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Abstract A non-uniqueness study for a hydromechanical boundary value problem 

is performed. A fully saturated porous medium is considered using an elasto-

plastic constitutive equations to describe the mechanical behavior of the skeleton. 

A real hydromechanical experiment which consists in a hollow cylinder test on a 

Boom Clay sample is modelled. It is shown that the time step discretisation of the 

numerical problem has an effect on the initialisation of the Newton-Raphson 

algorithm on a given time step. Different solutions for the same initial boundary 

value problem can consequently be found.  

Introduction 
In the simulation of initial boundary value problems using constitutive 

equations for geomaterial behavior, it is well known that some difficulties can 

arise, particularly if degradation of the materials occurs. These problems have 

been studied for the case of single phase materials and some theoretical results 

have been established. Within the small strain assumption and for a rate problem, 

the uniqueness can be proved using the so-called Hill exclusion functional [1]. 

From a numerical standpoint, in case of non-uniqueness, the solution can be 

influenced by different numerical inputs such as the spatial discretization of the 

problem, the size of the time step, the mesh spacing, some tolerance values and so 

on (see [2]). 

In this study, a real hydromechanical experiment is modelled using a finite 

element code Lagamine (University of Liège). A local hydromechanical second 

gradient model (see [3]) is considered to obtain regularised solutions of this initial 

boundary value problem. No other regularization is necessary in terms of the fluid 

phase or the solid-fluid coupling.  

We show that, changing the time discretisation of the numerical problem, 

different solutions can be found. In function of the shear bands path during the 

time, a classification of all computed solutions is proposed. 



Local hydromechanical second gradient model  
It is well known that classical continuum medium cannot be considered to 

model the localization of plastic strains. An internal length has to be introduced 

into the model in order to obtain mesh independent solutions of an initial 

boundary value problem. In this respect, the problem can be considered 

regularised. The regularization (that means the introduction of an internal length 

into the model) cannot restore the uniquess of the solution as it is proved in [4] for 

a local second gradient continuum model. 

In the framework of microstructure continuum [5], a local hydromechanical 

second gradient model can be considered [3]. The problem is solved by enforcing 

(in a weak form) the balance equations for the mixture (equation 1), and the mass 

conservation for the fluid (equation 2). Both equations are written in the current 

solid configuration denoted    (updated Lagrangian configuration). 
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In equation (1), Terzaghi’s principle of effective stress is assumed to compute 

the Cauchy stress of the mixture    
 . The mass density of the mixture at the time t 

       is defined as follows: 

  
                                                                                                    (3) 

 

where   is the solid phase density (assumed to be incompressible, i.e.,    is a 

constant);      is the fluid density and    is the porosity defined as           . 

   is the current volume of a given mass of the solid skeleton and      the 

corresponding volume of fluid. The fluid is assumed to be compressible. All vari-

ables appearing in equations (1) and (2) are explained as follows: 

   
  is any kinematically admissible virtual displacement field. 

     
  is the double stress dual of the virtual second micro kinematic gradient.  

    is the current coordinate.  

    is the gravity acceleration.  

    is the external (classical) force per unit area. 

   
  is the mass flow of water, which is governed by Darcy’s law.  

     is the time derivative of the fluid mass of the skeleton. 

    is any kinematically admissible virtual pore pressure. 

    is a sink term. 

   
  is the part of the boundary where the input fluid mass per unit area  

 
 is 

prescribed 

 



To solve the equations (1) and (2) at time        with a Newton-Rapshon 

algorithm a consistent linearisation of the system has to be performed. All the 

developments of the linearization for a local hydromechanical second gradient 

model are detailed in [3]. 

The classical part of the constitutive equation, giving the effective stress of the 

skeleton, is described by a non-associated elasto-plastic model based on the 

Drucker-Prager yield field (Plasol model, [6]). Cohesion   and friction angle for a 

compressive triaxial path  , represent the hardening/softening variables for this 

elasto-plastic constitutive equation. The only internal variable that characterizes 

the hardening/softening behavior of the material is the Von Mises equivalent 

plastic strain    
 

, which describes degradation due to the shear. Dilatancy is 

considered as a constant during plastic flow. A hyperbolic variation of the friction 

angle and cohesion is proposed as hardening law. The elastic behavior is modelled 

by isotropic linear elasticity. This constitutive equations is computed with a return 

mapping algorithm [7].  

The other part (giving the double stress) is a particular case of a more general 

isotropic linear relation derived by [8] that involves five independent parameters, 

in the interests of simplicity only one parameter (namely D, see [9]) is used.  

Non-uniqueness studies 
In order to perform our non-uniqueness studies, we use realistic material 

properties related to the behavior of Boom Clay [10]. In our study we choose to 

model a real hydromechanical hollow cylinder experiment performed in Lausanne 

[11]. This experiment is divided in two phases, that are described in figure 1. A 

non-uniqueness study is carried out for Plasol constitutive equations by 

considering phase A of boundary conditions that represents a hydromechanical 

unloading. In phase B, the evolution of the shear bands with time is modelled. All 

computations presented are performed under plane strain hypothesis to model the 

behavior of a horizontal section of the hollow cylinder. 

From a numerical point of view, non-uniqueness can be studied by changing 

the initialization of the Newton-Raphson algorithm for a given time step. In our 

case, the initialization of the numerical algorithm is obtained from the nodal 

velocity field   
    (that one of the previous step) at the first iteration of the 

current step. 
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where    represents the step size,   
    is the nodal coordinate at the previous 

step and   
    

 is the nodal coordinate for the first iteration of the current step. 

Different sequences of time steps can cause a change in the initialisation of the 

numerical problem for each time step. In this way, non-uniqueness can be studied  

for the same initial boundary value.  

 



 
Fig. 1.The initial boundary conditions on the inner and external side of the 

hollow cylinder: a continous line represents boundary conditions on the inner 

hollow cylinder, a dot line on the external hollow cylinder. 

 

In order to visualize the non-uniqueness of this initial boundary value problem, 

the evolution of the shear strains are shown in terms of the loading index. This 

quantity is defined as follows: if a Gauss point undergoes plastic loading, a small 

blue square is plotted, otherwise (in the case of elastic unloading or reloading of 

the Gauss point), a small yellow square is plotted.  

Basically, all the localized deformation patterns present two kinds of shear band 

configurations: the first is characterized by some crossing shear bands (the so-

called conjugated shear bands), while the second is characterized by spiral shear 

bands (the so-called periodic shear bands).  

Among the great number of computations performed five solutions, which are 

representative of the non-uniqueness problem, are shown in figure 2. All the 

solutions are presented in Figure 3 and can be classified qualitatively according to 

shear bands evolution as follows: 

 Computations with radial symmetry ISO-0. 

 

 Computations with shear bands that start from a thin plastified region around 

the inner hollow cylinder, which then grow towards the external part of the 

sample (solutions ISO-1 and ISO-4).  

 

 Computations with shear bands that appear by an elastic unloading in a thick 

plastified zone of the hollow cylinder at the end of phase A (solutions ISO-2 

and ISO-3). 

The development of the shear bands during the phase B of the boundary condi-

tions is shown in figure 3. 

   

   

   

   

  

          



 

Fig. 2.Loading index of five solutions during phase A of boundary conditions 

 

 

Fig. 3. Loading index at the end of the phase B 

Conclusions 
In this paper, the different solutions of the same initial boundary value problem 

(hollow cylinder experiment) for a fully saturated porous medium, modelled with 

an elastoplastic model, have been studied. All solutions have been obtained 

                                        



changing the time discretization of the problem. The solutions obtained with 

Plasol models can be classified according to the evolution of shear bands 

configurations in time. 

It can be concluded from the present work that, as soon as degradation is 

incorporated in a constitutive equation, uniqueness of the solution of initial 

boundary value problems is questionable even in coupled problems. This work 

extends to the case of coupled problems the finding that the use of an enhanced 

second gradient model is not sufficient to restore the uniqueness of the solutions 

(see [4]). 
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