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SUBADDITIVE THEOREMS IN METRIC MEASURE SPACES AND
HOMOGENIZATION IN CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We prove subadditive theorems in the setting of metric measure spaces in the
deterministic and stochastic case. Applications to homogenization of nonconvex integrals in
Cheeger-Sobolev spaces are given.
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1. INTRODUCTION

Let (X,d, ) be a metric measure space with p a positive Borel measure on X. Let B(X)
be the class of Borel subsets of X and let B, ((X) denote the class of @ € B(X) such that
1(Q) < oo and p(0Q) = 0 with 0Q = @\Q Let Homeo(X) be the group of homeomorphisms
on X and let G be a subgroup of Homeo(X) for which p is G-invariant. Let

S:B,o(X)— LYS, T,P) (resp. S:B,o(X) — R)

be a subadditive and G-covariant (resp. G-invariant), where (2,7, P, {7,}4ec) is a measur-
able dynamical G-system, and let {Q,}nen+ < B, o(X). In this paper we are concerned with
the problem of characterizing the following limit

lim M for P-a.a. we X (resp. lim S(Qn)>

n—o p(Qn) = (1 Q)
Such limit problems are of interest for the development of homogenization of integrals of
the calculus of variations in the setting of Cheeger-Sobolev spaces (see Section 3 and also
[AHM17]). Other motivations can be found in the study of percolation theory (see [HWG65]).

Key words and phrases. Subadditive process, Metric measure space, Amenable group, Homogenization,
Cheeger-Sobolev space.
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Motivated by problems of statistical mechanics, additive theorems were first proved in 1931
by von Neumann (see [Neu32]) and Birkhoff (see [Bir31]) in the context of measure preserving
Z-actions. Later, in 1972, Tempelman generalized these results to the multidimensional case
in the context of measure Z"-actions (see [Tem72] and also Nguyen and Zessin [NZ79]) but
also to the setting of amenable semi-groups (see [Kre85, Theorem 4.4]). Then, in 1999, the
theorems of von Neumann and Birkhoff were also extended by Lindenstrauss to the setting
of amenable groups under weaker conditions than those of Templeman (see [Lin99, Lin01]).
Beside this, motivated by the study of percolation theory, subadditive theorems were also
proved, in the context of measure preserving Z"-actions, first in 1968 by Kingman in the
unidimensional case (see [Kin68, Kin73]) and then in 1981 by Akcoglu and Krengel in the
multidimensional case (see [AK81, Kre85] and also Derriennic [Der75], Smythe [Smy76],
Nguyen [Ngu79] and Licht and Michaille [LM02]). In 2014, Dooley, Golodets and Zhang
extended Kingman’s theorem to the setting of amenable group (see [DGZ14] and also [DZ15]).
The results of the present paper can be seen as extensions of the multidimensional Akcoglu-
Krengel’s theorem to the setting of metric measure space (X, d, ;) where p is G-invariant,
with G a subgroup of Homeo(X ), having in mind applications to homogenization.

Multidimensional subadditive results of Akcoglu-Krengel type were adapted first in 1986
by Dal Maso and Modica for dealing with homogenization of convex integral functionals
of the calculus of varations defined on Sobolev spaces (see [DMM86a, DMMS86b]) and then
in 1994 by Messaoudi and Michaille for studying nonconvex homogenization problems (see
[IMM94, LMO02]). In the same spirit, the object of this paper is to establish subadditive
theorems allowing to deal with nonconvex homogenization problems in Cheeger-Sobolev
spaces.

The plan of the paper is as follows. In the next section we state and prove the main results
of the paper, see Theorems 2.3 and 2.11. To establish such theorems it is necessary to
make some assumptions on the sequence of sets {@Q; }nen+, see Definitions 2.1 and 2.7. The
deterministic case and the stochastic case are developed in §2.1 and §2.2 respectively. Finally,
to illustrate our results, in Section 3 we give applications to homogenization of nonconvex
integrals in Cheeger-Sobolev spaces, see Theorems 3.6 and 3.8.

2. SUBADDITIVE THEOREMS

Let (X,d, ) be a metric measure space with p a positive Radon measure on X. Let B(X)
be the class of Borel subsets of X and let B, ((X) denote the class of @ € B(X) such that

w(@) < oo and p(0Q) = 0 with dQ = Q\Q, where @Q (resp. () denotes the closure (resp.
the interior) of ). Let Homeo(X) be the group of homeomorphisms on X and let G be a
subgroup of Homeo(X) for which u is G-invariant.

From now on, we consider {Uy}ren+ < B, o(X) with p(Uy) > 0 for all £ € N* and, for each
k € N*| we consider the class Uy(G) defined by

U (G) = {H < G {g(Ug)}gen is disjoint}.

In what follows, |- | denotes the counting measure on G and, for any H < G, P¢(H) denotes
the class of finite subsets of H.
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2.1. The deterministic case. The following definition set a framework for establishing a
subadditive theorem in the deterministic case and in the setting of metric measure spaces
(see Theorem 2.3).

Definition 2.1. Let {Qn}nen < B, o(X). We say that {Q,}nen+ is weakly G-asymptotic
with respect to {Ug}ren+ if for all & € N* there exists Gy € Uy (G) with the property that for
all n € N* there exist m,, ), € N¥, g, € G and F. 1, G, G, € Pi(Gy,) such that:

n,

U g(Up) cQnc u g(Uy); (2.1)

gEGn,k QEGI,k
i o a0 o o)
lim —Cn ki —0; (2.2)
n—w w(Qn) ’
G;r,k cForand U g(Uk) = gnk(Un, . ); (2.3)
gEFn,k

__|F,
i Pl (2.4)

o |G
Let us recall the definition of a subadditive and G-invariant set function.
Definition 2.2. Let S : B, 0(X) — R be a set function.
(a) The set function S is said to be subadditive if
S(AuB)<S(A)+S(B).
for all A, B € B,,o(X) such that An B = .
(b) The set function § is said to be G-invariant if
S(g(A)) = S(4)
for all Ae B, 0(X) and all g € G.
Here is the first main result of the paper.

Theorem 2.3. Let S : B, o(X) — R be a subadditive and G-invariant set function with the
following boundedness condition:

S(Q)] < en(Q) (2.5)
for all Q € B, o(X) and some ¢ > 0. Then, for any {Qy}nent < Bo(X) such that {Qn }nens
is weakly G-asymptotic with respect to {Uy}ren=, one has

lim S(Gn) = inf S(Uk).
n—w p(Qn)  kel* p(Ug)
Proof of Theorem 2.3. First of all, let {k;};en+ be such that
. S(Ukj) . S(Uk)
lim ——= = inf :
e T ~ e (T
We divide the proof into three steps.

(2.6)

Step 1: establishing lower bound and upper bound. Fix any j € N* and any n € N*
and set:
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= U Uk, );

n,J gEG;k ‘g( kJ)

:,j =V Q(Uk )
gEGnk

where G, an,kj € Pi(Gy,) with Gy, € Uy, (G) given by Definition 2.1.
Step 1-1: lower bound. By the right inclusion in (2.1) we have Q, < Q;; and so
Qi =Qnu(Q,;\Qn). Hence

S(Qy) < S (Qu) +S(Q;\@n)
and consequently

§(Qny) _ S$(Qn) , S(@n;\Qn)

p(Qr;)  1(@n) p(Qn)

As @, ; © Qn by the left inclusion in (2.1), we see that Q) \Q, < Q) \@, ; and so

S (Qny\@n) < cp (@ ;\Qny)
with ¢y > 0 given by (2.5). It follows that
S(Quy) _ S(@Qu) , 1 (Qn;\@y)
< + .

Letting n — oo and using (2.2) we obtain

[ =1 I < ] -
5T Q) S s (@)

(2.7)

Step 1-2: upper bound. By the left inclusion in (2.1) we have @, ; © Qn and so Q,, =
i U (Qn\Q, ;). Hence

S(Qn) <8 (Qy) +S(Qn\Q,ry) -

and consequently

S(@n) _ S (Qn) 1 (Qny)) N S (@n\Qy;)
Q) p(Qn,) 1(@Qn) w@Qn)

As Q, < Q1 ; by the right inclusion in (2.1), we see that @,\@Q,, ; = Q) ;\@, ; and so

(Qn\Q;j) S C ( n,j\Qr_L,j)
with ¢ > 0 given by (2.5). It follows that

S(@n) _ S(Q;y‘)/ﬁ(@;;) o (Qn \Qns)
W@ S n(@n,) n@0) T @)

_ S(Quy) | en(@n,\@ny)

h N(Q;]) (Qn)
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because 11 (Q,, ;) < p(Qy) since Q,, ; < Q,. Letting n — o0 and using (2.2) we obtain
s s

[ := lim l;.

n—w PJ(Qn) h ngrolo 1% (Q;J) Y

Step 2: we prove that [ = [. It is sufficient to prove that for each £ > 0, one has
I-l<e. (2.9)

Fix ¢ > 0. From (2.7) and (2.8) we see that [ — [ < I; — ;. So, to prove (2.9) it suffices to
show that there exists j € N* such that

(2.8)

lj—1<e. (2.10)
Let S; : P(Gy,) — R be defined by
1

(F) = — |E|S(Uy,) | - 2.11

S8 = 5 [S (s 000)) 1210, )| (211)

As § is subadditive, we can assert that S; is negative, i.e.,

1

S(E) = iy | S( 5 900)) ~ 1S | <0 2.12)

for all E' € P¢(Gyg,). Moreover, it is easily seen that S; is decreasing, i.e., for all £, F e
Pi(Gy,), if £ < F then S;(E) = S;(F). Consider my,, € N*, g, € G and F, 1, € P(Gy,)
given by Definition 2.1. From (2.3) it follows that
1
. + ) - - _
5(030) 2 0a) = iy [, 20 - st
1
- [s(gn,kj (Un,,,)) = || swkj)] .

Hence, since o] and S and p are G-invariant, we get

o
Sj (G:;,kj> 1 S
’G;,kj‘/L(Uk])

S (gn.r, (Umn,kj» B |Foi,| S(
|Fn,kj ‘/’L(URJ) |G+kj’ H(Uk

(

(

G|

\Y

S(an (Umnk )) ‘Fn,k
:u(gn kj mnk ) |G,—:k’ H Ukj

\Y
=
=R
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Letting n — oo and taking (2.4) into account, we deduce that

Si (G
lim ———2 — iz, 2.13
e G| ket p(Ug)  pu(Ug,) (2.13)

By (2.6) we can assert that there exists j. € N* such that for all j > j., one has
S(Uk) . . SUy)

i) 2.14
W(0r,) o (T) (214)
Combining (2.13) with (2.14) we conclude that
Si (Gr,)
lim > —¢ 2.15
o |Giry | (2.15)

for all j = j.. On the other hand, by using (2.11) with F = G:;kj and (2.12) with £ = G,
we get:

S(Qr,) Sy S (G;t,k)
- = - : (2.16)
n(@r,)  wUy) [GE]
S (@, S(Uy,
( ) /’L(Ukj)
Letting n — 0 in (2.16) and (2.17) and taking (2.15) into account, we deduce that
S(Ug,)
[, — = > —¢ for all j = j.; 2.18
L= T j=7 (2.18)
- S(U)
L, — 72 < 0 for all j € N*, 2.19
and (2.10) follows with j = j.. We set [ := [ = [ and 7 := infen. iég:))
Step 3: we prove that [ =+. Combining (2.8) with (2.19) we see that | < % for all

j € N* and so | <~ by letting j — and using (2.6). On the other hand, combining (2.7)
with (2.18) we see that [ > —¢ + 2T ( for all j > j.. Letting j — o0 and using (2.6) we
deduce that | > —e + v for all € > O, ajnd so | = v by letting e — 0. B

2.2. The stochastic case. We begin with the following definition.

Definition 2.4. The metric mesaure space (X, d, i) is said to be meshable with respect to
{Ug }gens if for all k € N* there exists Hy, € Uy (G) with the property that for all n € N* there
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exist H, ,, H, . € Pi(Hj) such that:

u g(Up)cU,c u g(Uy); (2.20)
QEHn,k geH:;k
u( o a0 o gv)
lim — 2 T —0 (2.21)
n—a M(Un)

The interest of Definition 2.4 comes from the following lemma (which will be used in the
proof of Theorem 2.11).

Lemma 2.5. Let S : B, o(X) — R be a subadditive and G-invariant set function satisfying
(2.5). If (X,d, u) is meshable with respect to {Ug}ren+ then

LS L S
woe u(U,)  wete u(0y)

(2.22)

Proof of Lemma 2.5. First of all, it is clear that M(Uﬁ infpens %U:; for all n € N*, and
SO

—0 M(Un) keN* M(Uk)
On the other hand, fix any £ € N* and any n € N* and set:
U;,k = U g(Uy);
gEHn,k:
Uyy= v g(U),
ge Hn k
where H, , and H, , € P;(H}) with Hj given by Definition 2.4. By the left inclusion in (2.20)
we have U, , < U, and so U, = U, v (Un\U; k) Hence

(2.23)

S(U,) <S8 (U,;) +S (Un\Uﬁ,k)
because S is subadditive, and consequently
S(U,) < S(U,i) 1(U,,)  S(UNU,,)
p(U,) ~ pu(U,,) (U, u(U,)

Using again the subadditivity of & and its G-invariance (resp. the G-invariance of pu) we
have

S (U, ) < |H,,|S(Ug)
(resp. 1 (Upy) = [Hypu(Un)).

Moreover, U, = U, by the right inclusion in (2.20), which implies that U,\U, , < Uy ,\U,_
and so

S (U\U,,,) < cp (UF\U, L)
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with ¢ > 0 given by (2.5). It follows that

S(U,) - S (U 1 (Uyy) L (U \U,, )
p(Un)  — w(Ur) w(U,) 1(Uy)
C Sy, en(Us\Uyy)
N(Uk) M(Un)

because p ([U;k) < u(U,) since U, = U,. Letting n — o0 and using (2.21), and then
passing to the infimum on k, we obtain

im 2 < inf 2k 2.24
2 (T S B () (224

and (2.6) follows by combining (2.23) with (2.24). B
In what follows, A denotes the symmetric difference of sets, i.e., FAF := (E\F) u (F\FE)
for any F, F' < G, and we adopt the following notation: EF := {gof : (¢, f) € E x F'} and

E7'F :={g7'of : (g9, f) € E x F} and, for any g € G, gF := {gof : f € F}. From now on,
for each k € N*, we consider the class U (G) defined by

U (G) = {H € Uy(G) : H is countable, discrete and amenable group},

where amenability of H means that for each E € P¢(H) and each § > 0 there exists F' € Py(H)
such that

|[FAEF| < d|F|.
(For more details about the theory of amenability, we refer to [Gre69, OW87, Pat88, Tem92,
AAB*10, DZ15] and the references therein, see also [Kre85, §6.4].)

The property of Fglner-Tempelman stated in the definition below is needed to use both
Lindenstrauss’s ergodic theorem (see Theorem 2.13) which is valid for general amenable
groups and a maximal inequality (see Lemma 2.14) which is valid for countable discrete
amenable groups. (These two results will be used in the proof of Theorem 2.11.)

Definition 2.6. Let H € Ul (G) and let {G,}nens < Pr(H). We say that {G),}nen+ is of
Fglner-Tempelman type with respect to H if it satisfies the following two conditions:

(a) Fglner’s condition: for every g € H, one has

(b) Tempelman’s condition: there exists M > 0, which called the Templeman constant
associated with {G,, }nen*, such that for every n € N* one has

< M|G,|.

no~—1
1510" Cin

Together with Definition 2.4, the following definition set a framework for establishing a
subadditive theorem in the stochastic case and in the setting of metric measure spaces (see
Theorem 2.11).
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Definition 2.7. Let {Qn}nen+ < B o(X). We say that {Q,}nen+ is strongly G-asymptotic
with respect to {Uy}rens if there exists {Gglren+ with Gy € UZ(G) for all k£ € N* and
G = Upen+Gy such that for all £ € N* and all n € N* there exist m,; € N*, g, € G
and F i, G, Gl € Pi(Gy) such that (2.1), (2.2), (2.3) and (2.4) are satisfied with the

additional assumption that {G;k}neN* and {G;k}neN* are of Folner-Tempelman type with
respect to Gy.

Let (X, 7,P) be a probability space and let {7, : ¥ — X} ¢ be satisfying the following three
properties:

e (mesurability) 7, is T-mesurable;

e (group property) 7,07y = Tgop and 7,1 = 7,7 for all g, f € G;

e (mass invariance) P(7,(E)) = P(E) for all E € T and all g € G.
Definition 2.8. Such a {7}, is said to be a group of P-preserving transformation on
(X,7,P) and the quadruplet (X, 7T, P, {7,}4ec) is called a measurable dynamical G-system.

(Note that if (3, T, P, {7,}4ec) is a a measurable dynamical G-system, then (3,7, P, {7, }sen)
is a measurable dynamical H-system for all subgroups H of G.)

Let Z:= {E e T : P(r,(F)AE) = 0 for all g € G} be the g-algebra of invariant sets with
respect to (X, T,P,{7,}sec). (For any subgroup H of G, we denote the o-algebra of invariant
sets with respect to (2,7, P, {7, }serr) by Zu.)

Definition 2.9. When P(E) € {0,1} for all E € Z, the measurable dynamical G-system
(X, T,P,{7,}4ec) is said to be ergodic.

In what follows, we assume that (X, 7, P, {7,},ec) is a measurable dynamical G-system. Let
us recall the definition of a subadditive process.

Definition 2.10. A set function S : B,,0(X) — L'(X, T, P) is called a subadditive process
if it is subadditive in the sense of Definition 2.2(a) and G-covariant, i.e.,

S(g(A4)) = S(A)or,
for all A € B,o(X) and all ¢ € G. If in addition the measurable dynamical G-system
(X, T,P, {7y} 4ec) is ergodic, then S is called an ergodic subadditive process.
Here is the second main result of the paper.

Theorem 2.11. Assume that (X, d, u) is meshable with respect to {Ug}rens and consider
S:B,o(X) — LY, T,P) a subadditive process satisfying (2.5). Then, for any {Qn}nenx <
B,o(X) such that {Qn}nens is strongly G-asymptotic with respect to {Uy}renx, one has

z
lim M = inf W for P-a.a. we ¥,
0 M(Qn) keN* M(Uk’)
where BX[S(Uy)] denotes the conditional expectation of S(Uy) over T with respect to P. If
in addition (3,T,P,{1,}sec:) is ergodic, then
L SQIw) _ . ELS(U)
noo gi(Qn)  kex p(Uy)
where E[S(Uy)] denotes the expectation of S(Uy) with respect to P.

for P-a.a. we X,
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Proof of Theorem 2.11. The proof is divided into four steps.

Step 1: establishing lower bound and upper bound. Fix any k € N* and any n € N*
and set:
Qurpi= Y g (Uk);

geG’;’k

:,k =V g(Uk)v

geGj;k

where G/, G € Pi(Gy) with G, € Ug(G) given by Definition 2.7. Arguing as in Step 1 of
the proof of Theorem 2.3, for each w € ¥, we get:

S(Quy) @) _ 1 S(Qu)(w)

by (w) = %m < % MGREEE {(w) (2.25)
7 — Tim S(Qn)(w) fim S (Qr_tk) (w) 7w
o) i= Ty = 7600 < T = T ). (2.26)

Remark 2.12. Arguing as in Step 1-1 of the proof of Theorem 2.3, we see that we also have

lim S(:{—,i)()w) < I(w)

n—w [ ( ok

for all w € 3. (This will be used in Step 3.)

(2.27)

Step 2: we prove that l(w) = l(w) for P-a.a. w e X. It is sufficient to prove that for each
a > 0, one has

P ({w ey (W) — l(w) > a}> ~ 0. (2.28)
Fix a > 0. From (2.25) and (2.26) we see that for each k € N*, one has
{w e l(w) — l(w) > a} c {w e hiw) — L (w) > a} — Wi (2.29)
So, to prove (2.28) it suffices to show that for each £ > 0 there exists k € N* such that
P(Wia) < —¢, (2.30)

where M, > 0 is the Tempelman constant associated with {G:;k}neN*. Fix € > 0.
Step 2-1: constructing a decreasing negative subadditive process on P;(Gyi). Let
Ay : Pr(Gy) — LY(3, T,P) be defined by
A(E) := Y 8 (Uy) o,
gelE

where Gy € U (G) is (a countable discrete and amenable subgroup of G) given by Definition
2.7, and let Sy, : Pr(Gy) — LY(XZ, T,P) be defined by

Se(E) = — ls( o g(m) —Ak(E)]. (2.31)

geE
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As S is subadditive and G-covariant (and so Gg-covariant) and A, is additive and G-
covariant, we can assert that Sy, is a subadditive process' on P;(Gy) which is negative, i.e.,

1
SHB)) = 55 [5<92’E 9(Uy) ) (w) - Ak(E)(w)] <0 (2.32)
for all £ € Pi(Gy) and all w € ¥. Moreover, it is easily seen that Sy is decreasing, i.e.,
for all E, F € P¢(Gy), if E < F then S,(E) = Si(F). Consider m,, € N*, g, € G and
F, 1 € P:(Gy) given by Definition 2.7. From (2.3) it follows that

Sk (GEy) = Si(Fuy) = u(fbw ls(geﬁk g(Uk)) — Ay (Fn,k)]
1

= ’u ([Uk) [S(Qn,k (Umnk)) - -Ak (Fn,k)] )

By using the G-covariance of S we see that

A ! - w w
[ 50650 @) > i | [ Snan, D)) - [ Au(Fr) ()07
= u([l[Jk) [JZS(Umn,k>(W)dP(W) - ‘Fnk‘E[‘S (Uk)]]
_ B[S] ), EHS@)
#(0) SICAN

ﬁ > ﬁ and p is G-invariant, we get
n,k n,R

BIS)(Gi)] _ E[S(Ua)] Rl BISWL)
Gnl T alUn) 1G] s

_ o EIS(UW] | Fu E[S(U)]
T oment u(Uy,) }sz‘ 1(Uy)

Consequently, since

Letting n — oo and taking (2.4) into account, we deduce that
E[S. (G, E E
e i (U, p(0)

As S is subadditive and G-covariant, we see that the set function E[S(+)] is subadditive and
G-invariant. From Lemma 2.5 it follows that there exists k. € N* such that for all k > k.,
one has

E[S(Uy)] _inf E[S(Un)] <e (2.34)

p(Ur)  mets (U,

IThe set function Sy : P(Gy) — LY(3,T,P) is said to be a subadditive process on P¢(Gy) if it is
subadditive, i.e., Sy(E U F) < S (F) + S(F) for all E, F € P(Gy) such that En F = ¥, and Gy-covariant,
ie., Sp(Eg) = Sp(E)or, for all E € P¢(Gy) and all g € Gy,.



12 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Combining (2.33) with (2.34) we conclude that
— E[S (G Bl

lim
n—:o0

e > —¢ (2.35)

for all £ > k..

Step 2-2: using Lindenstrauss’s ergodic theorem. We need the following pointwise
additive ergodic theorem® due to Lindenstrauss (see [Lin01, Theorem 1.2] and also [DGZ14,
Theorem 2.1]).

Theorem 2.13. Let © € LY(3, T, P) and let {Gp}nenx < Pr(Gyr). If {Gylnen= is of Folner-
Tempelman type with respect to Gy, then

Z O(7y(w)) = E*+[O](w) for P-a.aw e T,

geGn

nsoo y(;

where Lg, is the o-algebra of invariant sets with respect to (3, T, P, {7,}4ec,) and EF:[O)]
denotes the conditional expectation over Lg, with respect to P.

As {G;k}neN* and {G:;k}neN* are of Fglner-Tempelman type with respect to Gy, applying
Theorem 2.13 with © = S(U,) we deduce that there exists & € 7 with P(3) = 1 such that

A (G, Ay (G ~
w = lim % = E% [S(Uy)](w) for all w e 3. (2.36)
n—aoo nk n—:aoo0 nk

On the other hand, by using (2.31) with F' = G, and (2.32) with £ = G, we get:

S( Zk)(w) 1 Ak(GIk)( ) _ Sk(G k) (W) f Sk<Gq,k>(W)_ (2.37)
w(@up) 1) |Gy (Goel TG |
S(Qnr) (W) 1 A (G ) (W) <0
w(Qua) 08 |G
for all w € 3. Letting n — o we deduce that:
Loy, Si(G
L (w) — g [;iﬁj];)](W) > irg % for all k € N* and all w € 3; (2.38)
k neN* &
Ty, ~
Ip(w) — £ [liﬁié)](CU) < 0 for all ke N* and all w e ;. (2.39)

In what follows, without loss of generality, we assume that S=y

Step 2-3: using a maximal inequality. We need the following lemma (see [DGZ14,
Lemma 3.5] and also [AK81, Theorem 4.2]).

2Lindenstrauss’s ergodic theorem is established under the weaker condition that {G, },en+ is a tempered
Fglner sequence (see [Lin01, Definition 1.1] and [DGZ14, §2] for more details). The tempered Fglner condition
implies the Fglner-Tempelman condition, but the converse is not true (see [Lin01, DGZ14]).
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Lemma 2.14. Let K : Py(Gy) — L'Y(X,T,P) be a negative subadditive process and let
{Gpynen= < Pr(Gy). Fiz o> 0 and consider VX e T given by

K(G,
VE.={weX: inf <—)(w)<—a .
neN* |Gn’

If {Gp}nens is of Folner-Tempelman type with respect to Gy then

M E[K(G,)

a n—o |Gy

P(VE) <
where M > 0 is the Templeman constant associated with {Gy,}nens -

As S;. : Pi(Gy) — LY(Z, T,P) defined by (2.31) is a negative subadditive process, we can
apply Theorem 2.14 with I = S;. Hence, since {G;’k}neN* is of Fglner-Tempelman type
with respect to Gy, one has
— E[S: (G
 n—x ‘Gn,k‘
where M, > 0 is the Templeman constant associated with {G:{,k}neN*. Consequently, taking
(2.35) into account, we get

P(VSF) < %5 for all k£ > k.. (2.40)
a
Step 2-4: end of Step 2. From (2.38) and (2.39) it follows that

Hence Wy, < V5% where Wy, is defined in (2.29). From (2.40) we conclude that (2.30) is
satisfied with k = k..

T g - . ETOR[S(Uy)]
In what follows we set [ :=1 = [ and 7 := klelll\lf* Vi with g := 0 for all k e N*.

Step 3: we prove that l(w) = y(w) for P-a.a. w € ¥. First of all, from (2.26) and (2.39)
we see that [(w) < v, (w) for P-a.a. w e ¥ and all k£ € N*| and so
l(w) € y(w) for P-a.a. we X. (2.41)

On the other hand, letting n — oo in (2.37) and using (2.36) we get
— S( ;k><w) — S (G;rk:)(w)

lim — w) = lim
n—w #( :k) () nme ‘G:k‘

and so, taking (2.27) into account, one has

— S(G) ) (W)
e

for P-a.a. we X

for P-a.a. we X.

It follows that

LWW—WNMW>JEE§£@ﬂ@

o, |sz‘ dP(w).
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But, by using Fatou’s lemma and (2.35) we see that for any k > k., one has
F Sk (G+ )(w)

51 n—0 ‘G ‘

Ll( L e o
J 7 (w — €.

JE [1(w) — 7(w)] dP(w) > 0. (2.43)

and the result follows by combining (2.41) with (2.43).

dP(w) > —¢, (2.42)

and consequently

Letting ¢ — 0 we deduce that

In what follows, we set v := ki%f* vE with 4# := ]EI;E‘(?T(E)IC)] for all k e N*.
€

Step 4: we prove that l(w) = ¥*(w) for P-a.a. w € X. Since 7, is Zg,-measurable for all
ke N*, v = infrens 1 18 NpenxZg, -measurable. But myen+Zg, = Z because Ugen+Gyr = G,
hence 7 is Z-measurable and so [ is Z-measurable by Step 3. we have 7 = npensZg,. It
follows that

EL[1] = 1. (2.44)
As I c Ig, for all k € N* we also have
EX[v;] = 1f for all k e N*. (2.45)

Arguing as in Step 3, for each k € N*, we have [ < ;, hence EZ[I] < Ef[;] and so | <~ by
using (2.44) and (2.45). Consequently

I<y (2.46)
Fix any E € Z. Arguing again as in Step 3 we see that for any k > k., one has

| ) > | uie)ape) -

But SE Ve (w d]P’ = SE EZ[1.](w)dP(w) by definition of the conditional expectation, hence
§ e (w)dP(w SE ¢ (w)dP(w) by (2.45), and so

| ) > | Fere) -
> Lﬂw)dm)—

Letting ¢ — 0 we get

fEl(w)dP(a}) > Lj v (w)dP(w) for all E e T. (2.47)
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Combining (2.46) with (2.47) we deduce that

f l(w)dP(w) = f 7Y (w)dP(w) for all E € Z,
E E
which implies that | = EZ[y%] by unicity of the conditional expectation. But % is Z-
measurable because 7# is Z-measurable for all k € N*, hence EZ[y?] = 47 and consequently
|

3. APPLICATIONS TO HOMOGENIZATION

Here (X, d, 1) is a metric measure space, with (X, d) a length space, i.e., the distance between
any two points equals infimum of lengths of curves connecting the points, which is complete,
separable and locally compact, and satisfies a weak (1, p)-Poincaré inequality with p > 1
and such that p is a doubling positive Radon measure on X. Let m > 1 be an integer, let
2 < X be a bounded open set, let O(2) be the class of open subsets of Q and let (X, F,P)
be a probability space. For each n € N*, let E, : H?(€;R™) x O() x ¥ — [0, 0] be the
variational stochastic integral defined by

E,(u,Ajw) = J Ly (2, V,u(z),w)du(z), (3.1)
A

where the stochastic integrand L, : € x M x 3 — [0,00] is Borel measurable and has

p-growth, i.e., there exist «, 8 > 0, which do not depend on n, such that

algl’ < Ln(z,€,w) < B(1 +[¢]F) (3.2)

for pra.a. x € Q, all £ € M and P-a.a. w € X, with M denoting the space of real m x N
matrices. The space H bp(Q; R™) denotes the class of p-Cheeger-Sobolev functions from €2 to
R™ and V,u is the p-gradient of u (see [BB11, HKST15] and the references therein for more
details on the theory of metric Sobolev spaces). In this section we deal with the problem
of computing the almost sure (a.s.) I'-convergence with respect to the strong convergence
of LE(€5;R™) (see Definitions 3.1 and 3.2) of the stochastic sequence {E,},en+ as n — o0
toward a variational stochastic integral Ey, : HyP(Q;R™) x O(Q) x ¥ — [0, 0] of the type

Ey(u,Aw) = L Lo (2, V,u(z), w)du(z) (3.3)

with Ly : Q x Ml x ¥ — [0, o] which does not depend on n. When L, is independent of the
variable x, the procedure of passing from (3.1) to (3.3) is referred as stochastic homogeniza-
tion. If furthermore L is independent of the variable w then E is said to be deterministic.
When {L,}en+ is deterministic, i.e., L,, is independent of the variable w for all n € N*  the
procedure of passing from (3.1) to (3.3) is referred as deterministic homogenization. (Deter-
ministic and stochastic homogenization were studied by many authors in the euclidean case,
i.e., when the metric measure space (X,d, ) is equal to RY endowed with the euclidean
distance and the Lebesgue measure, see for instance [DG16] and the references therein.)

Let us recall the definition of I'-convergence and a.s I-convergence. (For more details on the
theory of I'-convergence we refer to [DM93].)
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Definition 3.1. For each n € N*, let E, : H;?(Q;R™) x O(Q) — [0,c0] and let E :
HP(R™) x O(Q) — [0, 0]. We say that { £, }nen [-converges with respect to the strong
convergence of LF(Q; R™), or simply I'(LE)-converges, to E, as n — oo if

for any u e H*(Q;R™) and any A € O(Q), with:

L(LE)- lim F,(u, A) := inf { lim B (tn, A) : w, = u} ;
n—o0 n— 00
T . - Lﬁ
[(LY)- r}E;Iolo E,(u, A) := inf {7}1_{120 E,(uy, A) :u, — u} )

Then we write

L(L})- lim E,(u, A) = Ex(u, A).

n—aoo
Almost sure I'-convergence is defined from Definition 3.1 as follows.
Definition 3.2. For each n € N*, let E, : H}?(Q;R™) x O(Q) x ¥ — [0,c0] and let
Ey - HpP(R™) x O(Q) x ¥ — [0, 00]. We say that {E,}nen+ a.s. I-converges with respect

to the strong convergence of L (€2;R™), or simply a.s. I'(L})-converges, to Ey as n — o0 if
for P-a.e. w € X, one has

L(LY)- lim E,(u, A, w) = Ex(u, A,w).

n—:o0

for any u e H,?(Q;R™) and any A € O(1).
For each n € N* and each p > 0, let H L,, :  x M x ¥ — [0, ] be given by

HI Ly(7,§,w) := inf {J[Q "

where the space H ;:g (Q,(x); R™) is the closure of

Lip(Qp(2); R™) = {u € Lip( R™) : u = 0 on 2\Q, ()}

with respect to the H’-norm, where Lip(€;R™) := [Lip(Q)]™ with Lip(Q) denoting the
algebra of Lipschitz functions from 2 to R. When {L,},en+ is deterministic, in [AHM17,
Theorem 2.2 and Corollary 2.3] we proved the following deterministic I'-convergence result.

Theorem 3.3. Assume that (3.2) holds and

n—:oo

for p-a.a. x €2, all p> 0 and all £ € M. Then

La(y, € + Vyaw(y), w)du(y) : we Hyb(Q,(x); Rm)}

D(L2)- lim B, (u, A) = L lim lim M2 Lo (2, ¥ u())dp(z)

n—00 p—0n—o0 #

for allwe HP(Q;R™) and all A€ O(1Q).
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By the same method as in [AHM17, Theorem 2.2 and Corollary 2.3] we can establish the
following stochatic version of Theorem 3.3.

Theorem 3.4. Assume that (3.2) holds and
T%HZLn(xa ga CU) = T}L_Holo HﬁLn(Iv 57 W)

for p-a.a. x €, all p> 0, all £ € M and P-a.a. we X. Then, for P-a.e. w € X, one has

n—00 p—0 n—oo

F(Lﬁ)— lim E,(u, A,w) = JA lim lim HﬁLn(ZE,VuU(HC)yW)dM(x)

for allwe HP(Q;R™) and all Ae O(R).

In §3.1 (resp. §3.2), by using Theorems 2.3 and 3.3 (resp. Theorems 2.11 and 3.4) we
establish a periodic (resp. stochastic) homogenization theorem in the setting of Cheeger-
Sobolev spaces, see Theorem 3.6 (resp. Theorem 3.8). In what follows, we adopt notation
of Section 2 and, from now on, Ba(X) denotes the class of open balls @ of X. As (X,d) is
a Length space we have ;(0Q) = 0 for all @ € Ba(X)?. Hence Ba(X) < B, 0(X).

3.1. Periodic homogenization. Let L : X x M — [0, ] be a Borel measurable integrand
having p-growth, i.e., there exist «, f > 0 such that

alfl’ < L(z,&) < B(1 + [€") (3.4)
for p-a.a. x € ) and all ¢ € M, and assumed to be G-invariant, i.e.,
L(g(x),§) = L(,§) (3.5)

for pra.a. z € X, all £ e M and all g € G. Let {h,}nen+ € Homeo(X) and, for each n € N*,
let L, : X x M — [0, ] be given by

Ln(2,€) = L (hn(2),£) (3.6)
(Then (3.4) implies (3.2) with L,, independent of w, and we have L, ((h,'ogoh,)(z),&) =
L,(z,§) for pra.a. e X all ¢ e M, all ne N* and all g€ G.)

Definition 3.5. Such a {L,},en+, defined by (3.5)-(3.6), is called a (G, {hy, }nen)-periodic
sequence (of integrands) modelled on L.

Let us consider the following condition on the triplet ((X ,d, ), G, {hn}neN*):

(P) there exists U € B, o(X) such that for all @ € Ba(X), the sequence {h,(Q)}nen* is
weakly G-asymptotic with respect to {hg(U)}gen+ (see Definition 2.1).

The following theorem was established in [AHM17, Theorems 2.20] under a slightly different
framework. (In what follows, the symbol fr stands for the mean value integral.)

3Indeed, by Colding-Minicozzi IT’s inequality (see [CM98], [Che99, Proposition 6.12] and [HKST15, Propo-
sition 11.5.3]), there exists § > 0 such that pu(Q,(2)\Q,(z)) < 2°(1 — 2)u(Q-p(2)) for all z € X, all p > 0
and all 7 €]1,00[. Then, given z € X and p > 0, we have 1 = u(Q,(x))/u(Q,(x)) = w(Q,(x))/p1(Qrp(z)) =
1—2°(1— 1) for all 7 €]1,0[. Hence, by letting 7 — 1, 1(Q,(2))/1(Qp(x)) = 1, ie., u(Qy(x)) = p(Q,(x)).
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Theorem 3.6. Assume that (X,d, ) satisfies (P) and consider {L}nen a (G, {hn}nen+)-
periodic sequence modelled on L. If (3.4) holds then

[D(LY)- lim E,(u, A) = fA Lyom(Vu(x))dp(z)

n—0o0

for all we HYP(R™) and all A e O(Q) with L*™ : M — [0, 0] given by

Liow(€) = inf inf L{y. & + V,au(y)dp(y) :we HYE (h(0);R™) ¢
keN* (1) #o

The proof of Theorem 3.6 follows the same line as in the proof of Theorem 3.8, in using

Theorems 3.3 and 2.3 instead of Theorems 3.4 and 2.11. So, we omit its proof and we refer

to §3.2.

3.2. Stochastic homogenization. In what follows, we assume that (X, 7,P, {7,},cc) is a
measurable dynamical G-system (see Definition 2.8). Let L : X x M x ¥ — [0, 0] be a Borel
measurable integrand having p-growth, i.e., there exist o, f > 0 such that

al§l < L(z, & w) < B(1 + [€7) (3.7)
for pra.a. x €€, all £ e M and P-a.a. w € ¥, and assumed to be G-covariant, i.e.,
L(g(x),§w) = L (x, &, 79(w)) (3.8)

for p-a.a. x € X, all £ e M, all g € G and P-a.a. we ¥ . Let {hy,}nens < Homeo(X) and, for
each ne N* let L,, : X x M x ¥ — [0, 00] be given by

Ln(2,&w) = L (hn(),&,w) . (3.9)
(Then (3.7) implies (3.2), and we have L, ((h,'ogoh,)(x),&,w) = L, (z,&,7,(w)) for p-a.a.
reX,all ¢eM, allne N* all g e G and P-a.a. we X.)

Definition 3.7. Such a {L, },en#, defined by (3.8)-(3.9), is called a (G, {hy, }nen+ )-stochastic
sequence (of integrands) modelled on L.

Let us consider the following condition on the triplet ((X,d, 1), G, {hy }nens):

(S) there exists U € B, ((X) such that:
e (X,d, ) is meshable with respect to {hg(U)}ren (see Definition 2.4);
e for all ) € Ba(X), the sequence {h, (Q)}nen* is strongly G-asymptotic with respect
to {hx(U)}ren+ (see Definition 2.7).

The following theorem is the stochastic version of Theorem 3.8.

Theorem 3.8. Assume that (X,d, p) satisfies (S) and consider {Ly}nens a (G, {hn}nens)-
stochastic sequence modelled on L. If (3.7) holds then, for P-a.e. w € X, one has

D(Lf)- lim B, (u, A,w) = L Lo (V gtt(), )dp(z)

for all we HYP(R™) and all A e O(Q) with L*™ : M x ¥ — [0, 0] given by

keN*

Lpom (&, w) := inf EF [inf {J[h (@)L(’y,{ + V,w(y), )du(y) - w e H;;f; <hk (U),Rm> }] (w),
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where EZ denotes the conditional expectation over I with respect to P, with I being the o-
algebra of invariant sets with respect to (X, T, P, {1,}sec). If in addition (X, T ,P,{1,}4ec) is
ergodic, then Lyow is deterministic and is given by

Lyom(§) := kie%f* E [inf {J[h (@)L(y,& + Vaw(y), )dp(y) cwe Hb <hk (U),Rm) }] ;

where E denotes the expectation with respect to P.

Proof of Theorem 3.8. The proof consists of applying Theorem 3.4. For this, it suffices
to prove that for every £ € M, one has

lim H Ly (2, & w) = lim H, Ly (2, &, w) = Lyom (&, w) (3.10)

n—oo n—a0

for p-a.e. € Q, all p>0and P-aa. weX. Fix £ € M and let 8¢ : B, o(X) — LY, T,P)
be defined by

S AN = int { [ L0 + Tyt )dut) s w e H(AR™)

where by (3.7) we have 0 < S¢(A)(w) < c,u(/ol) < cu(A) for all A € By(X) and all w € ¥
with ¢ := B(1 + [£|P). In particular 8¢ satisfies the boundedness condition in (2.5). On the
other hand, by using (3.9), we see that

5 (h(Q) (&) = inf{ | (Q)L(y,€+Vuw(y),W)du(y)1w€Hﬁj’5(hn(Q);Rm)}
_ mf{ | L(hn<y>,5+vuw<hn<y>>,w>d<hiu><y>:weH;:s<hn<@>;Rm>}
Q

- u(hn(Q))inf{J( Ln<y,5+vuw<y>,w>du<y>:weH;:é:(@;Rm)}

Q

for all Q € Ba(X), all n € N* and all w € ¥ (where h? i denotes the image measure of y by
hy). Consequently, we have:

s e ) - fiy S (@) (@)
8 P20 = B (@) .

n—00 n—w [ (hn(Qp<x>))

for p-a.e. x € Q, all p > 0 and P-a.a. w € . Moreover, from (3.8) it easily seen that the
set function &% is G-covariant, and 8¢ is also subadditive because, for each A, B € By(X),
(AU B\(AU B)) = 0since AU B\(A U B) € @A U 0B and p(0A) = u(0B) = 0. Thus,
since (S) is satisfied, for p-a.e. = € € and all p > 0, we can apply Theorem 2.11 with
{Uktkens = {he(U)}ren and {Qn}nens = {hn(Q,(x))}nen#, and, noticing that p(hy(U)) =
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o

w(hi(U)) = u(h(U)) for all k e N*, we get

o S Q@) () B[S (V)] ()
@) T T (D)

I
=
=
&=
S

= Lhom(ga Cd),

for P-a.a. we X, and (3.10) follows from (3.11) and (3.12). W
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