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SUBADDITIVE THEOREMS IN METRIC MEASURE SPACES AND
HOMOGENIZATION IN CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We prove subadditive theorems in the setting of metric measure spaces in the
deterministic and stochastic case. Applications to homogenization of nonconvex integrals in
Cheeger-Sobolev spaces are given.
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1. Introduction

Let pX, d, µq be a metric measure space with µ a positive Borel measure on X. Let BpXq
be the class of Borel subsets of X and let Bµ,0pXq denote the class of Q P BpXq such that

µpQq ă 8 and µpBQq “ 0 with BQ “ QzQ̊. Let HomeopXq be the group of homeomorphisms
on X and let G be a subgroup of HomeopXq for which µ is G-invariant. Let

S : Bµ,0pXq! L1
pΣ, T ,Pq (resp. S : Bµ,0pXq! Rq

be a subadditive and G-covariant (resp. G-invariant), where pΣ, T ,P, tτgugPGq is a measur-
able dynamical G-system, and let tQnunPN˚ Ă Bµ,0pXq. In this paper we are concerned with
the problem of characterizing the following limit

lim
n!8

SpQnqpωq

µpQnq
for P-a.a. ω P Σ

´

resp. lim
n!8

SpQnq

µpQnq

¯

.

Such limit problems are of interest for the development of homogenization of integrals of
the calculus of variations in the setting of Cheeger-Sobolev spaces (see Section 3 and also
[AHM17]). Other motivations can be found in the study of percolation theory (see [HW65]).

Key words and phrases. Subadditive process, Metric measure space, Amenable group, Homogenization,
Cheeger-Sobolev space.
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Motivated by problems of statistical mechanics, additive theorems were first proved in 1931
by von Neumann (see [Neu32]) and Birkhoff (see [Bir31]) in the context of measure preserving
Z-actions. Later, in 1972, Tempelman generalized these results to the multidimensional case
in the context of measure ZN -actions (see [Tem72] and also Nguyen and Zessin [NZ79]) but
also to the setting of amenable semi-groups (see [Kre85, Theorem 4.4]). Then, in 1999, the
theorems of von Neumann and Birkhoff were also extended by Lindenstrauss to the setting
of amenable groups under weaker conditions than those of Templeman (see [Lin99, Lin01]).
Beside this, motivated by the study of percolation theory, subadditive theorems were also
proved, in the context of measure preserving ZN -actions, first in 1968 by Kingman in the
unidimensional case (see [Kin68, Kin73]) and then in 1981 by Akcoglu and Krengel in the
multidimensional case (see [AK81, Kre85] and also Derriennic [Der75], Smythe [Smy76],
Nguyen [Ngu79] and Licht and Michaille [LM02]). In 2014, Dooley, Golodets and Zhang
extended Kingman’s theorem to the setting of amenable group (see [DGZ14] and also [DZ15]).
The results of the present paper can be seen as extensions of the multidimensional Akcoglu-
Krengel’s theorem to the setting of metric measure space pX, d, µq where µ is G-invariant,
with G a subgroup of HomeopXq, having in mind applications to homogenization.

Multidimensional subadditive results of Akcoglu-Krengel type were adapted first in 1986
by Dal Maso and Modica for dealing with homogenization of convex integral functionals
of the calculus of varations defined on Sobolev spaces (see [DMM86a, DMM86b]) and then
in 1994 by Messaoudi and Michaille for studying nonconvex homogenization problems (see
[MM94, LM02]). In the same spirit, the object of this paper is to establish subadditive
theorems allowing to deal with nonconvex homogenization problems in Cheeger-Sobolev
spaces.

The plan of the paper is as follows. In the next section we state and prove the main results
of the paper, see Theorems 2.3 and 2.11. To establish such theorems it is necessary to
make some assumptions on the sequence of sets tQnunPN˚ , see Definitions 2.1 and 2.7. The
deterministic case and the stochastic case are developed in §2.1 and §2.2 respectively. Finally,
to illustrate our results, in Section 3 we give applications to homogenization of nonconvex
integrals in Cheeger-Sobolev spaces, see Theorems 3.6 and 3.8.

2. subadditive theorems

Let pX, d, µq be a metric measure space with µ a positive Radon measure on X. Let BpXq
be the class of Borel subsets of X and let Bµ,0pXq denote the class of Q P BpXq such that

µpQq ă 8 and µpBQq “ 0 with BQ “ QzQ̊, where Q (resp. Q̊) denotes the closure (resp.
the interior) of Q. Let HomeopXq be the group of homeomorphisms on X and let G be a
subgroup of HomeopXq for which µ is G-invariant.

From now on, we consider tUkukPN˚ Ă Bµ,0pXq with µpUkq ą 0 for all k P N˚ and, for each
k P N˚, we consider the class UkpGq defined by

UkpGq :“
!

H Ă G : tgpUkqugPH is disjoint
)

.

In what follows, | ¨ | denotes the counting measure on G and, for any H Ă G, PfpHq denotes
the class of finite subsets of H.
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2.1. The deterministic case. The following definition set a framework for establishing a
subadditive theorem in the deterministic case and in the setting of metric measure spaces
(see Theorem 2.3).

Definition 2.1. Let tQnunPN˚ Ă Bµ,0pXq. We say that tQnunPN˚ is weakly G-asymptotic
with respect to tUkukPN˚ if for all k P N˚ there exists Gk P UkpGq with the property that for
all n P N˚ there exist mn,k P N˚, gn,k P G and Fn,k, G

´
n,k, G

`
n,k P PfpGkq such that:

Y
gPG´

n,k

gpUkq Ă Qn Ă Y
gPG`

n,k

gpUkq; (2.1)

lim
n!8

µ

ˆ

Y
gPG`

n,k

gpUkqz Y
gPG´

n,k

gpUkq

˙

µpQnq
“ 0; (2.2)

G`n,k Ă Fn,k and Y
gPFn,k

gpUkq “ gn,kpUmn,kq; (2.3)

lim
n!8

ˇ

ˇFn,k
ˇ

ˇ

ˇ

ˇG`n,k
ˇ

ˇ

ď 1. (2.4)

Let us recall the definition of a subadditive and G-invariant set function.

Definition 2.2. Let S : Bµ,0pXq! R be a set function.

(a) The set function S is said to be subadditive if

SpAYBq ď SpAq ` SpBq.
for all A,B P Bµ,0pXq such that AXB “ H.

(b) The set function S is said to be G-invariant if

SpgpAqq “ SpAq
for all A P Bµ,0pXq and all g P G.

Here is the first main result of the paper.

Theorem 2.3. Let S : Bµ,0pXq! R be a subadditive and G-invariant set function with the
following boundedness condition:

|SpQq| ď cµpQq (2.5)

for all Q P Bµ,0pXq and some c ą 0. Then, for any tQnunPN˚ Ă Bµ,0pXq such that tQnunPN˚

is weakly G-asymptotic with respect to tUkukPN˚, one has

lim
n!8

SpQnq

µpQnq
“ inf

kPN˚

SpUkq

µpUkq
.

Proof of Theorem 2.3. First of all, let tkjujPN˚ be such that

lim
j!8

SpUkjq

µpUkjq
“ inf

kPN˚

SpUkq

µpUkq
. (2.6)

We divide the proof into three steps.

Step 1: establishing lower bound and upper bound. Fix any j P N˚ and any n P N˚
and set:
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Q´n,j :“ Y
gPG´

n,kj

gpUkjq;

Q`n,j :“ Y
gPG`

n,kj

gpUkjq,

where G´n,kj , G
`
n,kj

P PfpGkjq with Gkj P UkjpGq given by Definition 2.1.

Step 1-1: lower bound. By the right inclusion in (2.1) we have Qn Ă Q`n,j and so

Q`n,j “ Qn Y pQ
`
n,jzQnq. Hence

S
`

Q`n,j
˘

ď S pQnq ` S
`

Q`n,jzQn

˘

,

and consequently

S
`

Q`n,j
˘

µ
`

Q`n,j
˘ ď

S pQnq

µ pQnq
`

S
`

Q`n,jzQn

˘

µ pQnq
.

As Q´n,j Ă Qn by the left inclusion in (2.1), we see that Q`n,jzQn Ă Q`n,jzQ
´
n,j and so

S
`

Q`n,jzQn

˘

ď cµ
`

Q`n,jzQ
´
n,j

˘

with c2 ą 0 given by (2.5). It follows that

S
`

Q`n,j
˘

µ
`

Q`n,j
˘ ď

S pQnq

µ pQnq
`
cµ

`

Q`n,jzQ
´
n,j

˘

µ pQnq
.

Letting n! 8 and using (2.2) we obtain

lj :“ lim
n!8

S
`

Q`n,j
˘

µ
`

Q`n,j
˘ ď lim

n!8

SpQnq

µpQnq
“: l. (2.7)

Step 1-2: upper bound. By the left inclusion in (2.1) we have Q´n,j Ă Qn and so Qn “

Q´n,j Y pQnzQ
´
n,jq. Hence

SpQnq ď S
`

Q´n,j
˘

` S
`

QnzQ
´
n,j

˘

,

and consequently

SpQnq

µpQnq
ď

S
`

Q´n,j
˘

µ
`

Q´n,j
˘

µ
`

Q´n,j
˘

µpQnq
`

S
`

QnzQ
´
n,j

˘

µpQnq
.

As Qn Ă Q`n,j by the right inclusion in (2.1), we see that QnzQ
´
n,j Ă Q`n,jzQ

´
n,j and so

S
`

QnzQ
´
n,j

˘

ď cµ
`

Q`n,jzQ
´
n,j

˘

with c ą 0 given by (2.5). It follows that

SpQnq

µpQnq
ď

S
`

Q´n,j
˘

µ
`

Q´n,j
˘

µ
`

Q´n,j
˘

µpQnq
`
cµ

`

Q`n,jzQ
´
n,j

˘

µpQnq

ď
S
`

Q´n,j
˘

µ
`

Q´n,j
˘ `

cµ
`

Q`n,jzQ
´
n,j

˘

µpQnq
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because µ
`

Q´n,j
˘

ď µpQnq since Q´n,j Ă Qn. Letting n! 8 and using (2.2) we obtain

l :“ lim
n!8

SpQnq

µpQnq
ď lim

n!8

S
`

Q´n,j
˘

µ
`

Q´n,j
˘ “: lj. (2.8)

Step 2: we prove that l “ ll “ ll “ l. It is sufficient to prove that for each ε ą 0, one has

l ´ l ă ε. (2.9)

Fix ε ą 0. From (2.7) and (2.8) we see that l ´ l ď lj ´ lj. So, to prove (2.9) it suffices to
show that there exists j P N˚ such that

lj ´ lj ă ε. (2.10)

Let Sj : PfpGkjq! R be defined by

SjpEq :“
1

µpUkjq

„

S
´

Y
gPE

gpUkjq

¯

´ |E|SpUkjq



. (2.11)

As S is subadditive, we can assert that Sj is negative, i.e.,

SjpEq “
1

µpUkjq

„

S
´

Y
gPE

gpUkjq

¯

´ |E|SpUkjq



ď 0 (2.12)

for all E P PfpGkjq. Moreover, it is easily seen that Sj is decreasing, i.e., for all E,F P

PfpGkjq, if E Ă F then SjpEq ě SjpF q. Consider mn,kj P N˚, gn,kj P G and Fn,kj P PfpGkjq

given by Definition 2.1. From (2.3) it follows that

Sj
´

G`n,kj

¯

ě Sj
`

Fn,kj
˘

“
1

µpUkjq

«

S
´

Y
gPFn,kj

gpUkjq

¯

´
ˇ

ˇFn,kj
ˇ

ˇSpUkjq

ff

“
1

µpUkjq

”

S
`

gn,kjpUmn,kj
q
˘

´
ˇ

ˇFn,kj
ˇ

ˇSpUkjq

ı

.

Hence, since 1
|G`
n,kj

|
ě 1

|Fn,kj |
and S and µ are G-invariant, we get

Sj
´

G`n,kj

¯

ˇ

ˇG`n,kj
ˇ

ˇ

ě
1

|G`n,kj
ˇ

ˇµpUkjq

”

S
`

gn,kjpUmn,kj
q
˘

´
ˇ

ˇFn,kj
ˇ

ˇSpUkjq

ı

ě
S
`

gn,kjpUmn,kj
q
˘

|Fn,kj
ˇ

ˇµpUkjq
´

ˇ

ˇFn,kj
ˇ

ˇ

ˇ

ˇG`n,kj
ˇ

ˇ

SpUkjq

µpUkjq

“
S
`

gn,kjpUmn,kj
q
˘

µ
`

gn,kjpUmn,kj
q
˘ ´

ˇ

ˇFn,kj
ˇ

ˇ

ˇ

ˇG`n,kj
ˇ

ˇ

SpUkjq

µpUkjq

“
S
`

Umn,kj

˘

µ
`

Umn,kj

˘ ´

ˇ

ˇFn,kj
ˇ

ˇ

ˇ

ˇG`n,kj
ˇ

ˇ

SpUkjq

µpUkjq

ě inf
kPN˚

SpUkq

µpUkq
´

ˇ

ˇFn,kj
ˇ

ˇ

ˇ

ˇG`n,kj
ˇ

ˇ

SpUkjq

µpUkjq
.
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Letting n! 8 and taking (2.4) into account, we deduce that

lim
n!8

Sj
´

G`n,kj

¯

ˇ

ˇG`n,kj
ˇ

ˇ

ě inf
kPN˚

SpUkq

µpUkq
´

SpUkjq

µpUkjq
. (2.13)

By (2.6) we can assert that there exists jε P N˚ such that for all j ě jε, one has

SpUkjq

µpUkjq
´ inf

kPN˚

SpUkq

µpUkq
ă ε. (2.14)

Combining (2.13) with (2.14) we conclude that

lim
n!8

Sj
´

G`n,kj

¯

ˇ

ˇG`n,kj
ˇ

ˇ

ą ´ε (2.15)

for all j ě jε. On the other hand, by using (2.11) with E “ G`n,kj and (2.12) with E “ G´n,kj
we get:

S
`

Q`n,j
˘

µ
`

Q`n,j
˘ ´

SpUkjq

µpUkjq
“

Sj
´

G`n,kj

¯

ˇ

ˇG`n,kj
ˇ

ˇ

; (2.16)

S
`

Q´n,j
˘

µ
`

Q´n,j
˘ ´

SpUkjq

µpUkjq
ď 0. (2.17)

Letting n! 8 in (2.16) and (2.17) and taking (2.15) into account, we deduce that:

lj ´
SpUkjq

µpUkjq
ą ´ε for all j ě jε; (2.18)

lj ´
SpUkjq

µpUkjq
ď 0 for all j P N˚, (2.19)

and (2.10) follows with j “ jε. We set l :“ l “ l and γ :“ infkPN˚
SpUkq
µpUkq

.

Step 3: we prove that l “ γl “ γl “ γ. Combining (2.8) with (2.19) we see that l ď
SpUkj q
µpUkj q

for all

j P N˚, and so l ď γ by letting j ! 8 and using (2.6). On the other hand, combining (2.7)

with (2.18) we see that l ą ´ε `
SpUkj q
µpUkj q

for all j ě jε. Letting j ! 8 and using (2.6) we

deduce that l ě ´ε` γ for all ε ą 0, and so l ě γ by letting ε! 0. �

2.2. The stochastic case. We begin with the following definition.

Definition 2.4. The metric mesaure space pX, d, µq is said to be meshable with respect to
tUkukPN˚ if for all k P N˚ there exists Hk P UkpGq with the property that for all n P N˚ there
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exist H´
n,k, H

`
n,k P PfpHkq such that:

Y
gPH´

n,k

gpUkq Ă Un Ă Y
gPH`

n,k

gpUkq; (2.20)

lim
n!8

µ

ˆ

Y
gPH`

n,k

gpUkqz Y
gPH´

n,k

gpUkq

˙

µpUnq
“ 0. (2.21)

The interest of Definition 2.4 comes from the following lemma (which will be used in the
proof of Theorem 2.11).

Lemma 2.5. Let S : Bµ,0pXq! R be a subadditive and G-invariant set function satisfying
(2.5). If pX, d, µq is meshable with respect to tUkukPN˚ then

lim
n!8

SpUnq

µpUnq
“ inf

kPN˚

SpUkq

µpUkq
. (2.22)

Proof of Lemma 2.5. First of all, it is clear that SpUnq
µpUnq ě infkPN˚

SpUkq
µpUkq

for all n P N˚, and
so

lim
n!8

SpUnq

µpUnq
ě inf

kPN˚

SpUkq

µpUkq
. (2.23)

On the other hand, fix any k P N˚ and any n P N˚ and set:

U´n,k :“ Y
gPH´

n,k

gpUkq;

U`n,k :“ Y
gPH`

n,k

gpUkq,

where H´
n,k and H`

n,k P PfpHkq with Hk given by Definition 2.4. By the left inclusion in (2.20)

we have U´n,k Ă Un and so Un “ U´n,k Y
`

UnzU´n,k
˘

. Hence

SpUnq ď S
`

U´n,k
˘

` S
`

UnzU´n,k
˘

because S is subadditive, and consequently

SpUnq

µpUnq
ď

S
`

U´n,k
˘

µ
`

U´n,k
˘

µ
`

U´n,k
˘

µpUnq
`

S
`

UnzU´n,k
˘

µpUnq
.

Using again the subadditivity of S and its G-invariance (resp. the G-invariance of µ) we
have

S
`

U´n,k
˘

ď
ˇ

ˇH´
n,k

ˇ

ˇSpUkq
`

resp. µ
`

U´n,k
˘

“
ˇ

ˇH´
n,k

ˇ

ˇµpUkq
˘

.

Moreover, Un Ă U`n,k by the right inclusion in (2.20), which implies that UnzU´n,k Ă U`n,kzU
´
n,k

and so

S
`

UnzU´n,k
˘

ď cµ
`

U`n,kzU
´
n,k

˘
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with c ą 0 given by (2.5). It follows that

SpUnq

µpUnq
ď

S pUkq

µ pUkq

µ
`

U´n,k
˘

µpUnq
`
cµ

`

U`n,kzU
´
n,k

˘

µpUnq

ď
S pUkq

µ pUkq
`
cµ

`

U`n,kzU
´
n,k

˘

µpUnq

because µ
`

U´n,k
˘

ď µpUnq since U´n,k Ă Un. Letting n ! 8 and using (2.21), and then
passing to the infimum on k, we obtain

lim
n!8

SpUnq

µpUnq
ď inf

kPN˚

S pUkq

µ pUkq
, (2.24)

and (2.6) follows by combining (2.23) with (2.24). �

In what follows, ∆ denotes the symmetric difference of sets, i.e., E∆F :“ pEzF q Y pF zEq
for any E,F Ă G, and we adopt the following notation: EF :“ tgof : pg, fq P E ˆ F u and
E´1F :“ tg´1of : pg, fq P E ˆ F u and, for any g P G, gF :“ tgof : f P F u. From now on,
for each k P N˚, we consider the class Ua

k pGq defined by

Ua
k pGq :“

!

H P UkpGq : H is countable, discrete and amenable group
)

,

where amenability ofH means that for each E P PfpHq and each δ ą 0 there exists F P PfpHq
such that

|F∆EF | ď δ|F |.

(For more details about the theory of amenability, we refer to [Gre69, OW87, Pat88, Tem92,
AAB`10, DZ15] and the references therein, see also [Kre85, §6.4].)

The property of Følner-Tempelman stated in the definition below is needed to use both
Lindenstrauss’s ergodic theorem (see Theorem 2.13) which is valid for general amenable
groups and a maximal inequality (see Lemma 2.14) which is valid for countable discrete
amenable groups. (These two results will be used in the proof of Theorem 2.11.)

Definition 2.6. Let H P Ua
k pGq and let tGnunPN˚ Ă PfpHq. We say that tGnunPN˚ is of

Følner-Tempelman type with respect to H if it satisfies the following two conditions:

(a) Følner’s condition: for every g P H, one has

lim
n!8

ˇ

ˇgGn∆Gn

ˇ

ˇ

ˇ

ˇGn|
“ 0;

(b) Tempelman’s condition: there exists M ą 0, which called the Templeman constant
associated with tGnunPN˚ , such that for every n P N˚, one has

ˇ

ˇ

ˇ

n
Y
i“1

G´1
i Gn

ˇ

ˇ

ˇ
ďM |Gn|.

Together with Definition 2.4, the following definition set a framework for establishing a
subadditive theorem in the stochastic case and in the setting of metric measure spaces (see
Theorem 2.11).
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Definition 2.7. Let tQnunPN˚ Ă Bµ,0pXq. We say that tQnunPN˚ is strongly G-asymptotic
with respect to tUkukPN˚ if there exists tGkukPN˚ with Gk P Ua

k pGq for all k P N˚ and
G “ YkPN˚Gk such that for all k P N˚ and all n P N˚ there exist mn,k P N˚, gn,k P G
and Fn,k, G

´
n,k, G

`
n,k P PfpGkq such that (2.1), (2.2), (2.3) and (2.4) are satisfied with the

additional assumption that tG´n,kunPN˚ and tG`n,kunPN˚ are of Følner-Tempelman type with
respect to Gk.

Let pΣ, T ,Pq be a probability space and let tτg : Σ ! ΣugPG be satisfying the following three
properties:

‚ (mesurability) τg is T -mesurable;
‚ (group property) τgoτf “ τgof and τg´1 “ τ´1

g for all g, f P G;
‚ (mass invariance) PpτgpEqq “ PpEq for all E P T and all g P G.

Definition 2.8. Such a tτgugPG is said to be a group of P-preserving transformation on
pΣ, T ,Pq and the quadruplet pΣ, T ,P, tτgugPGq is called a measurable dynamical G-system.
(Note that if pΣ, T ,P, tτgugPGq is a a measurable dynamical G-system, then pΣ, T ,P, tτgugPHq
is a measurable dynamical H-system for all subgroups H of G.)

Let I :“ tE P T : PpτgpEq∆Eq “ 0 for all g P Gu be the σ-algebra of invariant sets with
respect to pΣ, T ,P, tτgugPGq. (For any subgroup H of G, we denote the σ-algebra of invariant
sets with respect to pΣ, T ,P, tτgugPHq by IH .)

Definition 2.9. When PpEq P t0, 1u for all E P I, the measurable dynamical G-system
pΣ, T ,P, tτgugPGq is said to be ergodic.

In what follows, we assume that pΣ, T ,P, tτgugPGq is a measurable dynamical G-system. Let
us recall the definition of a subadditive process.

Definition 2.10. A set function S : Bµ,0pXq ! L1pΣ, T ,Pq is called a subadditive process
if it is subadditive in the sense of Definition 2.2(a) and G-covariant, i.e.,

SpgpAqq “ SpAqoτg
for all A P Bµ,0pXq and all g P G. If in addition the measurable dynamical G-system
pΣ, T ,P, tτgugPGq is ergodic, then S is called an ergodic subadditive process.

Here is the second main result of the paper.

Theorem 2.11. Assume that pX, d, µq is meshable with respect to tUkukPN˚ and consider
S : Bµ,0pXq! L1pΣ, T ,Pq a subadditive process satisfying (2.5). Then, for any tQnunPN˚ Ă

Bµ,0pXq such that tQnunPN˚ is strongly G-asymptotic with respect to tUkukPN˚, one has

lim
n!8

SpQnqpωq

µ
`

Qn

˘ “ inf
kPN˚

EIrSpUkqspωq

µpUkq
for P-a.a. ω P Σ,

where EIrSpUkqs denotes the conditional expectation of SpUkq over I with respect to P. If
in addition pΣ, T ,P, tτgugPGq is ergodic, then

lim
n!8

SpQnqpωq

µ
`

Qn

˘ “ inf
kPN˚

ErSpUkqs

µpUkq
for P-a.a. ω P Σ,

where ErSpUkqs denotes the expectation of SpUkq with respect to P.
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Proof of Theorem 2.11. The proof is divided into four steps.

Step 1: establishing lower bound and upper bound. Fix any k P N˚ and any n P N˚
and set:

Q´n,k :“ Y
gPG´

n,k

g pUkq;

Q`n,k :“ Y
gPG`

n,k

g pUkq,

where G´n,k, G
`
n,k P PfpGkq with Gk P Ua

k pGq given by Definition 2.7. Arguing as in Step 1 of
the proof of Theorem 2.3, for each ω P Σ, we get:

lkpωq :“ lim
n!8

S
`

Q`n,k
˘

pωq

µ
`

Q`n,k
˘ ď lim

n!8

SpQnqpωq

µpQnq
“: lpωq (2.25)

lpωq :“ lim
n!8

SpQnqpωq

µpQnq
ď lim

n!8

S
`

Q´n,k
˘

pωq

µ
`

Q´n,k
˘ “: lkpωq. (2.26)

Remark 2.12. Arguing as in Step 1-1 of the proof of Theorem 2.3, we see that we also have

lim
n!8

S
`

Q`n,k
˘

pωq

µ
`

Q`n,k
˘ ď lpωq (2.27)

for all ω P Σ. (This will be used in Step 3.)

Step 2: we prove that lpωq “ lpωqlpωq “ lpωqlpωq “ lpωq for PPP-a.a. ω P Σω P Σω P Σ. It is sufficient to prove that for each
α ą 0, one has

P
´!

ω P Σ : lpωq ´ lpωq ą α
)¯

“ 0. (2.28)

Fix α ą 0. From (2.25) and (2.26) we see that for each k P N˚, one has
!

ω P Σ : lpωq ´ lpωq ą α
)

Ă

!

ω P Σ : lkpωq ´ lkpωq ą α
)

“: Wk,α. (2.29)

So, to prove (2.28) it suffices to show that for each ε ą 0 there exists k P N˚ such that

PpWk,αq ď
Mk

α
ε, (2.30)

where Mk ą 0 is the Tempelman constant associated with tG`n,kunPN˚ . Fix ε ą 0.

Step 2-1: constructing a decreasing negative subadditive process on PfpGkqPfpGkqPfpGkq. Let
Ak : PfpGkq! L1pΣ, T ,Pq be defined by

AkpEq :“
ÿ

gPE

S pUkq oτg,

where Gk P Ua
k pGq is (a countable discrete and amenable subgroup of G) given by Definition

2.7, and let Sk : PfpGkq! L1pΣ, T ,Pq be defined by

SkpEq :“
1

µ pUkq

„

S
´

Y
gPE

g pUkq

¯

´AkpEq



. (2.31)
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As S is subadditive and G-covariant (and so Gk-covariant) and Ak is additive and Gk-
covariant, we can assert that Sk is a subadditive process1 on PfpGkq which is negative, i.e.,

SkpEqpωq “
1

µ pUkq

„

S
´

Y
gPE

g pUkq

¯

pωq ´AkpEqpωq



ď 0 (2.32)

for all E P PfpGkq and all ω P Σ. Moreover, it is easily seen that Sk is decreasing, i.e.,
for all E,F P PfpGkq, if E Ă F then SkpEq ě SkpF q. Consider mn,k P N˚, gn,k P G and
Fn,k P PfpGkq given by Definition 2.7. From (2.3) it follows that

Sk
`

G`n,k
˘

ě Sk pFn,kq “
1

µpUkq

„

S
´

Y
gPFn,k

g pUkq

¯

´Ak pFn,kq



“
1

µ pUkq

“

S
`

gn,k
`

Umn,k

˘˘

´Ak pFn,kq
‰

.

By using the G-covariance of S we see that
ż

Σ

Sk
`

G`n,k
˘

pωqdPpωq ě
1

µ pUkq

„
ż

Σ

S
`

gn,k
`

Umn,k

˘˘

pωqdPpωq ´
ż

Σ

Ak pFn,kq pωqdPpωq


“
1

µ pUkq

„
ż

Σ

S
`

Umn,k

˘

pωqdPpωq ´
ˇ

ˇFn,k
ˇ

ˇErS pUkqs



“
E
“

S
`

Umn,k

˘‰

µ pUkq
´
ˇ

ˇFn,k
ˇ

ˇ

ErS pUkqs

µ pUkq
.

Consequently, since 1
|G`
n,k|

ě 1
|Fn,k|

and µ is G-invariant, we get

ErSj
`

G`n,k
˘

s
ˇ

ˇG`n,k
ˇ

ˇ

ě
E
“

S
`

Umn,k

˘‰

µ
`

Umn,k

˘ ´

ˇ

ˇFn,k
ˇ

ˇ

ˇ

ˇG`n,k
ˇ

ˇ

ErSpUkqs

µpUkq

ě inf
mPN˚

ErSpUmqs

µpUmq
´

ˇ

ˇFn,k
ˇ

ˇ

ˇ

ˇG`n,k
ˇ

ˇ

ErSpUkqs

µpUkq
.

Letting n! 8 and taking (2.4) into account, we deduce that

lim
n!8

ErSk
`

G`n,k
˘

s
ˇ

ˇG`n,k
ˇ

ˇ

ě inf
mPN˚

ErSpUmqs

µpUmq
´

ErSpUkqs

µpUkq
. (2.33)

As S is subadditive and G-covariant, we see that the set function ErSp¨qs is subadditive and
G-invariant. From Lemma 2.5 it follows that there exists kε P N˚ such that for all k ě kε,
one has

ErSpUkqs

µpUkq
´ inf

mPN˚

ErSpUmqs

µpUmq
ă ε. (2.34)

1The set function Sk : PfpGkq ! L1pΣ, T ,Pq is said to be a subadditive process on PfpGkq if it is
subadditive, i.e., SkpEYF q ď SkpEq`SkpF q for all E,F P PfpGkq such that EXF “ H, and Gk-covariant,
i.e., SkpEgq “ SkpEqoτg for all E P PfpGkq and all g P Gk.
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Combining (2.33) with (2.34) we conclude that

lim
n!8

E
“

Sk
`

G`n,k
˘‰

ˇ

ˇG`n,k
ˇ

ˇ

ą ´ε (2.35)

for all k ě kε.

Step 2-2: using Lindenstrauss’s ergodic theorem. We need the following pointwise
additive ergodic theorem2 due to Lindenstrauss (see [Lin01, Theorem 1.2] and also [DGZ14,
Theorem 2.1]).

Theorem 2.13. Let Θ P L1pΣ, T ,Pq and let tGnunPN˚ Ă PfpGkq. If tGnunPN˚ is of Følner-
Tempelman type with respect to Gk then

lim
n!8

1

|Gn|

ÿ

gPGn

Θ
`

τgpωq
˘

“ EIGk rΘspωq for P-a.a ω P Σ,

where IGk is the σ-algebra of invariant sets with respect to pΣ, T ,P, tτgugPGkq and EIGk rΘs
denotes the conditional expectation over IGk with respect to P.

As tG´n,kunPN˚ and tG`n,kunPN˚ are of Følner-Tempelman type with respect to Gk, applying

Theorem 2.13 with Θ “ SpUkq we deduce that there exists pΣ P T with PppΣq “ 1 such that

lim
n!8

Ak

`

G´n,k
˘

pωq
ˇ

ˇG´n,k
ˇ

ˇ

“ lim
n!8

Ak

`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

“ EIGk rSpUkqspωq for all ω P pΣ. (2.36)

On the other hand, by using (2.31) with E “ G`n,k and (2.32) with E “ G´n,k we get:

S
`

Q`n,k
˘

pωq

µ
`

Q`n,k
˘ ´

1

µpUkq

Ak

`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

“
Sk
`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

ě inf
qPN˚

Sk
`

G`q,k
˘

pωq
ˇ

ˇG`q,k
ˇ

ˇ

; (2.37)

S
`

Q´n,k
˘

pωq

µ
`

Q´n,k
˘ ´

1

µpUkq

Ak

`

G´n,k
˘

pωq
ˇ

ˇG´n,k
ˇ

ˇ

ď 0

for all ω P Σ. Letting n! 8 we deduce that:

lkpωq ´
EIGk rSpUkqspωq

µpUkq
ě inf

nPN˚

Sk
`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

for all k P N˚ and all ω P pΣ; (2.38)

lkpωq ´
EIGk rSpUkqspωq

µpUkq
ď 0 for all k P N˚ and all ω P pΣ; . (2.39)

In what follows, without loss of generality, we assume that pΣ “ Σ.

Step 2-3: using a maximal inequality. We need the following lemma (see [DGZ14,
Lemma 3.5] and also [AK81, Theorem 4.2]).

2Lindenstrauss’s ergodic theorem is established under the weaker condition that tGnunPN˚ is a tempered
Følner sequence (see [Lin01, Definition 1.1] and [DGZ14, §2] for more details). The tempered Følner condition
implies the Følner-Tempelman condition, but the converse is not true (see [Lin01, DGZ14]).
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Lemma 2.14. Let K : PfpGkq ! L1pΣ, T ,Pq be a negative subadditive process and let
tGnunPN˚ Ă PfpGkq. Fix α ą 0 and consider V K

α P T given by

V K
α :“

"

ω P Σ : inf
nPN˚

KpGn

˘

pωq

|Gn|
ă ´α

*

.

If tGnunPN˚ is of Følner-Tempelman type with respect to Gk then

P
`

V K
α

˘

ď ´
M

α
lim
n!8

ErKpGnqs

|Gn|
,

where M ą 0 is the Templeman constant associated with tGnunPN˚.

As Sk : PfpGkq ! L1pΣ, T ,Pq defined by (2.31) is a negative subadditive process, we can
apply Theorem 2.14 with K “ Sk. Hence, since tG`n,kunPN˚ is of Følner-Tempelman type
with respect to Gk, one has

P
`

V Sk
α

˘

ď ´
Mk

α
lim
n!8

ErSk
`

G`n,k
˘

s
ˇ

ˇG`n,k
ˇ

ˇ

,

where Mk ą 0 is the Templeman constant associated with tG`n,kunPN˚ . Consequently, taking
(2.35) into account, we get

P
`

V Sk
α

˘

ď
Mk

α
ε for all k ě kε. (2.40)

Step 2-4: end of Step 2. From (2.38) and (2.39) it follows that

lk ´ lk ď ´ inf
nPN˚

Sk
`

G`n,k
˘

ˇ

ˇG`n,k
ˇ

ˇ

.

Hence Wk,α Ă V Sk
α , where Wk,α is defined in (2.29). From (2.40) we conclude that (2.30) is

satisfied with k “ kε.

In what follows we set l :“ l “ l and γ :“ inf
kPN˚

γk with γk :“ EIGk rSpUkqs
µpUkq

for all k P N˚.

Step 3: we prove that lpωq “ γpωqlpωq “ γpωqlpωq “ γpωq for PPP-a.a. ω P Σω P Σω P Σ. First of all, from (2.26) and (2.39)
we see that lpωq ď γkpωq for P-a.a. ω P Σ and all k P N˚, and so

lpωq ď γpωq for P-a.a. ω P Σ. (2.41)

On the other hand, letting n! 8 in (2.37) and using (2.36) we get

lim
n!8

S
`

Q`n,k
˘

pωq

µ
`

Q`n,k
˘ ´ γkpωq ě lim

n!8

Sk
`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

for P-a.a. ω P Σ

and so, taking (2.27) into account, one has

lpωq ´ γk ě lim
n!8

Sk
`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

for P-a.a. ω P Σ.

It follows that
ż

Σ

rlpωq ´ γks dPpωq ě
ż

Σ

lim
n!8

Sk
`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

dPpωq.
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But, by using Fatou’s lemma and (2.35) we see that for any k ě kε, one has
ż

Σ

lim
n!8

Sk
`

G`n,k
˘

pωq
ˇ

ˇG`n,k
ˇ

ˇ

dPpωq ą ´ε, (2.42)

and consequently
ż

Σ

lpωqdPpωq ě

ż

Σ

γkpωqdPpωq ´ ε

ě

ż

Σ

γpωqdPpωq ´ ε.

Letting ε! 0 we deduce that
ż

Σ

rlpωq ´ γpωqs dPpωq ě 0, (2.43)

and the result follows by combining (2.41) with (2.43).

In what follows, we set γI :“ inf
kPN˚

γIk with γIk :“ EIrSpUkqs
µpUkq

for all k P N˚.

Step 4: we prove that lpωq “ γIpωqlpωq “ γIpωqlpωq “ γIpωq for PPP-a.a. ω P Σω P Σω P Σ. Since γk is IGk-measurable for all
k P N˚, γ “ infkPN˚ γk is XkPN˚IGk-measurable. But XkPN˚IGk “ I because YkPN˚Gk “ G,
hence γ is I-measurable and so l is I-measurable by Step 3. we have I “ XkPN˚IGk . It
follows that

EI
rls “ l. (2.44)

As I Ă IGk for all k P N˚ we also have

EI
rγks “ γIk for all k P N˚. (2.45)

Arguing as in Step 3, for each k P N˚, we have l ď γk hence EIrls ď EIrγks and so l ď γIk by
using (2.44) and (2.45). Consequently

l ď γI . (2.46)

Fix any E P I. Arguing again as in Step 3 we see that for any k ě kε, one has
ż

E

lpωqdPpωq ě
ż

E

γkpωqdPpωq ´ ε.

But
ş

E
γkpωqdPpωq “

ş

E
EIrγkspωqdPpωq by definition of the conditional expectation, hence

ş

E
γkpωqdPpωq “

ş

E
γIk pωqdPpωq by (2.45), and so

ż

E

lpωqdPpωq ě

ż

E

γIk pωqdPpωq ´ ε

ě

ż

E

γIpωqdPpωq ´ ε.

Letting ε! 0 we get
ż

E

lpωqdPpωq ě
ż

E

γIpωqdPpωq for all E P I. (2.47)
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Combining (2.46) with (2.47) we deduce that
ż

E

lpωqdPpωq “
ż

E

γIpωqdPpωq for all E P I,

which implies that l “ EIrγIs by unicity of the conditional expectation. But γI is I-
measurable because γIk is I-measurable for all k P N˚, hence EIrγIs “ γI and consequently
l “ γI . �

3. Applications to homogenization

Here pX, d, µq is a metric measure space, with pX, dq a length space, i.e., the distance between
any two points equals infimum of lengths of curves connecting the points, which is complete,
separable and locally compact, and satisfies a weak p1, pq-Poincaré inequality with p ą 1
and such that µ is a doubling positive Radon measure on X. Let m ě 1 be an integer, let
Ω Ă X be a bounded open set, let OpΩq be the class of open subsets of Ω and let pΣ,F ,Pq
be a probability space. For each n P N˚, let En : H1,p

µ pΩ;Rmq ˆOpΩq ˆ Σ ! r0,8s be the
variational stochastic integral defined by

Enpu,A, ωq :“

ż

A

Ln
`

x,∇µupxq, ω
˘

dµpxq, (3.1)

where the stochastic integrand Ln : Ω ˆ M ˆ Σ ! r0,8s is Borel measurable and has
p-growth, i.e., there exist α, β ą 0, which do not depend on n, such that

α|ξ|p ď Lnpx, ξ, ωq ď βp1` |ξ|pq (3.2)

for µ-a.a. x P Ω, all ξ P M and P-a.a. ω P Σ, with M denoting the space of real m ˆ N
matrices. The space H1,p

µ pΩ;Rmq denotes the class of p-Cheeger-Sobolev functions from Ω to
Rm and ∇µu is the µ-gradient of u (see [BB11, HKST15] and the references therein for more
details on the theory of metric Sobolev spaces). In this section we deal with the problem
of computing the almost sure (a.s.) Γ-convergence with respect to the strong convergence
of LpµpΩ;Rmq (see Definitions 3.1 and 3.2) of the stochastic sequence tEnunPN˚ as n ! 8

toward a variational stochastic integral E8 : H1,p
µ pΩ;Rmq ˆOpΩq ˆ Σ ! r0,8s of the type

E8pu,A, ωq “

ż

A

L8
`

x,∇µupxq, ω
˘

dµpxq (3.3)

with L8 : ΩˆMˆΣ ! r0,8s which does not depend on n. When L8 is independent of the
variable x, the procedure of passing from (3.1) to (3.3) is referred as stochastic homogeniza-
tion. If furthermore L8 is independent of the variable ω then E8 is said to be deterministic.
When tLnunPN˚ is deterministic, i.e., Ln is independent of the variable ω for all n P N˚, the
procedure of passing from (3.1) to (3.3) is referred as deterministic homogenization. (Deter-
ministic and stochastic homogenization were studied by many authors in the euclidean case,
i.e., when the metric measure space pX, d, µq is equal to RN endowed with the euclidean
distance and the Lebesgue measure, see for instance [DG16] and the references therein.)

Let us recall the definition of Γ-convergence and a.s Γ-convergence. (For more details on the
theory of Γ-convergence we refer to [DM93].)
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Definition 3.1. For each n P N˚, let En : H1,p
µ pΩ;Rmq ˆ OpΩq ! r0,8s and let E8 :

H1,p
µ pΩ;Rmq ˆOpΩq! r0,8s. We say that tEnunPN˚ Γ-converges with respect to the strong

convergence of LpµpΩ;Rmq, or simply ΓpLpµq-converges, to E8 as n! 8 if

ΓpLpµq- lim
n!8

Enpu,Aq ě E8pu,Aq ě ΓpLpµq- lim
n!8

Enpu,Aq

for any u P H1,p
µ pΩ;Rmq and any A P OpΩq, with:

ΓpLpµq- lim
n!8

Enpu,Aq :“ inf

"

lim
n!8

Enpun, Aq : un
Lpµ
! u

*

;

ΓpLpµq- lim
n!8

Enpu,Aq :“ inf

"

lim
n!8

Enpun, Aq : un
Lpµ
! u

*

.

Then we write

ΓpLpµq- lim
n!8

Enpu,Aq “ E8pu,Aq.

Almost sure Γ-convergence is defined from Definition 3.1 as follows.

Definition 3.2. For each n P N˚, let En : H1,p
µ pΩ;Rmq ˆ OpΩq ˆ Σ ! r0,8s and let

E8 : H1,p
µ pΩ;RmqˆOpΩqˆΣ ! r0,8s. We say that tEnunPN˚ a.s. Γ-converges with respect

to the strong convergence of LpµpΩ;Rmq, or simply a.s. ΓpLpµq-converges, to E8 as n! 8 if
for P-a.e. ω P Σ, one has

ΓpLpµq- lim
n!8

Enpu,A, ωq “ E8pu,A, ωq.

for any u P H1,p
µ pΩ;Rmq and any A P OpΩq.

For each n P N˚ and each ρ ą 0, let Hρ
µLn : ΩˆMˆ Σ ! r0,8s be given by

Hρ
µLnpx, ξ, ωq :“ inf

#

´

ż

Qρpxq

Lnpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pQρpxq;Rm

q

+

where the space H1,p
µ,0pQρpxq;Rmq is the closure of

Lip0pQρpxq;Rm
q :“

!

u P LippΩ;Rm
q : u “ 0 on ΩzQρpxq

)

with respect to the H1,p
µ -norm, where LippΩ;Rmq :“ rLippΩqsm with LippΩq denoting the

algebra of Lipschitz functions from Ω to R. When tLnunPN˚ is deterministic, in [AHM17,
Theorem 2.2 and Corollary 2.3] we proved the following deterministic Γ-convergence result.

Theorem 3.3. Assume that (3.2) holds and

lim
n!8

Hρ
µLnpx, ξq “ lim

n!8
Hρ
µLnpx, ξq

for µ-a.a. x P Ω, all ρ ą 0 and all ξ PM. Then

ΓpLpµq- lim
n!8

Enpu,Aq “

ż

A

lim
ρ!0

lim
n!8

Hρ
µLnpx,∇µupxqqdµpxq

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq.
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By the same method as in [AHM17, Theorem 2.2 and Corollary 2.3] we can establish the
following stochatic version of Theorem 3.3.

Theorem 3.4. Assume that (3.2) holds and

lim
n!8

Hρ
µLnpx, ξ, ωq “ lim

n!8
Hρ
µLnpx, ξ, ωq

for µ-a.a. x P Ω, all ρ ą 0, all ξ PM and P-a.a. ω P Σ. Then, for P-a.e. ω P Σ, one has

ΓpLpµq- lim
n!8

Enpu,A, ωq “

ż

A

lim
ρ!0

lim
n!8

Hρ
µLnpx,∇µupxq, ωqdµpxq

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq.

In §3.1 (resp. §3.2), by using Theorems 2.3 and 3.3 (resp. Theorems 2.11 and 3.4) we
establish a periodic (resp. stochastic) homogenization theorem in the setting of Cheeger-
Sobolev spaces, see Theorem 3.6 (resp. Theorem 3.8). In what follows, we adopt notation
of Section 2 and, from now on, BapXq denotes the class of open balls Q of X. As pX, dq is
a Length space we have µpBQq “ 0 for all Q P BapXq3. Hence BapXq Ă Bµ,0pXq.

3.1. Periodic homogenization. Let L : X ˆM ! r0,8s be a Borel measurable integrand
having p-growth, i.e., there exist α, β ą 0 such that

α|ξ|p ď Lpx, ξq ď βp1` |ξ|pq (3.4)

for µ-a.a. x P Ω and all ξ PM, and assumed to be G-invariant, i.e.,

Lpgpxq, ξq “ Lpx, ξq (3.5)

for µ-a.a. x P X, all ξ P M and all g P G. Let thnunPN˚ Ă HomeopXq and, for each n P N˚,
let Ln : X ˆM ! r0,8s be given by

Lnpx, ξq “ L phnpxq, ξq . (3.6)

(Then (3.4) implies (3.2) with Ln independent of ω, and we have Ln pph
´1
n ogohnqpxq, ξq “

Lnpx, ξq for µ-a.a. x P X, all ξ PM, all n P N˚ and all g P G.)

Definition 3.5. Such a tLnunPN˚ , defined by (3.5)-(3.6), is called a pG, thnunPN˚q-periodic
sequence (of integrands) modelled on L.

Let us consider the following condition on the triplet
`

pX, d, µq, G, thnunPN˚

˘

:

(P) there exists U P Bµ,0pXq such that for all Q P BapXq, the sequence thnpQqunPN˚ is
weakly G-asymptotic with respect to thkpUqukPN˚ (see Definition 2.1).

The following theorem was established in [AHM17, Theorems 2.20] under a slightly different
framework. (In what follows, the symbol ´

ş

stands for the mean value integral.)

3Indeed, by Colding-Minicozzi II’s inequality (see [CM98], [Che99, Proposition 6.12] and [HKST15, Propo-
sition 11.5.3]), there exists δ ą 0 such that µpQτρpxqzQρpxqq ď 2δp1 ´ 1

τ qµpQτρpxqq for all x P X, all ρ ą 0

and all τ Ps1,8r. Then, given x P X and ρ ą 0, we have 1 ě µpQρpxqq{µpQρpxqq ě µpQρpxqq{µpQτρpxqq ě

1´ 2δp1´ 1
τ q for all τ Ps1,8r. Hence, by letting τ ! 1, µpQρpxqq{µpQρpxqq “ 1, i.e., µpQρpxqq “ µpQρpxqq.
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Theorem 3.6. Assume that pX, d, µq satisfies (P) and consider tLnunPN˚ a pG, thnunPN˚q-
periodic sequence modelled on L. If (3.4) holds then

ΓpLpµq- lim
n!8

Enpu,Aq “

ż

A

Lhomp∇µupxqqdµpxq

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq with Lhom : M ! r0,8s given by

Lhompξq :“ inf
kPN˚

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyqqdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+

.

The proof of Theorem 3.6 follows the same line as in the proof of Theorem 3.8, in using
Theorems 3.3 and 2.3 instead of Theorems 3.4 and 2.11. So, we omit its proof and we refer
to §3.2.

3.2. Stochastic homogenization. In what follows, we assume that pΣ, T ,P, tτgugPGq is a
measurable dynamical G-system (see Definition 2.8). Let L : XˆMˆΣ ! r0,8s be a Borel
measurable integrand having p-growth, i.e., there exist α, β ą 0 such that

α|ξ|p ď Lpx, ξ, ωq ď βp1` |ξ|pq (3.7)

for µ-a.a. x P Ω, all ξ PM and P-a.a. ω P Σ, and assumed to be G-covariant, i.e.,

Lpgpxq, ξ, ωq “ L px, ξ, τgpωqq (3.8)

for µ-a.a. x P X, all ξ PM, all g P G and P-a.a. ω P Σ . Let thnunPN˚ Ă HomeopXq and, for
each n P N˚, let Ln : X ˆMˆ Σ ! r0,8s be given by

Lnpx, ξ, ωq “ L phnpxq, ξ, ωq . (3.9)

(Then (3.7) implies (3.2), and we have Ln pph
´1
n ogohnqpxq, ξ, ωq “ Ln px, ξ, τgpωqq for µ-a.a.

x P X, all ξ PM, all n P N˚, all g P G and P-a.a. ω P Σ.)

Definition 3.7. Such a tLnunPN˚ , defined by (3.8)-(3.9), is called a pG, thnunPN˚q-stochastic
sequence (of integrands) modelled on L.

Let us consider the following condition on the triplet
`

pX, d, µq, G, thnunPN˚

˘

:

(S) there exists U P Bµ,0pXq such that:
‚ pX, d, µq is meshable with respect to thkpUqukPN˚ (see Definition 2.4);
‚ for all Q P BapXq, the sequence thnpQqunPN˚ is strongly G-asymptotic with respect

to thkpUqukPN˚ (see Definition 2.7).

The following theorem is the stochastic version of Theorem 3.8.

Theorem 3.8. Assume that pX, d, µq satisfies (S) and consider tLnunPN˚ a pG, thnunPN˚q-
stochastic sequence modelled on L. If (3.7) holds then, for P-a.e. ω P Σ, one has

ΓpLpµq- lim
n!8

Enpu,A, ωq “

ż

A

Lhomp∇µupxq, ωqdµpxq

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq with Lhom : Mˆ Σ ! r0,8s given by

Lhompξ, ωq :“ inf
kPN˚

EI

«

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyq, ¨qdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+ff

pωq,
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where EI denotes the conditional expectation over I with respect to P, with I being the σ-
algebra of invariant sets with respect to pΣ, T ,P, tτgugPGq. If in addition pΣ, T ,P, tτgugPGq is
ergodic, then Lhom is deterministic and is given by

Lhompξq :“ inf
kPN˚

E

«

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyq, ¨qdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+ff

,

where E denotes the expectation with respect to P.

Proof of Theorem 3.8. The proof consists of applying Theorem 3.4. For this, it suffices
to prove that for every ξ PM, one has

lim
n!8

Hρ
µLnpx, ξ, ωq “ lim

n!8
Hρ
µLnpx, ξ, ωq “ Lhompξ, ωq (3.10)

for µ-a.e. x P Ω, all ρ ą 0 and P-a.a. ω P Σ. Fix ξ P M and let Sξ : Bµ,0pXq! L1pΣ, T ,Pq
be defined by

SξpAqpωq :“ inf

"
ż

Å

Lpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0

`

Å;Rm
˘

*

,

where by (3.7) we have 0 ď SξpAqpωq ď cµ
`

Å
˘

ď cµpAq for all A P B0pXq and all ω P Σ

with c :“ βp1 ` |ξ|pq. In particular Sξ satisfies the boundedness condition in (2.5). On the
other hand, by using (3.9), we see that

Sξ phnpQqq pωq “ inf

"
ż

hnpQq

Lpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0phnpQq;Rm

q

*

“ inf

"
ż

Q

Lphnpyq, ξ `∇µwphnpyqq, ωqdph
7
nµqpyq : w P H1,p

µ,0phnpQq;Rm
q

*

“ µphnpQqq inf

"

´

ż

Q

Lnpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pQ;Rm

q

*

for all Q P BapXq, all n P N˚ and all ω P Σ (where h7nµ denotes the image measure of µ by
hn). Consequently, we have:

lim
n!8

Hρ
µLnpx, ξ, ωq “ lim

n!8

Sξ phnpQρpxqqq pωq

µ phnpQρpxqq
; (3.11)

lim
n!8

Hρ
µLnpx, ξ, ωq “ lim

n!8

Sξ phnpQρpxqqq pωq

µ phnpQρpxqqq
(3.12)

for µ-a.e. x P Ω, all ρ ą 0 and P-a.a. ω P Σ. Moreover, from (3.8) it easily seen that the
set function Sξ is G-covariant, and Sξ is also subadditive because, for each A,B P B0pXq,

µ
`

{̊A Y BzpÅ Y B̊q
˘

“ 0 since {̊A Y BzpÅ Y B̊q Ă BA Y BB and µpBAq “ µpBBq “ 0. Thus,
since (S) is satisfied, for µ-a.e. x P Ω and all ρ ą 0, we can apply Theorem 2.11 with
tUkukPN˚ “ thkpUqukPN˚ and tQnunPN˚ “ thnpQρpxqqunPN˚ , and, noticing that µphkpUqq “
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µp{̊hkpUqq “ µphkpŮqq for all k P N˚, we get

lim
n!8

Sξ phnpQρpxqqq pωq

µ phnpQρpxqqq
“ inf

kPN˚

EI
“

Sξ phkpUqq
‰

pωq

µphkpUqq

“ inf
kPN˚

EI

«

Sξ phkpUqq
µphkpŮqq

ff

pωq

“ Lhompξ, ωq,

for P-a.a. ω P Σ, and (3.10) follows from (3.11) and (3.12). �
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