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Abstract For the first time, the impact of the El Niño-Southern Oscillation (ENSO) on the surface sulfur
plumes off the Peruvian upwelling system has been studied. The investigations demonstrated a strong
correlation between the ENSO and the sulfur plumes in the coastal areas of Callao and Pisco. During the El
Niño phases, the sulfur plumes disappeared almost completely because of equatorial remotely forced
oxygenation episodes. The La Niña events were associated with strong oxygen deficiency over the Peruvian
shelf, supporting the formation of hydrogen sulfide and, consequently, the occurrence of sulfur plumes. This
impact was smaller at Callao, because the La Niña phases in this coastal area were interrupted by weak
oxygenation events. During the neutral phases, oxygen-poor waters were also present in the Peruvian shelf
areas, promoting the large size of sulfur plumes. However, they were not forced by the remotely driven
processes resulting from ENSO phenomena.

Plain Language Summary In the Peruvian coastal area, hydrogen sulfide outbreaks and their
resulting coastal sulfur plumes influence the marine ecosystem and the fishing industry by their toxic
properties. The relation between the sulfur plumes and the well-known El Niño and La Niña events was
investigated. The sulfur plumes were detected in remotely sensed satellite data through their characteristic
milky turquoise discoloration. The results demonstrated a strong correlation of the El Niño and La Niña
events with the coastal sulfur plumes as well as their dependence on the oxygen supply in the Peruvian shelf area.

1. Introduction

In the coastal areas off the Namibian and Peruvian upwelling systems, hydrogen sulfide (H2S) outbreaks
influence the marine ecosystem owing to their toxic properties (Evans, 1967). Consequently, the abundance
and availability of fish stocks can be reduced and human life can be negatively affected (Copenhagen, 1953).
Sometimes, mass mortalities of fishes can be caused (Hamukuaya et al., 1998; Hart & Currie, 1960). For the
local inhabitants, the strongest events were known as Callao painter (Brongersma-Sanders, 1948). They
recognized them by the nasty smell of H2S as well as by the paint darkening on boats and houses (Currie,
1953; Lavalle y Garcia, 1917). Most of these events were observed in the water regions off Callao and Pisco
(Dugdale et al., 1977; Mears, 1943; Murphy, 1923). Other phenomena in the Peruvian region are the
accumulation of diatomaceous mud at the sea bottom and the formation of an oxygen minimum zone
(OMZ), both driven by the high primary production and the subsequent decomposition of the biomass
(Kudrass, 2000; Karstensen et al., 2008; Schunck et al., 2013). The degradation of the organic matter in the
sediment layers and in the water column promotes the formation of H2S (Brüchert et al., 2003, 2006;
Schunck et al., 2013). The flux of H2S from the sediment to the bottom water layer is controlled by
sulfide-oxidizing bacteria (Gutiérrez et al., 2008; Schulz et al., 1999). During the onset of upwelling favorable
winds, the H2S-enriched waters can be upwelled at the coastal regions (Ohde, 2009; Weeks et al., 2002, 2004).
Such events manifest themselves by milky turquoise discolored surface waters (Ohde & Mohrholz, 2011;
Weeks et al., 2004) caused by the formation of colloidal sulfur (SO) by the oxidation of H2S (Galán et al.,
2014; Lavik et al., 2009; Schunck et al., 2013). Up to now, although these surface sulfur plumes have been
investigated by a few studies in the Peruvian area (Mears, 1943; Schunck et al., 2013), most of themwere only
short reports (Burtt, 1852; Currie, 1953; Murphy, 1923).

The objective of the present paper is to investigate the relationships between coastal sulfur plumes off Peru and
the El Niño-Southern Oscillation (ENSO). The ENSO describes basin-wide changes in air-sea interaction in the equa-
torial Pacific region with a timescale of about two to seven years (Glantz, 1996; Jiang et al., 1995; Setoh et al., 1999;
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Torrence & Webster, 1999). Previous studies have shown teleconnections to
extreme oceanic conditions in the Peruvian region, such as unusually warm
water in the normally cold water coastal region (Enfield, 1989; Philander,
1990), changes in the coastal upwelling (Huyer et al., 1987; Ramage, 1975),
and modifications in the abundance and composition of the phytoplankton
(Carr et al., 2002; Correa-Ramirez et al., 2012; Thomas et al., 2001).

For investigating the influence of the ENSO on the Peruvian coastal sulfur
plumes, first, such events are identified from ocean color satellites. As a
result, time series of the sulfur plume size in two hot spots of Pisco and
Callao from 2002 to 2012 are obtained. Second, the different ENSO phases
are classified according to themost commonly used indices. As the remote
forcing of the ENSO modulates the oceanic conditions in the Peruvian
region, the hypothesis is that it also has a significant impact on the local
temporal variability of sulfur plumes.

2. Data and Methods
2.1. Data

Daily Level-2 products of water-leaving reflectance with a spatial
resolution of 1 km are used to identify the sulfur plumes in the coastal
areas of Pisco (Figure 1, study area 1: 13.5°S–14.2°S) and Callao (Figure 1,

study area 2: 11.8°S–12.4°S) in the time period from April 2002 to April 2012. The data were collected by
the ocean color sensor MERIS (Medium Resolution Imaging Spectrometer) onboard the ENVISAT satellite of
the European Space Agency (ESA). True color images of MERIS (spatial resolution: 1 km) and MODIS
(Moderate Resolution Imaging Spectroradiometer; spatial resolution: 250 m) are compared with the detected
sulfur plumes. The Japan Meteorological Agency Index (JMA: https://coaps.fsu.edu/), the Oceanic Niño Index
(ONI: http://www.cpc.ncep.noaa.gov/), and the Multivariate ENSO Index (MEI: http://www.esrl.noaa.gov/) are
the basis for the yearly classification system of the ENSO (see details in the supporting information). The JMA
index is a five-month runningmean of spatially averaged sea surface temperature anomalies over the tropical
Pacific of 4°N–4°S and 90°W–150°W. The ONI is the standard of the National Oceanic and Atmospheric
Administration (NOAA) and is defined as the three-month running mean of sea surface temperature anoma-
lies in the Niño-3.4 region between 5°N–5°S and 120°W–170°W. The MEI is calculated from six combined vari-
ables over the tropical Pacific (Wolter, 1987; Wolter & Timlin, 1998).

2.2. Methods

The sulfur plumes are detected according to the method of Ohde et al. (2007), which was originally
developed for Namibian waters. This method is adapted for the current study areas (Figure 1) by the analysis
of the spectral characteristics of different Peruvian waters (onshore and offshore waters, algae blooms, river,
and sulfur plumes). In 2009, a giant H2S plume of about 440 km3 was observed in the OMZ off Peru (Schunck
et al., 2013). Strong correlations were found between this subsurface sulfidic plume and remotely sensed
satellite sulfur plumes of turquoise discolored surface waters. Only the spectra of these validated sulfur
plumes were used for the adaptation. The algorithm delivers the daily spatial extensions (size) of the sulfur
plumes in the upper surface water layer. Sulfur concentrations lower than 631 nM cannot be detected with
this algorithm (Ohde & Dadou, 2018). Note that the subsurface plumes can be overlooked by this method.
This happens whenever the plumes remain in the deepwater layers. They can also be completely consumed
by chemolithotrophic bacteria before they can reach the water surface (Lavik et al., 2009). Figure 2 illustrates
an example for the identification of sulfur plumes. These plumes can be clearly seen as milky turquoise
discolorations in the true color image of MERIS (Figure 2a). The comparison with Figure 2b demonstrates
good conformity of the areas of turquoise discolorations with the identified sulfur pixels. River plume pixels
can be well differentiated from sulfur pixels (e.g., Pisco river in Figures 2a and 2c). Much more details are
visible in the MODIS scenes because of the higher spatial resolution (Figures 2c and 2d).

The daily size of sulfur plumes is determined in each of the 3,433 available MERIS scenes for the time period
2002–2012. From the daily values, a monthly integral of size is calculated. The error in the determination of

Figure 1. Study areas 1 (Pisco) and 2 (Callao) including the bathymetry
(Amante & Eakins, 2009) and the main river system. The continental shelf is
given as 200 m isobaths.
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the size is approximately 15% (Ohde & Dadou, 2018). The monthly integrals are compared with the ENSO
indices to investigate the relation between sulfur plumes and the ENSO phenomena (Figures 3a and 3b). It
is useful to divide the ENSO into three different phases: the El Niño (warm phase), La Niña (cold phase; often
called El Viejo), and neutral phase (sometimes called normal phase). The ENSO year of October to the
following September is identified as the El Niño if the JMA index is 0.5 °C or greater for six consecutive months
(including October, November, and December). The year is categorized as La Niña if the JMA index is equal or
smaller than �0.5 °C for six consecutive months (including October, November, and December). The El Niño
and La Niña events based on ONI and MEI are further broken down into weak, moderate, and strong events.
The classification of the ENSO years based on JMA, ONI, and MEI, which is given in Table 1, is described in the
supporting information.

The JMA index defines three El Niño events, two La Niña events, and six neutral phases in the time period
2001–2012. To investigate the temporal variability of sulfur plumes in these three ENSO phases, the monthly
values of the sulfur plume size are separately averaged over each phase (Figures 3c and 3d). As shown in
Table 1, the JMA phases are only slightly different from the classifications based on ONI and MEI.
Differences are mainly observed for some neutral phases, which are classified as the warm or cold phases,
but mostly with weak intensities. The reason is the higher sensibility of the ONI and MEI compared to the
JMA index (e.g., Hanley et al., 2003). Using the ONI and MEI, the El Niño JMA events of 2002–2003,
2006–2007, and 2009–2010 are classified as moderate, weak to moderate, and moderate warm phases,
respectively. The La Niña JMA events of 2007–2008 and 2010–2011 are categorized as moderate to strong

Figure 2. Example for the identification of sulfur plumes. (a) Sulfur plumes in a MERIS scene on 15 April 2009. (b) Detected
sulfur pixels (white pixels). The sizes of the sulfur plumes are 23.1 and 29.9 km2 in the study areas of Pisco and Callao,
respectively. The dark gray and light gray pixels represent land and clouds, respectively. The black areas mark all water
pixels, which are classified as no sulfur. (c) Sulfur and river plumes at Pisco in a MODIS-Terra scene on April 15, 2009.
(d) Same figure as Figure 2c but in the Callao area.
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and strong, respectively. Furthermore, the statistical method of linear regression analysis is used to
investigate the relations between the sulfur plumes and ENSO phases (Figures 4a–4f). For this purpose, the
monthly values of the sulfur plume size and the different ENSO indices are separately averaged over each
phase from October to April (see details in the supporting information). The full ENSO year from October
to September is not used, because the months from May to September are often located within the
transition phases of two different ENSO periods.

3. Results

Figure 3a presents the temporal variability of the sulfur plumes for the period from April 2002 to April 2012.
Nearly no sulfur plumes are observed in the study areas during 2002–2003, 2006–2007, and 2009–2010. Their
sizes are slightly increased at the beginning of 2004, 2007, and 2012. However, the largest sizes are found
during 2004–2005, 2005–2006, 2007–2008, 2008–2009, and 2010–2011. The monthly sulfur plume size is
often much higher in the Pisco area compared to that in the Callao area.

The JMA index, ONI, and MEI are given in Figure 3b. Up to now, there is no uniform view within the
scientific community regarding which index is the best for the definition of ENSO years (e.g., Hanley
et al., 2003). In Figure 3b, the JMA index is used for the determination of the main phases and strengths
of ENSO, because this index is very robust (Hanley et al., 2003; Trenberth, 1997). The ONI and MEI are
included to determine the timing and duration of these events. A strong correlation between the time
series of the ENSO and the sulfur plumes is evident. During the El Niño phases (Table 1; JMA: 2002–2003,
2006–2007, and 2009–2010), hardly any sulfur plume is observed in the surface waters. However, the sulfur
plume sizes are usually much larger during the neutral phases (Table 1; JMA: 2004–2005, 2005–2006, and
2008–2009) with the exceptions of 2003–2004 and 2011–2012. During the La Niña phases (Table 1; JMA:
2007–2008 and 2010–2011), the sulfur plume sizes in the coastal area of Callao are much smaller than in
the neutral phases. However, the sizes at Pisco are in the same range or even larger than those in the
neutral phases.

The temporal variability of sulfur plumes in the three ENSO phases is compared in the two study areas in
Figures 3c and 3d. During the El Niño phase, the sulfur plumes are nearly vanished from October to April
and from June to September in both study areas. Few sulfur plumes are observed in May. In the neutral
phase, the sulfur plume sizes are very low from October to November and from June to September.
Between these periods two maxima are observed. In the coastal areas of Pisco and Callao, the first maximum
is in December. The second maximum in the Callao area is in March, two months earlier than that at Pisco.
During the La Niña phase, the sulfur plume sizes at Pisco are normally smaller than during the neutral phase
without considering October and the exceptional months of April and May. There are three maxima, located

Table 1
Classification of the ENSO Years Into Warm, Cold, and Neutral Phases Including Weak, Moderate, and Strong

Note. The classification is explained in the supporting information. An ENSO year is defined from October to the following September.

10.1029/2018GL077618Geophysical Research Letters

OHDE 4



in October, February, and May. In contrast, the sulfur plume sizes at Callao are always smaller than in the
neutral phase without considering the months of July and August. Again, there are three maxima, located
in August, January, and April, which are one to two months earlier than the maxima at Pisco. Another
difference between the study areas is the generally higher sulfur plume size in the Pisco area.

The sulfur plume size and the ENSO indices, which are averaged over the monthly values of the main ENSO
periods from October to April, are plotted in Figures 4a–4f. The points of moderate to strong warm and cold
phases generate clusters if they are classified according to the different ENSO phases given in Table 1. Most of
the other points of the neutral phases as well as of the weak warm and cold phases are strongly scattered in
the x-y plane nearly within the limits of 0.5 and�0.5 °C. They are ranged from low to high sulfur plume sizes.
Some of them are shifted to the highest observed averaged sizes. Significant linear relations are determined
by a correlation analysis for the points of warm and cold phases, which were moderate and strong. There is
no significant correlation for the ONI at Pisco. The Pearson’s correlation coefficients vary between �0.97 and
�0.98, and the confidence limits are 99% (without the ONI at Pisco).

4. Discussion

During the observation period, a close relation between sulfur plumes and the moderate to strong warm or
cold phases is evident through the correlation analysis (Figures 4a–4f).

The almost complete disappearance of the sulfur plumes during the El Niño phases (Figures 3c and 3d) can
be explained mainly by equatorial remotely forced oxygenation episodes. The poleward propagation of
trapped coastal waves forced by equatorial Kelvin waves often increases the oxygen level on the continental
shelf (Gutiérrez et al., 2008). These waves occur more frequently during the warm El Niño phases (Camayo &
Campos, 2006; Pizarro et al., 2001). Extreme oxygenation events originating from these wave-induced

Figure 3. Comparison of sulfur plume sizes with the ENSO phases. (a) The sulfur plume sizes at Pisco (black curve) and
Callao (gray curve) are given. (b) The ENSO indices are superimposed. The three phases, namely, the El Niño (warm
phase, red stripes), La Niña (cold phase, blue stripes), and neutral phase (normal phase, green stripes), are classified
according to the robust JMA index. The dashed lines represent�0.5, 0, and 0.5 °C. (c) Averaged temporal variability of sulfur
plumes including the standard deviations in the Pisco area during the different ENSO phases. (d) Same figure as Figure 3c,
however for Callao.
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conditions were evidenced in the bottomwater column off the coast of Callao during 2002–2003, 2006–2007,
and 2009–2010 (Graco et al., 2017). They occurred at the same time as the disappearance of the surface sulfur
plumes. These events were generally accompanied by a deepening of the oxycline (Hamersley et al., 2007)
and a reduction in the OMZ volume (Gutiérrez et al., 2008; Helly & Levin, 2004; Sánchez et al., 1999). The
oxygenation episodes can reduce the H2S formation that commonly occurs in anoxic marine sediments
through microbial sulfate reduction (Jørgensen, 1982; Lein, 1984), can impact the flux of H2S from the
upper sediment to the bottom water layer usually controlled by sulfide-oxidizing bacteria (Ferdelman
et al., 1997; Schulz et al., 1999), and can provide the removal of the H2S-enriched water by biological
(Galán et al., 2014; Lavik et al., 2009; Schunck et al., 2013) and possibly chemical oxidation processes
(Gutiérrez et al., 2008). The disappearance of the sulfur plumes is also intensified by the absence of
upwelling during the El Niño phases.

The La Niña phases are associated with the shoaling of the oxycline and a water column dominated by
suboxic conditions (Hamersley et al., 2007). During these phases, strong oxygen deficiency occurs over the
Peruvian shelf, and surface sediments tend to be anoxic, promoting microbial sulfate reduction and
formation of H2S (Tyson & Pearson, 1991). Such remotely forced anoxic conditions were observed during
the moderate to strong La Niña events of 2007–2008 and 2010–2011 (Graco et al., 2017), resulting in larger
sulfur plume sizes (Figures 3a–3d). The smaller sizes at Callao may be because of the weak oxygenation

Figure 4. Relation between sulfur plumes and ENSO phases. The Pearson correlation coefficients are given. The values
beside the colored points correspond to the different ENSO periods. (a–c) Correlation analysis for the Pisco area.
(d–f) Correlation analysis for Callao.
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events in 2008 and 2011 (Graco et al., 2017), probably driven by the local effect of cross-shore ventilation.
These short events reduce the probability of the formation of H2S-enriched bottom water.

During the neutral phases, oxygen-depleted subsurface water can also be observed (Tyson & Pearson,
1991). The oxygen-poor waters can intercept the Peruvian shelf areas, promoting suboxic and even anoxic
conditions in the bottom water layer, which would support the formation of H2S and the occurrence of
surface sulfur plumes. Such conditions were found in the Callao area during the neutral phases in
2003–2006, 2008–2009, and 2011–2012 (Graco et al., 2017; Gutiérrez et al., 2008). The giant subsurface
sulfidic plume observed in January 2009 (Schunck et al., 2013) was most likely the source of the
satellite-detected sulfur plumes at the beginning of that year (Figure 3a). The small sulfur plume sizes in
the neutral phase of 2003–2004 were probably caused by the slow transition of biogeochemical processes
from oxic to anoxic conditions. The sizes were particularly large after the La Niña events, except for
2011–2012. The reason was the lack of MERIS data. However, MODIS data after April 2012 indicated an
increase in sulfur events. The sulfur plumes in the neutral phases are normally not forced by remotely
driven processes arising from ENSO events, because no correlation exists with the ENSO
indices (Figures 4a–4f).

5. Conclusions

The hypothesis given in the introduction was confirmed. It was demonstrated that the ENSO phenomena
significantly influence the sulfur plumes in the surface water in the coastal areas of Callao and Pisco.
During the El Niño events of 2002–2003, 2006–2007, and 2009–2010, the sulfur plumes disappeared almost
completely because of equatorial remotely forced oxygenation episodes. The La Niña events of 2007–2008
and 2010–2011 were associated with strong oxygen deficiency over the Peruvian shelf, supporting the
occurrence of sulfur plumes. During the neutral phases of 2003–2006, 2008–2009, and 2011–2012, the anoxic
conditions in the bottom water layers also promoted the large size of sulfur plumes. However, this was not
forced by the remotely driven processes of ENSO phenomena.

6. Data Availability

The reflectance data were obtained from the ESA (https://merisrr-merci-ds.eo.esa.int/). The images of MODIS
were downloaded from the Rapid Response System (https://earthdata.nasa.gov/). The ENSO indices were
available through the Center for Ocean-Atmospheric Prediction Studies (https://coaps.fsu.edu/), the
Climate Prediction Center (http://www.cpc.ncep.noaa.gov/), and the Earth System Research
Laboratory (http://www.esrl.noaa.gov/).
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