂ [𝒙′] ⊂ [𝒙]. There exists an optimal contraction of H, which corresponds

to replacing [𝒙] by the smallest box that contains S. A contractor for H is any operator that 

can be used to contract it. 

    A contractor C is defined as an operator used to contract the initial domain of the CSP, and 

thus to provide a new box [11]. 
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 𝐶([𝒙]) ⊂ [𝒙] (Contractance property) (16)  𝐶([𝒙]) ∩ 𝑋 = [𝒙] ∩ 𝑋(completeness property)       (17) 

These relations mean that contractions gives a sub-domain of the input domain [𝒙], and the 

resulting subdomain C([x]) contains all the feasible points with respect to the constraints. No 

solution is “lost”. 

3.2     Types of contractors 

     Several contractors exist, each works in a different manner and is efficient only for specific 

CSPs and for certain cases [13,14,15]. “Intervalization with Gauss elimination” [4] is an 

important class of CSPs for which intervalization of finite subsolvers can be employed only if 

the system is formed of linear interval equations and if all elements on the diagonal of the 

matrix are different than zero. “Gauss-Seidel” contractor is an efficient way to contract 
intervals of a linear system but the matrix in this case must be reversible [4]. “Krawczyk and 
Newton contractors” are two contractors which are not always applicable and are much 

complicated than the other contractors [4]. Finally, one popular contraction technique, which 

will be used in our approach, is the “Forward-backward propagation (FBP) contractor”. This 

technique is known for its simplicity and ease, it is also more general than the others since it 

works on all type of systems [4]. It also gives guaranteed results which means that during the 

contraction we always get an interval belonging to the initial interval. As compared to the 

“Gauss-Seidel” technique, the FBP offers comparable accuracy. The “Gauss-Seidel” approach 

is however less general and becomes time-consuming when the system's size increases. For 

all these reasons we chose to use the “Forward-backward” propagation technique to determine 

the stationarity as given in equation (6) for the case of imprecise data. 

3.3    Forward-backward propagation technique 

     Forward-backward (FBP) contractor 𝐶↓↑ (also known as HC4Revise [16]) is a classical 

algorithm in constraint programming for contracting. This contractor makes it possible to 

contract the domains of the CSP H by taking into account each one of the 𝑛𝑓 constraints apart. 

The algorithm works in two steps [4]. The forward step applies interval arithmetic to each 

operator of the function y=f(x), from the variable's domain ([x]) up to the function's domain 

([y]), this step considers the direct forms of the equations. The backward step sets the interval 

associated to the new function's domain [y] to [0, 0] (imposes constraint satisfaction, since we 

are solving f(x)=0) and, then, applies backward arithmetic from the function's domain to the 

variable's domain, which means using the inverse of the functions that appear in the equations 

f(x). The following example explains the procedure of the FBP technique. 

Example: Consider the constraint y= −5x1 + 2x2 = 0 and the initial box-domain [x] = [1, 4] × 

[−3, 7]. This constraint can be decomposed as shown in (18) into three primitive constraints 

(i.e. constraints associated with a unique elementary function: multiplication or addition) by 

introducing two intermediate variables a1 and a2 defined as: 𝑎1 =  −5𝑥1 and 𝑎2 =  2𝑥2. 

Initial domains for these variables are determined as follows:  𝑎1 =  −5𝑥1 =  −5 × [1,4] = [−20, −5] 𝑎2 =  2𝑥2 =  2 × [−3,7] = [−6,14] 𝑦 = 𝑎1 + 𝑎2 = [−20,5] + [−6,14] = [−26,9] (18) 

and this step is called the "forward propagation". A method for contracting H with respect to 

the constraint f(x) =5𝑥1 + 2𝑥2 = 0 is to contract each of the primitive constraints in (18) until 

the contractors become inefficient. For this example: 

Since f(x) = 0, the domain for y should be taken equal to {0}, so we can add the step: 
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                                                         [y]:= [y] ∩{0}                                                               (19) 

If [y] as computed in (18) turns out to be empty, then the CSP has no solution. Else, [y] is 

replaced by 0, which is the case in this example. After, a backward propagation is performed, 

updating the domains associated with all the variables to get: 

                                            [𝑎1] := ([y] − [𝑎2]) ∩ [𝑎1] = [−14, −5]  
                                            [𝑎2] := ([y] − [𝑎1]) ∩ [𝑎2] = [5,14]  

                                            [𝑥1] := ([𝑎1]) / -5 )∩ [𝑥1] = [1,14/5]  

                                            [𝑥2] := ( [𝑎2]) / 2) ∩ [𝑥2] = [5/2,7]                                           (20) 

Thus, we obtain the new box: 

                                               [x](1) = [1, 14/15] × [5/2, 7]                                                   (21) 

which is the result of the first FBP contraction. Iterating this procedure, the resulting sequence 

of boxes [x](k) converges towards the smallest possible domain, after which the domains no 

longer change following another iteration of FBP.  

4 APPLICATION 

   

   

 

 

 

                                                    
                                             Figure 1: Flow transmission system 

 

   To illustrate the technique of contraction with the Forward-Backward propagation, we use 

the example presented in [11]. In this example, we evaluate the availability of a flow 
transmission system design presented in Fig 1 and made of three pipes. The flow is 
transmitted from left to right, and the performances of the pipe are measured by their 

transmission capacity (tons of per minute). It is supposed that components 1 and 2 have three 

states: a state of total failure corresponding to a capacity of 0, a state of full capacity, and a 

state of partial failure. The component 3 only has two states: a state of total failure, and a state 

of full capacity. All state performances of the components are precise. We want to calculate 

the availability of the system by using Markov chain and we will compare to the IUGF 

proposed in [11] and the BUGF proposed in [12]. For every component 𝐺𝑗:  

 𝑝𝑖𝑗 : The probability of being at state 𝑔𝑖𝑗 
 𝜆𝑖,𝑘𝑗 : The transition or degrading rate from state 𝑔𝑖𝑗 to 𝑔𝑖−𝑘𝑗

 µ𝑖,𝑘𝑗 : The repair rate from state 𝑔𝑖𝑗 to 𝑔𝑖+𝑘𝑗
 

 

In our framework, both transition and repair rates are given by intervals. 

Here are the transition and repair rates for each of the three components: 

 

• For the first component 𝐺1, there are three possible states: 

1. State 1 𝑔31 = 1.5 represents completely successful operation. 

2. State 2 𝑔21= 1 represents degraded successful operation. 

3. State 3 𝑔11= 0 represents total failure. 
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Let the possible transition rates (in terms of hours) be: 𝜆3,11 = [10−5; 3 × 10−4] ℎ−1𝜆2,11 = = [4 × 10−5; 5 × 10−4] ℎ−1µ2,11  = [2 ×10−2; 5 × 10−2] ℎ−1µ1,11 = [4 × 10−2; 8 ×10−2]  ℎ−1
• For the second component 𝐺2, there are three possible states:

1. State 1 𝑔32 = 2 represents completely successful operation.

2. State 2 𝑔22= 1.5 represents degraded successful operation.

3. State 3 𝑔12= 0 represents total failure.

Let the possible transition rates be: 𝜆3,12 = [2 × 10−5; 6× 10−4] ℎ−1𝜆2,12 = = [3 ×10−5; 4 ×10−4] ℎ−1µ2,12  = [3 ×10−2; 6 ×10−2] ℎ−1µ1,12 = [3 ×10−2; 7×10−2]  ℎ−1
• For the third component 𝐺3, there is two possible states:

1. State 1 𝑔23= 4 represents completely successful operation

2. State 2 𝑔13= 0 represents total failure

Let the possible transition rates be: 𝜆2,13 = [10−5; 4× 10−4] ℎ−1µ1,13 = [5 ×10−2; 9×10−2]  ℎ−1

 Figure 2: Markov chain of the system. 

In this example, each of the components 1 and 2 have three possible states , while component 

3 has only two states , hence the whole system has at most eighteen (3×3×2) possible states 

degrading from the total functional state to the failure state as shown in Fig. 2. In this figure: 0𝑗  means that component j is in the completely working state, 1𝑗  means that component j is in 

the partial working state and 2𝑗  means that component j is in the completely failure state. In 

each state, the performance level g is calculated by taking into account the performance level 

of each component. For example, state 1 denoted by 010203 refers to the state where all three 

components are completely working. 
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To obtain the performance level of the state : Components 1 and 2 are placed in parallel so the 

performance level resulting of them is the summation of the two performances which means 

2+ 1.5 = 3.5. Component 3 is placed in series, so the total resulting performance level g is the 

minimum, i.e. g = min (3.5, 4) = 3.5 

  In this example, we are studying the availability of the system for a demand level w = 1.5, 

we will consider the working states when the total performance level is greater than 𝑤 , in 

Fig. 2 the colored states are the working states. 

     First, we calculate the corresponding availability of the system using IUGF and BUGF, 

results are grouped in table 1. After, we use the Forward-backward propagation contracting 

technique to solve the system of equations ensuring that the product of the stationarity vector 

times the transition matrix is equal to zero (18 equations) plus one last equation that is the 

summation of each stationarity is equal to one. 

     Our obtained results are shown in table 1. The result of the exact method is also given in 

this table. 

   

 

 

Contraction technique  

 

      

       BUGF 

 

 

         IUGF 

 

 

   Exact method 

 

 

     [0.951; 0.998] 

 

 

   [0.95 ; 1.03] 

 

 

 

       [0.913 ; 1.09] 

 

 

 

     [0.952 ; 0.99] 

 

 
Table 1: The availability at t→ ∞ for each method. 

 

Table 1 shows that the accuracy offered by the FBP contraction technique is close to that 

obtained when using the exact method; the interval availability of the contraction method is 

also more conservative than the other two methods (BUGF and IUGF). Therefore, the FBP 

contraction method turns out as an efficient technique for availability assessment since it 

offers accurate results and is more simple especially when handling complex systems. 

5 CONCLUSION  

     We have applied the forward-backward contraction method on the equations obtained by 

the transition matrix of a Markov chain handling MSSs. Since multi-state systems are much 

more complicated than traditional two-state systems, an efficient method is desirable which 

can deal with system's size and complexity. Markov models for our best of knowledge are the 

most suitable methods, especially when the given data is imprecise. To be able to calculate the 

availability of a system by applying Markov model in the presence of imprecise data we need 

an accurate method for calculation. In our work, we proposed to use interval Contraction 

method. The main goal of the method is to reduce an initial big interval to its most possible 

minimum size. IUGF and BUGF are also good methods to calculate the imprecise availability 

of a MSS. These two methods are a pair of variants of the UGF methods, the first allows 

getting the availability by using imprecise probabilities, and the second calculates bel and pl 

by using mass functions. After testing these three approaches on different examples and 

comparing the results, we can clearly see that the FBP Contraction method is the most 

accurate amongst them, its results giving the smallest intervals containing those obtained by 

the exact method. 

As future work, we can extend the proposed interval-based approach to more complicated 

scenarios and study the availability of a more complex system with multi-state components. 
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