Thanh-Phong Pham 
email: thanh-phong.pham2@gipsa-lab.grenoble-inp.fr
  
Olivier Sename 
email: olivier.sename@gipsa-lab.grenoble-inp.fr
  
Luc Dugard 
email: luc.dugard@gipsa-lab.grenoble-inp.fr
  
Design and Experimental Validation of an H ∞ Observer for Vehicle Damper Force Estimation

Keywords: Semi-active suspension, H ∞ observer, damping force estimation, Lipchitz condition

The real-time estimation of damper force is crucial for control and diagnosis of suspension systems in road vehicles. In this study, we consider a semi-active electrorheological (ER) suspension system. First, a nonlinear quarter-car model is proposed that takes the nonlinear and dynamical characteristics of the semi-active damper into account. The estimation of the damper force is developed through a H ∞ observer whose objectives are to minimize the effects of bounded unknown road profile disturbances and measurement noises on the estimation errors of the state variables and nonlinearity through a Lipschitz assumption. The considered measured variables, used as inputs for the observer design, are the two accelerometers data from the sprung mass and the unsprung mass of the quarter-car system, respectively. Finally, the observer performances are assessed experimentally using the INOVE platform from GIPSAlab (1/5-scaled real vehicle). Both simulation and experimental results emphasize the robustness of the estimation method against measurement noises and road disturbances, showing the effectiveness in the ability of estimating the damper force in real-time.

INTRODUCTION

Nowadays, semi-active suspensions are widely used in vehicle applications due to their advantages compared to active and passive suspensions [START_REF] Savaresi | Semi-active suspension control design for vehicles[END_REF] and references therein). Central issues of these applications include dynamic modeling and control designs based on a reduced number of sensors to improve vehicle comfort and road holding. Depending on the characteristics of the adjustable shock absorber, models have been derived using several methodologies with different complexity and accuracy. Main models may be classified in terms of static and dynamic characteristics. Static models include Bingham model with Coulomb friction (see [START_REF] Stanway | Nonlinear modelling of an electro-rheological vibration damper[END_REF]), hysteresis based model (see [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF], [START_REF] De J Lozoya-Santos | Magnetorheological damperan experimental study[END_REF]). Dynamic models group considers the Bouc-Wen model in [START_REF] Wen | Method for random vibration of hysteretic systems[END_REF], [START_REF] Ahmadian | No-jerk skyhook control methods for semiactive suspensions[END_REF] [START_REF] Spencer | Phenomenological model for magnetorheological dampers[END_REF]). Based on several approximators such as neural network [START_REF] Chang | Neural network modeling of a magnetorheological damper[END_REF], [START_REF] Chang | Neural network emulation of inverse dynamics for a magnetorheological damper[END_REF]), fuzzy [START_REF] Schurter | Fuzzy modeling of a magnetorheological damper using anfis[END_REF]), polynomial [START_REF] Du | Semi-active h control of vehicle suspension with magneto-rheological dampers[END_REF]) and among others [START_REF] Savaresi | Identification of semi-physical and black-box non-linear models: the case of mr-dampers for vehicles control[END_REF], proposed black box model can be also divided into static or dynamic groups, depending on the typical model. Generally, the common drawback of the above-mentioned dynamic models is the high complexity for controller and observer synthesis. [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF] introduced a semi-phenomenological model with high accuracy and control-oriented design. Noticeably, Guo's model only characterizes the static nonlinear behavior of semi-active suspensions. Therefore, how to extend the model taking into account both nonlinear and dynamic behaviors of the ER suspension system is needed.

Based on the above models, many control designs were proposed in the literature (see [START_REF] Poussot-Vassal | A new semi-active suspension control strategy through lpv technique[END_REF], [START_REF] Priyandoko | Vehicle active suspension system using skyhook adaptive neuro active force control[END_REF] and a review in [START_REF] Poussot-Vassal | Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model[END_REF]). Some control design methodologies considered the damper force as the control input of the suspension system, then using an inverse model for implementation (see for instance [START_REF] Do | An lpv control approach for semi-active suspension control with actuator constraints[END_REF], [START_REF] Nguyen | Semi-active suspension control problem: Some new results using an lpv/h state feedback input constrained control[END_REF]). Others use the force tracking control schemes in order to attain control objectives [START_REF] Priyandoko | Vehicle active suspension system using skyhook adaptive neuro active force control[END_REF]). Indeed, the damper force signal plays an important role in control synthesis. For this reason, several damper force estimation methodologies were presented (see [START_REF] Estrada-Vela | H observer for damper force in a semi-active suspension[END_REF], [START_REF] Reichhartinger | Robust estimation of forces for suspension system control[END_REF][START_REF] Tudon-Martinez | Parameter-dependent h filter for lpv semi-active suspension systems[END_REF], [START_REF] Koch | Nonlinear and filter based estimation for vehicle suspension control[END_REF], [START_REF] Rajamani | Adaptive observers for active automotive suspensions: theory and experiment[END_REF]), since in practice the damper force measurement is difficult and expensive. In [START_REF] Koch | Nonlinear and filter based estimation for vehicle suspension control[END_REF]), parallel Kalman filters were developed to estimate the damper force without considering the dynamic behavior of the semi-active damper. [START_REF] Estrada-Vela | H observer for damper force in a semi-active suspension[END_REF] introduced the H ∞ damping force observer using a dynamic nonlinear model of the ER damper, while requiring three sensors as inputs of observer. In order to reduce the number of the sensors and maintain a consideration of dynamic and nonlinear characteristics of MR damper, [START_REF] Tudon-Martinez | Parameter-dependent h filter for lpv semi-active suspension systems[END_REF] proposed a LPV-H ∞ filter to estimate the damper force using deflection and deflection velocity signals, which are difficult and expensive to measure in practice. Moreover, based on accelerometers, a full-car observer using the linearized model of the damper is proposed in [START_REF] Dugard | Full vertical car observer design methodology for suspension control applications[END_REF]) and gives interesting results both in simulations and experiments. Despite these achievements, the damping force observer based on the dynamic nonlinear model of semi-active ER suspension system and using low-cost sensors is still in demand.

To deal with the above problem, the H ∞ observer for Lipschitz nonlinear systems is a potential candidate since the nonlinear term in the ER model satisfies the Lipschitz condition. Over the years, many LMI-based observer designs for Lipschitz nonlinear systems were widely investigated in [START_REF] Rajamani | Observers for lipschitz nonlinear systems[END_REF], [START_REF] Zemouche | On lmi conditions to design observers for lipschitz nonlinear systems[END_REF], [START_REF] Pertew | H/sub/spl infin//observer design for lipschitz nonlinear systems[END_REF], [START_REF] Abbaszadeh | Robust h observer design for a class of nonlinear uncertain systems via convex optimization[END_REF], [START_REF] Darouach | H observers design for a class of nonlinear singular systems[END_REF], [START_REF] Koenig | Observers design for unknown input nonlinear descriptor systems via convex optimization[END_REF]). An interesting solution of designing observer for Lipschitz nonlinear system in the absence of unknown inputs was presented by [START_REF] Phanomchoeng | Observer design for lipschitz nonlinear systems using riccati equations[END_REF]), based on the Sprocedure lemma. Here, we aim to extend the approach to the Lipschitz system in the presence of sensor noises and unknown input disturbances and apply it to estimate the damping force of a semi-active suspension system.

In this paper, an H ∞ observer using two accelerometers is proposed in order to estimate the damper force in the presence of unknown road input and measurement noises. The design of the observer is based on a nonlinear suspension model consisting of a quarter-car vehicle model, augmented with a first order dynamical nonlinear damper model. Such a model captures the main behaviour of the ER dampers in an automotive applications. The major contribution of this paper are as follows:

• An H ∞ approach for Lipchitz nonlinear system is developed to design an observer minimizing, in an L 2induced gain objective, the effect of unknown inputs (road profile and measurement noises). • The proposed observer has been implemented on a real scaled-vehicle test bench, through the Matlab/Simulink real-time workshop. The observer performances are then assessed with experimental tests

The remainder of this paper is organized as follows:

• Section 2: Semi-active suspension modeling.

• Section 3: Observer design.

• Section 4: Analysis of the observer design: frequency and time domains • Section 5: Experimental validation • Section 6: Conclusion

SEMI-ACTIVE SUSPENSION MODELING AND QUARTER-CAR SYSTEM DESCRIPTION

Semi-active suspension modeling

In the sequel, the dynamic nonlinear model for semi-active ER Damper is described. According to [START_REF] Guo | Dynamic modeling of magnetorheological damper behaviors[END_REF], a phenomenological model of semi-active suspension can be represented by the following nonlinear equation:

F d = k 0 x d + c 0 ẋd + f c .u.tanh(k 1 x d + c 1 ẋd ) (1)
where F d is the damper force; c 0 , c 1 , k 0 , k 1 , f c are constant parameters. x d , ẋd are deflection and deflection velocity of the damper, respectively. u is control input (in the available test bench, this is the duty cycle of the PWM signal that controls the application).

Fig. 1. 1/4 car model with semi-active suspension

From (1), the damper force F d is separated into the passive and controlled parts as follows:

F d = k 0 x d + c 0 ẋd + F nl (x, u) F nl (x, u) = f c .u.tanh(k 1 x d + c 1 ẋd ) (2)
Now in order to take into account the dynamical behavior of the ER fluid, it is important to complete the above model by including a first-order dynamical equation in the controlled part F nl (x, u):

τ Ḟer + F er = F nl (x, u) (3) 
Therefore, the complete nonlinear damper dynamical model is given as

   F d = k 0 x d + c 0 ẋd + F er Ḟer = - 1 τ F er + f c τ Φ(x, u) (4) 
where Φ(x, u) = u.tanh(k

1 x d + c 1 ẋd )
It is noted that linear and nonlinear indentification methodologies are used to determine all the parameters of the above model (shown in table 1). They are not described here since it is out of the scope of this paper.

Quarter-car system description

This section introduces the quarter-car model with the semi-active ER suspension system depicted in Fig. 1. The well-known model consists of the sprung mass (m s ), the unsprung mass (m us ), the suspension components located between (m s ) and (m us ) and the tire which is modelled as a spring with stiffness k t . From second law of Newton for motion, the system dynamics around the equilibrium are given as:

m s zs = -F s -F d m us zus = F s + F d -F t (5)
where

F s = k s (z s -z us ) is the spring force, F t = k t (z us - z r
) is the tire force, and the damper force F d is given as in (4) with deflection

x d = z def = z s -z us .
Fig. 2. Schematic diagram of testbed of semi-active suspension system Subtituting (4) into (5), one easily obtains

               zs = - 1 m s [(k s + k 0 )(z s -z us ) + c 0 ( żs -żus ) + F er ] zus = 1 m us [(k s + k 0 )(z s -z us ) + c 0 ( żs -żus ) + F er -k t (z us -z r )] Ḟer = - 1 τ F er + f c τ Φ(x, u) (6 
) where z s and z us are the displacements of the sprung and unsprung masses, respectively; z r is the road displacement input. By selecting the system states as x = [x 1 , x 2 , x 3 , x 4 , x 5 ] T = [z s -z us , żs , z us -z r , żus , F er ] T ∈ R 5 and the measured variables y = [z s , zus ] T ∈ R 2 , the system dynamics in the state-space representation can be written as follows

ẋ = Ax + BΦ(x, u) + D 1 ω y = Cx + D 2 ω (7)
where

A =           0 1 0 -1 0 - (k s + k 0 ) m s - c 0 m s 0 c 0 m s - 1 m s 0 0 0 1 0 (k s + k 0 ) m us c 0 m us - k t m us - c 0 m us 1 m us 0 0 0 0 - 1 τ           C =    - (k s + k 0 ) m s - c 0 m s 0 c 0 m s - 1 m s (k s + k 0 ) m us c 0 m us - k t m us - c 0 m us 1 m us    B =       0 0 0 0 f c τ       , D 1 =      0 0 0 0 -1 0 0 0 0 0     
, D 2 = 0 0.01 0 0.01 ω = żr n , in which, żr is the road profile derivative and n is the sensor noises.

The control input function Φ(x, u) of the system (7) can be rewritten under the following form

Φ(x, u) = u.tanh      [k 1 c 1 0 -c 1 0]      x 1 x 2 x 3 x 4 x 5           = u.tanh(Γx) (8) 
where

Γ = [k 1 , c 1 , 0, -c 1 , 0] Therefore, Φ(x, u) satisfies the Lipschitz condition in x Φ(x, u) -Φ(x, u) Γ(x -x) , ∀x, x (9) 
Note that the measured outputs y = [z s , zus ] T can be obtained easily from on board sensors (accelerometers). The H ∞ observer for the quarter-car system ( 7) is defined as follows ẋ = Ax + L(y -C x) + BΦ(x, u) (10) where x is the estimated states. The observer gain L will be determined in the next steps

The estimation error is given as

e(t) = x(t) -x(t) (11) 
Differentiating e(t) with respect to time and using ( 7) and ( 10), one obtains

ė = ẋ - ẋ = Ax + BΦ(x, u) + D 1 ω -Ax -L(y -C x) -BΦ(x, u) = (A -LC)e + B(Φ(x, u) -Φ(x, u)) + (D 1 -LD 2 )ω (12)
Assuming the Lipschitz condition (9) for Φ(x, u), the H ∞ observer design objective is stated below

• The system (12) is stable for ω(t) = 0 • e(t) L2 < γ ω(t) L2 for ω(t) = 0
The following theorem solves the above problem into an LMI framwork. Theorem 1. Consider the system model ( 7) and the observer (10) . Given positive scalars γ and l . The system (12) is asymptotically stable for ω = 0 and

e(t) L 2 ω(t) L 2
< γ for ω(t) = 0 if there exist a symmetric positive definite matrix P and a matrix Y satisfying

  Ω P B P D 1 + Y D 2 * -l I d 0 n,d * * -γ 2 I   < 0 ( 13 
)
where

Ω = A T P + P A + Y C + C T Y T + l Γ T Γ + I n
The observer matrix will be then L = -P -1 Y Proof. Consider the following Lyapunov function

V (t) = e(t) T P e(t) (14) 
Differentiating V (t) along the solution of (12) yields V (t) = ė(t) T P e(t) + e(t) T P ė(t) = [(A -LC)e + B(Φ(x, u) -Φ(x, u))

+ (D 1 -LD 2 )ω] T P e + e T P [(A -LC)e + B(Φ(x, u) -Φ(x, u)) + (D 1 -LD 2 )ω] =   e T (Φ(x, u) -Φ(x, u)) T ω T   T ×   (A -LC) T P + P (A -LC) P B P (D 1 -LD 2 ) B T P 0 0 (D 1 -LD 2 ) T P 0 0   × e Φ(x, u) -Φ(x, u) ω (15) 
For brevity, define η = e Φ(x, u) -Φ(x, u) ω

, then one obtains

V (t) = η T M η (16) where M =   Ω 1 P B P (D 1 -LD 2 ) B T P 0 0 (D 1 -LD 2 ) T P 0 0   with Ω 1 = (A -LC) T P + P (A -LC)
From ( 9), the following condition is obtained

(Φ(x, u) -Φ(x, u)) T (Φ(x, u) -Φ(x, u)) e T Γ T Γe ⇔ e T (Φ(x, u) -Φ(x, u)) T T × -Γ T Γ 0 0 I e (Φ(x, u) -Φ(x, u)) 0 ⇔η T Qη 0 ( 17 
)
where

Q =   -Γ T Γ 0 0 0 I 0 0 0 0  
In order to satisfy the objective design w.r.t. the L 2 gain disturbance attenuation, the H ∞ performance index is defined as:

J = e T e -γ 2 ω T ω = e T ω T T I 0 0 -γ 2 I e ω = η T Rη (18) where R =   I 0 0 0 0 0 0 0 -γ 2 I  
By applying the S-procedure [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] to the two contraints and J 0, V (t) < 0 if exists scalar l 0 such that V (t)l (η T Qη) + J < 0

⇔η T M -l (η T Qη) + η Rη < 0 ⇔η T (M -l Q + R)η < 0 (19)
The condition ( 19) is equivalent to

M -l Q + R < 0 ⇔   Ω 1 + l Γ T Γ + I P B P (D 1 -LD 2 ) B T P -l I 0 (D 1 -LD 2 ) T P 0 -γ 2 I   < 0 (20)
Let define Y = -P L and substitute into (20), the LMI ( 13) is obtained.

-140 -120

-100 In this section, the synthesis result of the H ∞ observer is presented and some simulation results are given.

Synthesis results and frequency domain analysis

Solving theorem 1 with l = 2, we obtain the L 2 gain γ = 1.1938 and the observer gain 

L =      -0.
    
The resulting attenuation of the sensor noises and road profile disturbance on the estimation error, subject to the minimization problems, is shown in Figure 4. These results emphasize the attenuation level of measurement noises and unknown road profile effect on the 5 estimation errors, since the largest sensor noise and road profile disturbance amplification of the 5 errors, over the whole frequency range, are -30dB and -77dB, respectively.

Simulation

To demonstrate the effectiveness of the proposed design, the simulations are made with the nonlinear quarter-car model ( 7). The block-scheme given in Figure 3 illustrates how the simulations of the H ∞ observer are done. The following initial conditions of the proposed observer are considered:

x 0 = [0 0 0 0 0] T x0 = [0.01, -0.4, 0.001, -0.15, 2]

T Two simulation scenarios are used to evaluate the performance of the observer as follows:

Scenario 1:

• The road profile is a sequence of sinusoidal bumps z r = 15sin(4πt)(mm). • The duty cycle u = 0.1 is chosen Scenario 2:

• An ISO 8608 road profile signal (Type C) is used.

• The duty cycle u = 0.1

The simulation results of two tests are shown in the Fig. 5 and Fig. 6. It can be clearly observed in Fig. 5 and Fig. 6 that the damping force is estimated with a satisfactory accuracy. 

Robustness analysis

In this section, the µ-tool is used to analyse the robustness of the H ∞ observer. The estimation error dynamics (12), including the system model ( 7) and the observer (10), is analysed here. The system ( 23) is written into the LFT representations (see Figure 7 and Figure 8). In which, Σ(s) is the system (23) with nominal values of parameters, shown in the Table 2. ∆ r (s) represents the parametric uncertainties shown in the Table 2. ∆ L (s) is the uncertain Lipschitz condition (22). The performance objectives are represented by the fictitious uncertainties ∆ f (s). Both robust stability and performance analysis are based on the LFT representations of the uncertain systems (shown in Figure 7 and Figure 8, respectively). These results are presented in the Fig. 9, where the upper and lower bounds of µ are always less than 1. Therefore, the Fig. 8. Uncertain system for robust performance analysis robust stability and robust performance of the observer system are guaranteed. Note that the observer is stable even for larger uncertainties. 2). The proposed observer system is implemented on the host PC using Matlab/simulink with the sampling time T s = 0.05s. Note that the experimetal platform is fully equipped sensors to measure its vertical motion. Each corner of the system has a DC motor to generate the road profile.

In this study, the damping force estimation algorithm is applied for the rear-left corner whose available sensors are the unsprung mass accelerometer zus , the sprung mass accelerometer zs , the damping force sensor F d , and the position sensors to measure suspension deflection z def , road profile z r and unsprung mass position z us . As previously mentioned, only both unsprung mass acceleration zus and sprung mass acceleration zs are used as inputs of the proposed observer. The following block-scheme illustrates the experiment scenario of the observer (shown in Fig. 11)

In this experiment senario, the duty cycle of PWM signal is constant u = 0.1 and the real road profiles are sequence of sinusoidal bumps and ISO 8608 road, shown in Fig. 12( This paper presented an LMI-based H ∞ observer to estimate the damper force, based on the dynamic nonlinear model of the ER damper. For this purpose, the quartercar system is represented by considering a phenomenological model of damper. Using two accelerometers, an H ∞ observer is designed, providing a good estimation result of the damping force. The estimation error is minimized accounting for the effect of unknown inputs (road profile disturbance and measurement noises) and the nonlinearity term bounded by a Lipchitz condition. The robust statbiliy and robust performance properties are ensured by using the µ tool. Both simulation and experiment results assess the ability and the accuracy of the proposed models to estimate the damping force of the ER semi-active damper.

Fig. 4 .

 4 Fig. 4. Transfer e/ω -Bode diagrams

Fig. 6 .

 6 Fig. 5. Simulation scenario 1: Estimated force v.s real force

Fig. 7 .

 7 Fig. 7. Uncertain system for robust stability analysisThe two main types of uncertainties are the Lipschitz nonlinear matrix Γ and the time-varying parametric uncertainty, concerning the unsprung mass, the sprung mass, the spring stiffness and the damper model coefficients. In particular, the parametric uncertainties are shown in the Table2and a Lipschitz nonlinear uncertainty is assumed as followsΦ ∆ (x, u) = Φ(x, u) + ∆Φ(x, u) (21) where ∆Φ(x, u) -∆Φ(x, u) ∆Γ(x -x) (22) with ∆Γ = Γ ∆ -ΓThe estimation error dynamics (12) in the uncertain domain is rewritten as followsė∆ = (A ∆ -LC ∆ )e + B ∆ (Φ ∆ (x, u) -Φ ∆ (x, u)) + (D 1∆ -LD 2∆ )ω(23) where A ∆ , B ∆ , C ∆ , D 1∆ , D 2∆ are the system matrices considering the uncertainties.

Fig. 9 .

 9 Fig. 9. (a) Robust stability analysis, (b) Robust performance analysis

Fig. 10 .

 10 Fig. 10. The experimental testbed INOVE at GIPSA-lab (see www.gipsa-lab.fr/projet/inove)

  a) and Fig. 13(a), respectively. The experiment results of the observer are presented in Fig. 12 (b) and Fig. 13 (b). The result illustrates the accuracy and efficiency of the proposed observer. To further describe this accuracy, Table 3 presents the normalized root-mean-square errors, considering the difference between the estimated and measured forces, for the simulation and experimental results presented in the Fig. 5, Fig. 12 (b) and Fig. 13 (b).

Fig. 12 .

 12 Fig. 12. Experiment test 1: (a) Road profile, (b) Real force vs. Estimated force

Table 1 .

 1 Parameter values of the quarter-car model equipped with an ER damper

	Parameter	Description	value Unit
	ms	Sprung mass	2.27	kg
	mus	unsprung mass	0.25	kg
	ks	Spring stiffness	1396 N/m
	kt	Tire stiffness	12270 N/m
	k 0	Passive damper stiffness coefficient	170.4 N/m
	c 0	Viscous damping coefficient	68.83 N.s/m
	k 1	Hysteresis coefficient due to displacement 218.16 N.s/m
	c 1	Hysteresis coefficient due to velocity	21 N.s/m
	fc	Dynamic yield force of ER fluid	28.07	N
	τ	Time constant	43	ms
		3. OBSERVER DESIGN		
	In this section, an H		

∞ observer is developed to estimate the damping force accurately. The unknown input ω (road profile disturbance and measurement noise) is considered as an unknown disturbance. Therefore, an H ∞ observer is proposed to minimize the effect of the accounting for unknown disturbance ω on the state estimation errors and to bound the nonlinearity by Lipschitz constant.

Table 2 .

 2 Parameter values of the quarter-car model equipped with an ER damper

	Uncertain parameters	Variation
	ms	2.27 ∓ 50%(kg)
	mus	0.25∓ 20%(kg)
	ks	1396∓ 20%(N/m)
	kt	12270 ∓ 20%(N/m)
	k 0	170.4∓ 20%(N/m)
	c 0	68.83∓ 20%(N.s/m)
	k 1	218.16∓ 20%(N.s/m)
	c 1	21∓ 20%(N.s/m)
	fc	28.07∓ 20%
	τ	43∓ 20%(ms)

Table 3 .

 3 Normalized Root-Mean-Square Errors

	Road Profile Sequence	Simulation Experiment
	Sinusoidal bumps	0.0234	0.0896
	ISO 8608 road	0.0366	0.1015
	This test-bench which involves 4 semi-active ER suspen-
	sions is controlled in real-time using xPC target and a
	host computer. The target PC is connected to the host
	computer via Ethernet communication standard (see Fig-
	ure		
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