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Abstract: The real-time estimation of damper force is crucial for control and diagnosis of
suspension systems in road vehicles. In this study, we consider a semi-active electrorheological
(ER) suspension system. First, a nonlinear quarter-car model is proposed that takes the
nonlinear and dynamical characteristics of the semi-active damper into account. The estimation
of the damper force is developed through a H∞ observer whose objectives are to minimize the
effects of bounded unknown road profile disturbances and measurement noises on the estimation
errors of the state variables and nonlinearity through a Lipschitz assumption. The considered
measured variables, used as inputs for the observer design, are the two accelerometers data
from the sprung mass and the unsprung mass of the quarter-car system, respectively. Finally,
the observer performances are assessed experimentally using the INOVE platform from GIPSA-
lab (1/5-scaled real vehicle). Both simulation and experimental results emphasize the robustness
of the estimation method against measurement noises and road disturbances, showing the
effectiveness in the ability of estimating the damper force in real-time.
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1. INTRODUCTION

Nowadays, semi-active suspensions are widely used in ve-
hicle applications due to their advantages compared to
active and passive suspensions (Savaresi et al. (2010) and
references therein). Central issues of these applications
include dynamic modeling and control designs based on
a reduced number of sensors to improve vehicle comfort
and road holding. Depending on the characteristics of
the adjustable shock absorber, models have been derived
using several methodologies with different complexity and
accuracy. Main models may be classified in terms of static
and dynamic characteristics. Static models include Bing-
ham model with Coulomb friction (see Stanway et al.
(1987)), hysteresis based model (see Guo et al. (2006),
de J Lozoya-Santos et al. (2012)). Dynamic models group
considers the Bouc-Wen model in (Wen (1976), Ahmadian
et al. (2004) and Spencer Jr et al. (1997)). Based on
several approximators such as neural network (Chang and
Roschke (1998), Chang and Zhou (2002)), fuzzy (Schurter
and Roschke (2000)), polynomial (Du et al. (2005)) and
among others (Savaresi et al. (2005)), proposed black box
model can be also divided into static or dynamic groups,
depending on the typical model. Generally, the common
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drawback of the above-mentioned dynamic models is the
high complexity for controller and observer synthesis. Guo
et al. (2006) introduced a semi-phenomenological model
with high accuracy and control-oriented design. Notice-
ably, Guo’s model only characterizes the static nonlinear
behavior of semi-active suspensions. Therefore, how to
extend the model taking into account both nonlinear and
dynamic behaviors of the ER suspension system is needed.

Based on the above models, many control designs were
proposed in the literature (see Poussot-Vassal et al. (2008),
Priyandoko et al. (2009) and a review in Poussot-Vassal
et al. (2012)). Some control design methodologies consid-
ered the damper force as the control input of the suspen-
sion system, then using an inverse model for implemen-
tation (see for instance Do et al. (2010), Nguyen et al.
(2015)). Others use the force tracking control schemes
in order to attain control objectives (Priyandoko et al.
(2009)). Indeed, the damper force signal plays an im-
portant role in control synthesis. For this reason, sev-
eral damper force estimation methodologies were pre-
sented (see Estrada-Vela et al. (2018), Reichhartinger
et al. (2018), Tudon-Martinez et al. (2018), Koch et al.
(2010), Rajamani and Hedrick (1995)), since in practice
the damper force measurement is difficult and expensive.
In (Koch et al. (2010)), parallel Kalman filters were devel-
oped to estimate the damper force without considering the
dynamic behavior of the semi-active damper. Estrada-Vela



et al. (2018) introduced the H∞ damping force observer
using a dynamic nonlinear model of the ER damper, while
requiring three sensors as inputs of observer. In order to
reduce the number of the sensors and maintain a consid-
eration of dynamic and nonlinear characteristics of MR
damper, Tudon-Martinez et al. (2018) proposed a LPV-
H∞ filter to estimate the damper force using deflection and
deflection velocity signals, which are difficult and expen-
sive to measure in practice. Moreover, based on accelerom-
eters, a full-car observer using the linearized model of the
damper is proposed in (Dugard et al. (2012)) and gives
interesting results both in simulations and experiments.
Despite these achievements, the damping force observer
based on the dynamic nonlinear model of semi-active ER
suspension system and using low-cost sensors is still in
demand.

To deal with the above problem, the H∞ observer for Lip-
schitz nonlinear systems is a potential candidate since the
nonlinear term in the ER model satisfies the Lipschitz con-
dition. Over the years, many LMI-based observer designs
for Lipschitz nonlinear systems were widely investigated
in (Rajamani (1998), Zemouche and Boutayeb (2013),
Pertew et al. (2006), Abbaszadeh and Marquez (2007),
Darouach et al. (2011), Koenig (2006)). An interesting
solution of designing observer for Lipschitz nonlinear sys-
tem in the absence of unknown inputs was presented by
(Phanomchoeng and Rajamani (2010)), based on the S-
procedure lemma. Here, we aim to extend the approach to
the Lipschitz system in the presence of sensor noises and
unknown input disturbances and apply it to estimate the
damping force of a semi-active suspension system.

In this paper, an H∞ observer using two accelerometers
is proposed in order to estimate the damper force in
the presence of unknown road input and measurement
noises. The design of the observer is based on a nonlinear
suspension model consisting of a quarter-car vehicle model,
augmented with a first order dynamical nonlinear damper
model. Such a model captures the main behaviour of the
ER dampers in an automotive applications. The major
contribution of this paper are as follows:

• An H∞ approach for Lipchitz nonlinear system is
developed to design an observer minimizing, in an L2-
induced gain objective, the effect of unknown inputs
(road profile and measurement noises).
• The proposed observer has been implemented on

a real scaled-vehicle test bench, through the Mat-
lab/Simulink real-time workshop. The observer per-
formances are then assessed with experimental tests

The remainder of this paper is organized as follows:

• Section 2: Semi-active suspension modeling.
• Section 3: Observer design.
• Section 4: Analysis of the observer design: frequency

and time domains
• Section 5: Experimental validation
• Section 6: Conclusion

2. SEMI-ACTIVE SUSPENSION MODELING AND
QUARTER-CAR SYSTEM DESCRIPTION

2.1 Semi-active suspension modeling

In the sequel, the dynamic nonlinear model for semi-active
ER Damper is described. According to Guo et al. (2006),
a phenomenological model of semi-active suspension can
be represented by the following nonlinear equation:

Fd = k0xd + c0ẋd + fc.u.tanh(k1xd + c1ẋd) (1)

where Fd is the damper force; c0, c1, k0, k1, fc are constant
parameters. xd, ẋd are deflection and deflection velocity
of the damper, respectively. u is control input (in the
available test bench, this is the duty cycle of the PWM
signal that controls the application).

Fig. 1. 1/4 car model with semi-active suspension

From (1), the damper force Fd is separated into the passive
and controlled parts as follows:{

Fd = k0xd + c0ẋd + Fnl(x, u)

Fnl(x, u) = fc.u.tanh(k1xd + c1ẋd)
(2)

Now in order to take into account the dynamical behavior
of the ER fluid, it is important to complete the above
model by including a first-order dynamical equation in the
controlled part Fnl(x, u):

τḞer + Fer = Fnl(x, u) (3)

Therefore, the complete nonlinear damper dynamical
model is given asFd = k0xd + c0ẋd + Fer

Ḟer = −1

τ
Fer +

fc
τ

Φ(x, u)
(4)

where Φ(x, u) = u.tanh(k1xd + c1ẋd)

It is noted that linear and nonlinear indentification
methodologies are used to determine all the parameters of
the above model (shown in table 1). They are not described
here since it is out of the scope of this paper.



2.2 Quarter-car system description

This section introduces the quarter-car model with the
semi-active ER suspension system depicted in Fig.1. The
well-known model consists of the sprung mass (ms), the
unsprung mass (mus), the suspension components located
between (ms) and (mus) and the tire which is modelled as
a spring with stiffness kt. From second law of Newton for
motion, the system dynamics around the equilibrium are
given as: {

msz̈s = −Fs − Fd

musz̈us = Fs + Fd − Ft
(5)

where Fs = ks(zs − zus) is the spring force, Ft = kt(zus −
zr) is the tire force, and the damper force Fd is given as
in (4) with deflection xd = zdef = zs − zus.

Fig. 2. Schematic diagram of testbed of semi-active sus-
pension system

Subtituting (4) into (5), one easily obtains

z̈s = − 1

ms
[(ks + k0)(zs − zus) + c0(żs − żus) + Fer]

z̈us =
1

mus
[(ks + k0)(zs − zus) + c0(żs − żus) + Fer

−kt(zus − zr)]

Ḟer = −1

τ
Fer +

fc
τ

Φ(x, u)

(6)
where zs and zus are the displacements of the sprung and
unsprung masses, respectively; zr is the road displacement
input.

By selecting the system states as x = [x1, x2, x3, x4, x5]T =
[zs − zus, żs, zus − zr, żus, Fer]T ∈ R5 and the measured
variables y = [z̈s, z̈us]

T ∈ R2, the system dynamics in the
state-space representation can be written as follows{

ẋ = Ax+BΦ(x, u) +D1ω

y = Cx+D2ω
(7)

where

A =



0 1 0 −1 0

− (ks + k0)

ms
− c0
ms

0
c0
ms

− 1

ms
0 0 0 1 0

(ks + k0)

mus

c0
mus

− kt
mus

− c0
mus

1

mus

0 0 0 0 −1

τ



C =

− (ks + k0)

ms
− c0
ms

0
c0
ms

− 1

ms
(ks + k0)

mus

c0
mus

− kt
mus

− c0
mus

1

mus



B =


0
0
0
0
fc
τ

 , D1 =


0 0
0 0
−1 0
0 0
0 0

 , D2 =

[
0 0.01
0 0.01

]

ω =

(
żr
n

)
, in which, żr is the road profile derivative and

n is the sensor noises.

The control input function Φ(x, u) of the system (7) can
be rewritten under the following form

Φ(x, u) = u.tanh

[k1 c1 0 −c1 0]


x1

x2

x3

x4

x5




= u.tanh(Γx) (8)

where Γ = [k1, c1, 0, −c1, 0]

Therefore, Φ(x, u) satisfies the Lipschitz condition in x

‖Φ(x, u)− Φ(x̂, u)‖ 6 ‖Γ(x− x̂)‖,∀x, x̂ (9)

Note that the measured outputs y = [z̈s, z̈us]
T can be

obtained easily from on board sensors (accelerometers).

Table 1. Parameter values of the quarter-car
model equipped with an ER damper

Parameter Description value Unit

ms Sprung mass 2.27 kg
mus unsprung mass 0.25 kg
ks Spring stiffness 1396 N/m
kt Tire stiffness 12270 N/m
k0 Passive damper stiffness coefficient 170.4 N/m
c0 Viscous damping coefficient 68.83 N.s/m
k1 Hysteresis coefficient due to displacement 218.16 N.s/m
c1 Hysteresis coefficient due to velocity 21 N.s/m
fc Dynamic yield force of ER fluid 28.07 N
τ Time constant 43 ms

3. OBSERVER DESIGN

In this section, an H∞ observer is developed to estimate
the damping force accurately. The unknown input ω (road
profile disturbance and measurement noise) is considered
as an unknown disturbance. Therefore, an H∞ observer
is proposed to minimize the effect of the accounting for
unknown disturbance ω on the state estimation errors and
to bound the nonlinearity by Lipschitz constant.



Fig. 3. Block diagram of the H∞ damper force observer

3.1 H∞ observer design

The H∞ observer for the quarter-car system (7) is defined
as follows

˙̂x = Ax̂+ L(y − Cx̂) +BΦ(x̂, u) (10)

where x̂ is the estimated states. The observer gain L will
be determined in the next steps

The estimation error is given as

e(t) = x(t)− x̂(t) (11)

Differentiating e(t) with respect to time and using (7) and
(10), one obtains

ė = ẋ− ˙̂x

= Ax+BΦ(x, u) +D1ω

−Ax̂− L(y − Cx̂)−BΦ(x̂, u)

= (A− LC)e+B(Φ(x, u)− Φ(x̂, u)) + (D1 − LD2)ω
(12)

Assuming the Lipschitz condition (9) for Φ(x, u), the H∞
observer design objective is stated below

• The system (12) is stable for ω(t) = 0
• ‖e(t)‖L2 < γ‖ω(t)‖L2 for ω(t) 6= 0

The following theorem solves the above problem into an
LMI framwork.

Theorem 1. Consider the system model (7) and the ob-
server (10) . Given positive scalars γ and εl. The system

(12) is asymptotically stable for ω = 0 and
‖e(t)‖L2

‖ω(t)‖L2
< γ

for ω(t) 6= 0 if there exist a symmetric positive definite
matrix P and a matrix Y satisfying

Ω PB PD1 + Y D2

∗ −εlId 0n,d
∗ ∗ −γ2I

 < 0 (13)

where Ω = ATP + PA+ Y C + CTY T + εlΓ
T Γ + In

The observer matrix will be then L = −P−1Y

Proof. Consider the following Lyapunov function

V (t) = e(t)TPe(t) (14)

Differentiating V (t) along the solution of (12) yields

V̇ (t) = ė(t)TPe(t) + e(t)TP ė(t)

= [(A− LC)e+B(Φ(x, u)− Φ(x̂, u))

+ (D1 − LD2)ω]TPe+ eTP [(A− LC)e

+B(Φ(x, u)− Φ(x̂, u)) + (D1 − LD2)ω]

=

 eT

(Φ(x, u)− Φ(x̂, u))T

ωT

T

×

(A− LC)TP + P (A− LC) PB P (D1 − LD2)
BTP 0 0

(D1 − LD2)TP 0 0


×

[
e

Φ(x, u)− Φ(x̂, u)
ω

]
(15)

For brevity, define η =

[
e

Φ(x, u)− Φ(x̂, u)
ω

]
, then one

obtains

V̇ (t) = ηTMη (16)

where

M =

 Ω1 PB P (D1 − LD2)
BTP 0 0

(D1 − LD2)TP 0 0


with Ω1 = (A− LC)TP + P (A− LC)

From (9), the following condition is obtained

(Φ(x, u)− Φ(x̂, u))T (Φ(x, u)− Φ(x̂, u)) 6 eT ΓT Γe

⇔
[

eT

(Φ(x, u)− Φ(x̂, u))T

]T
×[

−ΓT Γ 0
0 I

] [
e

(Φ(x, u)− Φ(x̂, u))

]
6 0

⇔ηTQη 6 0 (17)

where Q =

−ΓT Γ 0 0
0 I 0
0 0 0


In order to satisfy the objective design w.r.t. the L2 gain
disturbance attenuation, the H∞ performance index is
defined as:

J = eT e− γ2ωTω

=

[
eT

ωT

]T [
I 0
0 −γ2I

] [
e
ω

]
= ηTRη (18)

where R =

I 0 0
0 0 0
0 0 −γ2I


By applying the S-procedure Boyd et al. (1994) to the two

contraints (17) and J 6 0, V̇ (t) < 0 if there exists a scalar
εl > 0 such that

V̇ (t)− εl(ηTQη) + J < 0

⇔ηTMη − εl(ηTQη) + ηTRη < 0

⇔ηT (M − εlQ+R)η < 0 (19)



The condition (19) is equivalent to

M − εlQ+R < 0

⇔

Ω1 + εlΓ
T Γ + I PB P (D1 − LD2)

BTP −εlI 0
(D1 − LD2)TP 0 −γ2I

 < 0 (20)

Let define Y = −PL and substitute into (20), the LMI
(13) is obtained. �
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Fig. 4. Transfer ‖e/ω‖- Bode diagrams

4. ANALYSIS OF THE OBSERVER DESIGN:
FREQUENCY AND TIME DOMAINS

In this section, the synthesis result of the H∞ observer is
presented and some simulation results are given.

4.1 Synthesis results and frequency domain analysis

Solving theorem 1 with εl = 2, we obtain the L2 gain
γ = 1.1938 and the observer gain

L =


−0.1947 −0.0051
−1.1537 −0.0321
−12.7490 −167.4689
−0.2154 0.9968
−87.9502 −1.4818


The resulting attenuation of the sensor noises and road
profile disturbance on the estimation error, subject to the
minimization problems, is shown in Figure 4. These results
emphasize the attenuation level of measurement noises and
unknown road profile effect on the 5 estimation errors,
since the largest sensor noise and road profile disturbance
amplification of the 5 errors, over the whole frequency
range, are -30dB and -77dB, respectively.

4.2 Simulation

To demonstrate the effectiveness of the proposed design,
the simulations are made with the nonlinear quarter-car
model (7). The block-scheme given in Figure 3 illustrates
how the simulations of the H∞ observer are done. The
following initial conditions of the proposed observer are
considered:

x0 = [0 0 0 0 0]
T

x̂0 = [0.01, −0.4, 0.001, −0.15, 2]
T

Two simulation scenarios are used to evaluate the perfor-
mance of the observer as follows:

Scenario 1:

• The road profile is a sequence of sinusoidal bumps
zr = 15sin(4πt)(mm).

• The duty cycle u = 0.1 is chosen

Scenario 2:

• An ISO 8608 road profile signal (Type C) is used.
• The duty cycle u = 0.1

The simulation results of two tests are shown in the Fig.
5 and Fig. 6. It can be clearly observed in Fig. 5 and Fig.
6 that the damping force is estimated with a satisfactory
accuracy.
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4.3 Robustness analysis

In this section, the µ-tool is used to analyse the robustness
of the H∞ observer. The estimation error dynamics (12),
including the system model (7) and the observer (10), is
analysed here.



Fig. 7. Uncertain system for robust stability analysis

The two main types of uncertainties are the Lipschitz
nonlinear matrix Γ and the time-varying parametric un-
certainty, concerning the unsprung mass, the sprung mass,
the spring stiffness and the damper model coefficients. In
particular, the parametric uncertainties are shown in the
Table 2 and a Lipschitz nonlinear uncertainty is assumed
as follows

Φ∆(x, u) = Φ(x, u) + ∆Φ(x, u) (21)

where

‖∆Φ(x, u)−∆Φ(x̂, u)‖ 6 ‖∆Γ(x− x̂)‖ (22)

with ∆Γ = Γ∆ − Γ

The estimation error dynamics (12) in the uncertain do-
main is rewritten as follows

ė∆ = (A∆ − LC∆)e+B∆(Φ∆(x, u)− Φ∆(x̂, u))

+ (D1∆ − LD2∆)ω (23)

where A∆, B∆, C∆, D1∆, D2∆ are the system matrices
considering the uncertainties.

The system (23) is written into the LFT representations
(see Figure 7 and Figure 8). In which, Σ(s) is the system
(23) with nominal values of parameters, shown in the Table
2. ∆r(s) represents the parametric uncertainties shown in
the Table 2. ∆L(s) is the uncertain Lipschitz condition
(22). The performance objectives are represented by the
fictitious uncertainties ∆f (s).

Table 2. Parameter values of the quarter-car
model equipped with an ER damper

Uncertain parameters Variation

ms 2.27 ∓ 50%(kg)
mus 0.25∓ 20%(kg)
ks 1396∓ 20%(N/m)
kt 12270 ∓ 20%(N/m)
k0 170.4∓ 20%(N/m)
c0 68.83∓ 20%(N.s/m)
k1 218.16∓ 20%(N.s/m)
c1 21∓ 20%(N.s/m)
fc 28.07∓ 20%
τ 43∓ 20%(ms)

Both robust stability and performance analysis are based
on the LFT representations of the uncertain systems
(shown in Figure 7 and Figure 8, respectively). These
results are presented in the Fig.9, where the upper and
lower bounds of µ are always less than 1. Therefore, the

Fig. 8. Uncertain system for robust performance analysis

robust stability and robust performance of the observer
system are guaranteed. Note that the observer is stable
even for larger uncertainties.
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Fig. 9. (a) Robust stability analysis, (b) Robust perfor-
mance analysis

5. EXPERIMENTAL VALIDATION

To validate the effectiveness of the proposed algorithm,
experiments have been performed on the 1/5 car scaled
car INOVE available at GIPSA-lab, shown in Fig. 10.



Fig. 10. The experimental testbed INOVE at GIPSA-lab
(see www.gipsa-lab.fr/projet/inove)

Fig. 11. Block diagram for implementation of the H∞
damper force observer

Table 3. Normalized Root-Mean-Square Errors

Road Profile Sequence Simulation Experiment

Sinusoidal bumps 0.0234 0.0896
ISO 8608 road 0.0366 0.1015

This test-bench which involves 4 semi-active ER suspen-
sions is controlled in real-time using xPC target and a
host computer. The target PC is connected to the host
computer via Ethernet communication standard (see Fig-
ure 2). The proposed observer system is implemented on
the host PC using Matlab/simulink with the sampling
time Ts = 0.05s. Note that the experimetal platform is
fully equipped sensors to measure its vertical motion. Each
corner of the system has a DC motor to generate the road
profile.

In this study, the damping force estimation algorithm is
applied for the rear-left corner whose available sensors are
the unsprung mass accelerometer z̈us, the sprung mass
accelerometer z̈s, the damping force sensor Fd, and the po-
sition sensors to measure suspension deflection zdef , road
profile zr and unsprung mass position zus. As previously
mentioned, only both unsprung mass acceleration z̈us and
sprung mass acceleration z̈s are used as inputs of the
proposed observer. The following block-scheme illustrates
the experiment scenario of the observer (shown in Fig. 11)

In this experiment senario, the duty cycle of PWM signal
is constant u = 0.1 and the real road profiles are sequence
of sinusoidal bumps and ISO 8608 road, shown in Fig.
12(a) and Fig. 13(a), respectively. The experiment results
of the observer are presented in Fig. 12 (b) and Fig. 13
(b). The result illustrates the accuracy and efficiency of
the proposed observer. To further describe this accuracy,

Table 3 presents the normalized root-mean-square errors,
considering the difference between the estimated and mea-
sured forces, for the simulation and experimental results
presented in the Fig. 5, Fig. 12 (b) and Fig. 13 (b).
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6. CONCLUSION

This paper presented an LMI-based H∞ observer to esti-
mate the damper force, based on the dynamic nonlinear
model of the ER damper. For this purpose, the quarter-
car system is represented by considering a phenomenolog-
ical model of damper. Using two accelerometers, an H∞
observer is designed, providing a good estimation result
of the damping force. The estimation error is minimized
accounting for the effect of unknown inputs (road profile
disturbance and measurement noises) and the nonlinearity
term bounded by a Lipchitz condition. The robust statbiliy
and robust performance properties are ensured by using
the µ tool. Both simulation and experiment results assess



the ability and the accuracy of the proposed models to
estimate the damping force of the ER semi-active damper.
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