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Identification and Validation of a
Discrete Element Model for Concrete

Sébastien Hentz1; Laurent Daudeville2; and Frédéric V. Donzé3

Abstract: The use of a three-dimensional discrete element method ~DEM! is proposed to study concrete structures submitted to dynamic 
loading. The aim of this paper is to validate the model first in the quasistatic domain, and second in dynamic compression, at the sample 
scale. A particular growing technique is used to set a densely packed assembly of arbitrarily sized spherical particles interacting together, 
representing concrete. An important difference from classical DEMs where only contact interactions are considered, is the use of an 
interaction range. First, the correct identification of parameters of the DEM model to simulate elastic and nonlinear deformation including 
damage and rupture is made through quasistatic uniaxial compression and tension tests. The influence of the packing is shown. The model 
produces a quantitative match of strength and deformation characteristics of concrete in terms of Young’s modulus, Poisson’s coefficient, 
and compressive and tensile strengths. Then, its validity is extended through dynamic tests. The simulations exhibit complex macroscopic 
behaviors of concrete, such as strain softening, fractures that arise from extensive microcracking throughout the assembly, and strain rate 
dependency.

Keywords: Discrete elements; Concrete; Strain rate; Dynamic loads; Models.

Introduction

The design of concrete safety structures is a big challenge for

engineers; for example, some structures present in mountainous

areas are dedicated to protection against natural hazards, such as

avalanches, rock falls, etc. and thus may be submitted to impact

loads and high deformation. Despite their geometry which is usu-

ally massive, with an extremely high fraction of reinforcement,

and of course a design satisfying usual building standards, some

are found to be totally damaged. This inconsistency demands fur-

ther investigation and understanding of the failure mechanisms.

Different approaches have been used to model fracture of

brittle geomaterials, such as concrete. Some introduce damage in

the constitutive relations of the material, and most often are used

for engineering purposes, whereas others deal directly with nu-

merous microscopic cracks; the latter are often used to understand

the damage mechanisms of the materials.

The use of a three-dimensional ~3D! distinct element method

~DEM! ~Cundall and Strack 1979; Cundall 1988! is proposed here

to study the fracture and the fragmentation of a complete concrete

structure, which is now made feasible thanks to ever-increasing

computing power. This method does not rely upon any assump-

tion about where and how a crack or several cracks occur and

propagate as the medium is naturally discontinuous, and is very

well adapted to dynamic problems. Although numerous authors,

~Meguro and Hakuno 1989; Potyondy et al. 1996! have used

similar two-dimensional approaches to model cohesive geomate-

rials, few have thus modeled concrete, and even fewer have mod-

eled complete 3D structures. This requires some modifications of

the usual DEM models. Unlike continuous methods, the param-

eters of the material behavior model are not defined at the mac-

roscopic scale; in addition, access to physical interaction quanti-

ties, such as friction coefficient and stiffnesses is not allowed,

unlike real granular materials, for which information at the grain

scale may be obtained. Therefore, a calibration of the parameters

at the local scale is needed. This paper deals first with the iden-

tification of the constitutive equations parameters of the discrete

element model thanks to elementary tests, such as quasistatic

uniaxial compression and tension tests. Second, once parameters

are known, the validation of the model will be extended through

split Hopkinson pressure bar ~SHPB! tests.

Discrete Element Method Model Used

The present numerical model has been implemented within the

‘‘spherical discrete element code’’ ~SDEC! ~Donzé 2000!. It uses

discrete spherical elements of individual radius and mass. These

elements represent a polydisperse assembly with a size distribu-

tion obtained by using a particular growing technique ~Donzé

2002!. Once the assembly has been set, pairs of initially interact-

ing discrete elements are identified. These interactions have been

chosen to represent, as well and as simply as possible, the elastic

and cohesive nature of a certain class of geomaterials, such as

concrete. To do this, elastic forces with a local rupture criterion

are applied between interacting elements.
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Using the constitutive equations for each interaction, the nu-

merical model solves the equations of motion with an algorithm

similar to those used in molecular dynamics ~Allen and Tildesley

1987!. The explicit time integration of the laws of motion will

provide the new displacement and velocity for each discrete ele-

ment.

As time proceeds during the evolution of the system, changes

in the packing of discrete elements may occur and new interac-

tions be created. One of the features of this numerical model will

then be to determine the interacting neighbors of a given element.

This will be achieved by defining an interaction range and iden-

tifying all elements within it which are interacting. Depending on

the spatial distribution of the discrete elements, two different

methods are available to identify the interacting neighbors. If the

distribution is rather compact with little fluctuations in size, a grid

subdivision method is used ~Allen and Tildesley 1987, Magnier

et al. 1997!. If, however, the distribution is dispersive with large

size fluctuations then the previous method will be costly and a

spatial sorting method is used ~Müller 1996; O’Connor 1996;

Magnier et al. 1997!.

Interaction Range

The overall behavior of a material can be reproduced by means of

this model by associating a simple constitutive law to each inter-

action. An interaction between elements a and b of radius Ra and

Rb respectively, is defined within an interaction range g and does

not necessarily imply that two elements are in contact. Then,

these elements will interact if,

g~Ra
1Rb!>Da ,b (1)

where Da ,b
5distance between the centroids of elements a and b

and g>1. This is an important difference from classical DEMs

which use spherical elements ~Cundall and Strack 1979! where

only contact interactions are considered ~g51!. This choice was

made so that the method could simulate materials other than

simple granular materials in particular those which involve a ma-

trix as found in concretes. To take into account the effects of this

matrix which may cement two aggregates which are not them-

selves in contact, the interaction range g is set to be greater than

1 when the assembly of elements is initially built. However, this

long-range interaction is limited to nearest neighbors.

The location of the interaction point is given by

xa ,b
5xa

1~Ra
20.5~~Ra

1Rb!2Da ,b!n (2)

where n5unit vector pointing from element a to element b; and

xa
5position vector of element a.

Interaction Forces

The interaction force vector F, which represents the action of

element a on element b, may be decomposed into a normal and a

shear vector Fn and Fs, respectively, so that,

F5Fn
1Fs (3)

where

Fn
5Kn~Deq

a ,b
2Da ,b!n (4)

where Deq
a ,b

5equilibrium distance between the two elements a

and b which was set when the interaction was created.

The normal force vector may be expressed such that it ac-

counts for possible inelastic deformations.

The shear vector force Fs is computed incrementally and was

given by other authors ~Hart et al. 1988!. The incremental force is

given by

DFs
52KsDUs (5)

where DUs
5shear displacement vector increment between the lo-

cations of the interacting points of the two elements over a

timestep Dt .

Elastic Properties

The strain energy stored in a given interaction cannot be assumed

to be independent of the size of the interacting elements. There-

fore, interaction stiffnesses are not identical over the sample, but

follow a certain distribution. The macroscopic elastic properties,

here Poisson’s ratio n, and Young’s modulus E, are thus consid-

ered to be the input parameters of the model.

‘‘Macro–micro’’ relations are then needed to deduce the local

stiffnesses from the macroscopic elastic properties and from the

size of the interacting elements. Compression tests have been run

with one given sample and values linking Poisson’s ratio n, and

Young’s modulus E to the dimensionless values of K s/Kn were

obtained. Relations fitting these values ~based on the best-fit

model Liao et al. 1997! can be expressed as

E5

Deq
a ,b

Ã int

KnS 0.825Kn
12.65Ks

2.5Kn
1Ks D (6)

n5

Kn
2Ks

2.5Kn
1Ks

(7)

where Ã int5surface where the interaction is defined, with

Ã int5p•min~Ra,Rb!2 (8)

The distribution of the local stiffnesses over the sample ob-

tained through the use of this interaction surface is another im-

portant particularity of the SDEC model. The adequacy of the

relations ~6! and ~7! will be discussed further.

Strength Properties

Before Rupture

A modified Mohr–Coulomb rupture criterion is used. Thus, for a

given interaction, a maximum tensile strength T ~with T.0) is

given and a maximum normal force Fmax
n is defined such that

Fmax
n

52TÃ int (9)

A maximum interaction distance Dmax is defined such that,

Dmax5Deq1~b11 !S uFmax
n u

Kn D (10)

where Deq5equilibrium distance; and b5softening factor for this

interaction with b.0. Note that in all these developments, the

indices a and b which represented the interacting elements, have

been dropped to alleviate the formulations. Two cases may occur:

1.

Fn
,Fmax

n and D,Dmax⇒Fn
5

Kn

b
~D2Dmax! (11)

Fn
,Fmax

n and D>Dmax⇒ H Fn
50

Fs
50

(12)
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The cohesive interaction is broken: Rupture occurs.

Fig. 1 summarizes the behavior of the normal force for two

different values of b which illustrates the difference between a

brittle elastic behavior ~dotted line! and a quasibrittle behavior

~i.e., presence of softening, dashed line!. As long as Fn>Fmax
n the

normal force follows the solid line. As soon as Fn
,Fmax

n and

depending on the value chosen for b, different paths can be fol-

lowed. If b→0, then Dmax→Dmax 1 and rupture occurs ~dotted line

in Fig. 1!. If b52 then Dmax5Dmax 2 and before rupture, the nor-

mal force follows the dashed line.

However, a global softening may still be induced at the mac-

roscopic scale while the local softening factor tends to zero if the

size distribution of the elements is large enough. This is because,

if there exists a large distribution of radii for the elements, then

according to Eq. ~9! there will be a large distribution of maximum

normal forces which will in turn introduce softening effects ~Her-

rmann et al. 1989!. Therefore, some caution must be exercised

before using a local softening factor.

The maximum shear force can be calculated as

Fmax
s

5cÃ int1Fn tan f i (13)

where c5cohesion; and f i5‘‘internal’’ friction angle. If the ab-

solute value of the shear force is

uFsu5~Fs
"Fs!1/2 (14)

which is greater than uFmax
s u, then the shear force is reduced to the

limiting value and written as

Freduced
s

5Fs@Fmax
s /uFsu# (15)

After Rupture

After initial interactions have broken, new ones are identified,

which are not cohesive any more: They are merely ‘‘contact’’

interactions, and cannot undergo any tension force.

Then, a new maximum shear force can be calculated as

Fmax
s

5Fn tan fc (16)

where c5cohesion; and fc5contact friction angle, which may be

different from f i , the internal friction angle. If the absolute value

of the shear force is

uFsu5~Fs
"Fs!1/2 (17)

which is greater than uFmax
s u, then the shear force is reduced to the

limiting value and written as

Freduced
s

5Fs@Fmax
s /uFsu# (18)

Again, the use of Ã int induces a certain strength properties

distribution over the sample, which is very consistent with a real

material behavior.

Fig. 2 summarizes the rupture criteria used in the model.

Irreversible Deformations

The model is able to take into account the loss of rigidity due to

damage after a compression phase, where irreversible deforma-

tions occur. To do so, the normal force vector may be expressed

differently. The irreversibility will be initiated after a compres-

sional phase (Da ,b
,Deq

a ,b , where Deq
a ,b is the equilibrium distance

between the two elements a and b which was set when the inter-

action was created!. In that case, a different loading and unload-

ing path can be considered, using a coefficient a. a51 means the

unloading path is unchanged, and a→` means that the unloading

path is vertical. Fig. 3 summarizes the behavior of the normal

force.

Homogenized Quantities

It was considered important to be able to look at the state of stress

and strain in the specimen. The computation of a homogenized

stress and strain has then been implemented within SDEC. As far

as the stress is concerned, a technique based on an analogy with

the continuous media has been chosen ~Bardet 1997; Moreau

Fig. 1. Strength properties of normal force Fig. 2. Rupture criteria used in the model

Fig. 3. Behavior of normal component of interaction force. Slope of

loading path during compression is Kn; it is aKn for unloading path

during compression.
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1997!, the average stress s in the volume V is defined as the

weighted average of the average stress in each particle a in V , and

is given by:

s i j5

1

V (
aPV

(
bPIa

F i
b→aRan j

ab (19)

where Ia5set of particle b in contact with particle a;

Fb→a
5contact force of particle b on particle a; and nab

5unit

vector from the centroid of particle a to the contact point with

particle b. The computation of the homogenized strain leads to a

more complex relation: It follows the best fit method, fully de-

scribed in Liao et al. ~1997!.

Quasistatic Simulations

Calibration of the model parameters is performed by adjusting the

properties of the material represented by the assembly of discrete

elements to the real geomaterial properties, a particular type of

concrete. For this purpose, we have established a quasistatic

uniaxial compression/traction procedure.

Sample Preparation

This is a step of particular importance, as the properties of the

‘‘discrete’’ material strongly depend on the packing. The samples

used are standard specimens, cylinders with a height of 0.032 m

and a diameter of 0.016 m. The procedure must produce isotropic

packings, with a high compacity and a given size distribution. It

consists in several points:

1. First, an initial set of elements, all of identical radius R, are

distributed according to the most compact geometry possible

~e.g., a face-centered-cubic lattice! in a cylinder shaped vol-

ume, as well as two platens, and a hollow cylinder surround-

ing the sample.

2. The second step introduces a certain disorder in the packing,

in terms of the sample element positions, and of their radii,

inside the hollow cylinder and between the bottom and top

platens, which remain unchanged. This is performed thanks

to an original growing technique ~Donzé 2002!, based on an

algorithm described in Jodrey and Tory ~1985!; this tech-

nique is completely geometrical, unlike many others which

are dynamical. It allows fine isotropy and compacity ~of

roughly 0.67 for the samples used!. Fig. 4 shows a typical

size distribution obtained.

3. The final step consists in removing the hollow cylinder

around the sample in its final state.

Monitoring

The load is applied to the sample by moving the top wall down-

ward and keeping the bottom wall at a fixed position. One diffi-

cult point is to assure the quasistatic aspect of the simulation, as

the method finds the new element positions through the integra-

tion of Newton’s equation, and at the same time the computa-

tional cost must stay reasonable. Therefore, attention has to be

paid to the way the load is applied ~low speed and low accelera-

tion!, and to the damping of the elastic waves propagating in the

medium. The displacement law of the top platen consists in three

phases: constant acceleration, then constant speed, then constant

position. Equilibrium is checked by comparing the total forces

applied by the sample to both platens, and looking at the total

kinetic energy in the sample.

Results: Elasticity

First, simulations have been run with strength properties set to

very high values, so the material remains elastic. The stress is

computed by dividing the total axial force applied by the plate to

the sample by the surface of the sample; the axial and radial

deformations are computed via geometrical measures. We deduce

from these quantities Young’s modulus, E and Poisson’s coeffi-

cient, n.

At this point, some remarks can be made: As usual, the DEM

gives good qualitative results; the study of the homogenized stress

in the medium shows a real 3D stress state and it is easy to obtain

a good order of magnitude of Young’s modulus and Poisson’s

coefficient using Eqs. ~6! and ~7!.
However, in order to study the influence of the disorder, 20

different samples have been generated, with the same geometry,

and a nearly identical size distribution ~see Fig. 4!, but only dif-

fering through the random aspect of their generation. They all

contain roughly 2000 elements and the interaction range g has

been set to 1.55. Figs. 5 and 6 show the results. E is the sample

Young’s modulus, Em528 MPa is its mean value, n is the Pois-

son’s coefficient, and nm50.252 its mean value.

Dispersions of Young’s modulus ~respectively of Poisson’s co-

efficient! are 28% ~16%!, and standard deviation of the ratio

E/Em ~respectively n/nm) are 0.07 ~0.05!. In addition, there is no

obvious convergence of the elastic properties when the number of

elements increases. Considering our objective, which is to model

a complete structure, these results are somehow awkward and

demand the modification of the macro–micro relations ~6! and

~7!. This is discussed in the next section.

Energy Criterion

The strain energy E sd stored in the assembly may be computed in

the following way:

Esd5E
Vd

tr~sd•«d= !dVd5 (
~n ,m !

FI n→m•~UI m
2UI n!

5 (
~n ,m !

Anm•TI n→m•~UI m
2UI n! (20)

Fig. 4. Size distribution of discrete elements in the sample
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where (n ,m)5interaction between the nth and the mth element;

UI n
5displacement of the nth element; and FI n→m

5force applied

by the nth element on the mth element, proportional to the inter-

action surface, Anm. It appears that the strain energy, and thus the

elastic properties, are strongly dependent on the definition of the

interaction surface. This remark leads one to plot the Young’s

modulus versus the total sum of the interaction surfaces in the

assembly, as in Fig. 7, which shows an obvious relation between

these two quantities.

The ratio e5E sc /E sd was computed for each assembly, where

E sd is the strain energy we wish to store in the real concrete

sample.

It is easy to show that

e5

Esc

Esd

5

E

Eapp

•
S

Sapp

•
,app

,
(21)

where the indice app corresponds to the apparent properties of the

discrete sample.

It appears that e differs from assembly to assembly and is not

equal to one. The decision was then made to use as new interac-

tion surfaces Anm85e•Anm, and to run the same tests. Results

show the new dispersions of Young’s modulus ~respectively of

Poisson’s coefficient! are 12% ~10%!, and standard deviation of

the ratio E/Em ~respectively n/nm) are 0.038 ~0.03!. This is an

encouraging result, as dispersions are divided by roughly 2. With

the energy criterion, the influence of the random aspect of the

assembly generation, as well as the influence of the number, size,

and local configuration of the elements, is highly reduced.

Results: Rupture

Parameters of the model are here set to study the fracture of the

sample, and to obtain strength properties of a typical concrete.

Properties of interest in this section are the compression and ten-

sion strengths sc and s t , and their associated strains «c and « t ,

as well as the fracture energy G f . First, concrete behavior is

qualitatively very well represented, and the simulations exhibit a

very similar response to observations during a laboratory uniaxial

compression test.

However, the high value of the ratio sc /s t for concrete,

makes its behavior very specific, and has to be numerically

matched. If unchanged, the SDEC model can only reach a ratio of

around 3 or 4 @Huang ~1999! obtained the same value with a

similar model#. This is due to the fact that a single interaction

between two elements does not transmit any moment: Relative

rotation without sliding is free. Therefore, rotations are prevented

for the following simulations, which led to a very correct ratio

sc /s t around 8. Then, the use of the softening factor led to G f

Fig. 5. Values of the ratio E/Em

Fig. 6. Values of the ratio n/nm

Fig. 7. Young’s modulus versus the sum of the interaction surfaces
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.60 Jm22, which is not far from typical values for concrete.

Figs. 8 and 9 show one typical stress/strain plot obtained. This

plot shows tendencies very similar to what can be observed on a

real concrete sample.

In order to estimate how the values of interest are affected by

the random aspect of the assembly generation, tests have been run

with the 20 different assemblies already used in elasticity, and

with the corrected interaction surfaces. Results show that disper-

sions of compressive strength ~respectively of tension strength!
are 19% ~31%!, and standard deviation of the ratio sc /scm ~re-

spectively s t /s tm) are 0.047 ~0.083!, where scm ~respectively

s tm) are the mean compression ~tension! strengths, 36 MPa ~4.4

MPa!. Compared with the elasticity dispersions, these values are

higher, but not so far from what could be obtained with real

concrete failure tests, which makes these results very satisfactory.

In addition, failure patterns show a good match with experi-

mental results, see Figs. 10 and 11. In compression, fretting cones

appear, as the elements are ‘‘glued’’ to the platens, which is con-

sistent with experimental observations. In tension, a macrocrack

perpendicular to the loading direction appears, which was ex-

pected. The study of the homogenized strain shows a clear strain

localization in this macrocrack, in the peak region.

Dynamic Simulations: Split Hopkinson Pressure Bar
Experiments

Keeping in mind our objective, which is to model a concrete

structure submitted to impact loading, it is of importance to vali-

date the model through dynamic simulations. Now, simulations

have shown that the method is able to reproduce the quasistatic

behavior of concrete, the writers propose here to simulate dy-

namic compression tests.

Uniaxial compressive or tensile strengths of concrete increase

with an increase in strain rate. At low strain rates, ( «̇,1s21), this

effect is relatively well explained by the presence of free water in

Fig. 8. Stress/strain plot in compression

Fig. 9. Stress/strain plot in tension

Fig. 10. Radial displacement field in an axial cut after failure in

compression

Fig. 11. Displacement field in an axial cut after failure in tension
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the material ~Rossi et al. 1992!; Traction tests on dry concrete

have shown no such rate effect, which confirms this assumption

~Rossi et al. 1994!. The rate dependence is thus well represented

by a viscous model ~Dubé et al. 1996; Gopalaratnam et al. 1996!.
At higher strain rates, ( ė.102 s21), some authors ~Brace and

Jones 1971; Bischoff and Perry 1991! argue that inertia, produc-

ing an effective confining stress, plays a major role in the appar-

ent and important rate dependence. Accurate information may

now be obtained with SHPB tests, in terms of forces and displace-

ments of the specimen. Donzé et al. ~1999! used a similar 3D

model to simulate some SHPB tests, without a reliable identifica-

tion of the sample behavior. Nevertheless, this first study con-

firmed the inertia-based hypothesis.

Dynamic Compression

A typical SHPB experimental setup ~Zhao and Gary 1996! is

shown in Fig. 12. It consists in two long aligned metallic bars and

a short concrete specimen between them. A projectile impacts the

free end of the input bar thus leading to the development of a

compressive longitudinal incident wave « i(t). Once it arrives at

the bar–specimen interface, it splits into a reflected wave « r(t)

which travels in the input bar and a transmitted wave « t(t) which

travels in the output bar. These three waves are recorded by

gauges which have been cemented on each bar. They are then

artificially shifted so as to record them at the bar–specimen inter-

faces, so that the forces and velocities measured on both faces of

the specimen ~Zhao and Gary 1996! are given by

V input~ t !5C„« i~ t !2«r~ t !… (22)

Voutput~ t !5C« t~ t ! (23)

F input~ t !5SBE„« i~ t !1«r~ t !… (24)

Foutput~ t !5SBE« t~ t ! (25)

where C5AE/r5celerity of the medium; E5Young’s modulus; r
is the density; and SB5cross-sectional area of the bars.

Once these forces and velocities are obtained, a so-called

three-waves formula gives the average strain rate and the average

stress imposed on the specimen, so that,

«̇s~ t !5

Voutput~ t !2V input~ t !

ls

(26)

ss~ t !5

F input~ t !1Foutput~ t !

2Ss

(27)

where , s and S s denote respectively the length and the cross-

sectional area of the specimen.

The complete data set then consists of F input , Foutput , V input ,

and Voutput . If the correct constitutive behavior has been used in a

model, then given one of these pairs, the other data pair should be

obtained. In the following simulations, the velocities will be used

as the input data and the forces will thus be computed numerically

and compared to the real experimental data forces.

Experimental Data Set

SHPB tests on concrete specimens have been carried out by Gary

~1990! in the framework of the ‘‘GRECO géomatériaux project’’

and data obtained from these different tests were made widely

available.

The concrete specimens that are used are cylinders with a

height of 0.036 m and a diameter of 0.036 m. The density is 2500

kg/m3 and the average compressive wave velocity is 3865 m/s

~Toutlemonde 1995!.
Three loading experiments, ms2b, ms3b, and ms5b, respec-

tively at 350 s21, 500 s21, and 700 s21 strain rate have been run

and for each of these runs both the input and output velocities and

forces are recorded. Some problems in these recordings have to

be noted: Arrival times of the output velocities vary in a large

range, and so do the Young’s moduli which are much lower than

what was expected from the static value ~Toutlemonde 1995!
which is more than 30 GPa. The Young’s moduli are obtained

from the slopes of the stress strain curves of Fig. 13. This plot is

deduced from Eqs. ~26! and ~27!, and shows best the strain rate

dependency.

Such fluctuations in the data set are not surprising when con-

sidering the very high strain rates at which these experiments are

run and may come from the error bar on the applied correction of

the travel times of the compressive waves, but it makes it ex-

tremely difficult to define a precise reference material that could

be used in the numerical model. Despite these difficulties, local

Fig. 12. Setup for split Hopkinson pressure bar experiment

Fig. 13. Stress versus strain curves for experimental data set. Solid,

dashed and dotted lines are, respectively, experiments ms5b, ms3b,

and ms2b. Slopes of curves give elastic modulus.
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parameters were calibrated using the quasistatic procedure al-

ready discussed to obtain the expected concrete behavior: Density

2,500 kg/m3, Young’s modulus 30 GPa, Poisson’s coefficient 0.2,

compressive strength 50 MPa, and tension strength 5 MPa. Table

1 shows the values of the local parameters.

Numerical Setup

Up to 6,200 spherical discrete elements with sizes ranging from

9.1024 m to 47.1024 m, have been used to build the numerical

concrete sample, and the shape of the size distribution is similar

to Fig. 4.

The experimental input and output velocities are applied to the

platens. The radial displacement values are assumed to be zero on

the input and output surfaces. The resulting input and output

forces are computed by summing all the forces applied on the

platens. Given the experimental velocity histories, at each time

step, the applied input and output velocities are updated leading to

the computation of numerical force histories. No damping has

been used, and rotations are still prevented.

Results

Fig. 14 shows force histories for both the experiment and the

simulation at 350 s21, as well as the number of broken interac-

tions during the simulation. The global wave form of the signal,

as well as the amplitude are well reproduced, which is comfort-

ing.

In particular, the elastic phase fits very well, for both input and

output phases. However, fractures arise a little too soon, and thus

the amplitude of the input force is slightly too low; at the same

time, the amplitude of the numerical output force exceeds that of

the experiment, meaning that the material is not damaged enough.

When the force is at its peak, more than one-third of the interac-

tions have ruptured.

The oscillation amplitude of the postpeak region is slightly too

low as far as the input force is concerned, but quite well repro-

duced for the output force. It seems then that the numerical be-

havior around the peak is too ductile.

At the end of the simulation, numerical and experimental

samples show very similar behaviors, except in the last 30 ms.

Fractures keep occurring, spreading all over the sample.

Fig. 15 shows stress/strain curves obtained for the three tests

@stress and strain are deduced from the computationed forces and

velocities by Eqs. ~26! and ~27!#. The experimental curves are

very well fitted in the prepeak region, but this is less often the

case after the peak, except for ms2b. The behavior seems too

brittle in the last part of the simulation. Maximum amplitudes of

computationed stress fits the experimental stress quite well, de-

spite the recording problems of the tests. Fig. 16 shows the dam-

age state of the sample for a given stress of 50 MPa in the elastic

phase, for the slowest and the fastest test. As the damage in-

creases, the color darkens. It can clearly be seen that as the strain

rate increases, the extent of the damage lessens. Moreover, this

damage, very diffuse, is not homogeneous and tends to propagate

inwardly from the lateral free surfaces of the specimen thus form-

ing a contact cone as seen in real experiments.

The model proves able to quantitatively reproduce the increase

of compressive strength with the increase of loading rate, and

this, without requiring the use of viscosity in the model, or of any

characteristic time. An inertia-based hypothesis, given by Janach

~1976!, might then explain the strain rate dependency: The com-

pressive stress wave C in the brittle material generates a dilation

in the radial direction because of the opening of cracks. Thus, the

material exhibits a reduced unloading modulus in the radial direc-

tion which allows the damage zone to propagate inwardly from

the free surface with an unloading velocity C f which can be less

Fig. 14. Input and output forces for ms2b ~350 s21!. Dotted lines are

original experimental curves; solid lines are computed numerical re-

sults.

Table 1. Local Parameter Values

Parameters Values

g 1.4

a 1

b 1

T (MPa) 7

c (MPa) 3.5

f i (degrees) 4

fc (degrees) 40
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than the compressive wave velocity. If this is the case, then the

unloading could be sufficiently slow such that the central core of

the specimen would not have had time to unload which means

that this specimen will have a greater load-carrying capacity ~see

Fig. 17!. Because of the fretting condition on the boundary, the

unloading front from the free surface is not parallel to it, explain-

ing the conelike shape of the damage distribution. All of these

points are confirmed by the results of the tests simulations with

the discrete element model.

Conclusions

A 3D DEM has proved its capability to model concrete. Quasi-

static simulations of uniaxial compression and tension tests have

been run to calibrate the model parameters, and to identify the

numerical sample behavior.

First, the identification of the elastic behavior has been stud-

ied, and the results are qualitatively as well as quantitatively

good. The stress state in the sample is consistent with laboratory

results as well. Nonetheless, perturbations in the packing disorder

have been found to strongly influence the values of Young’s

modulus and Poisson’s coefficient, and high dispersions are ob-

served. In order to reduce these dispersions, an energetic criterion

has been introduced to modify the macro–micro constitutive

equations of the model, which gives satisfactory results.

The method has proved its ability to capture the other charac-

teristic properties of concrete: Quantitative results like peak

strengths under both compression and tension and their associated

strains, and fracture energy, as well as qualitative results like soft-

ening stress–strain relation in the postpeak region, and failure

patterns, are in good accordance with laboratory results. Disper-

sions are higher than for elastic properties but are of the same

order of magnitude as what experiments have shown.

Despite the great difficulty to reproduce such tests, SHPB dy-

namic compression experiments have been satisfactorily simu-

lated, thus increasing the capability of the model. With the 3D

discrete element model, the transient specimen state of damage

and stress may be investigated and quite accurately represented.

What is more, it proves able to quantitatively reproduce the in-

crease of compressive strength with the increase of strain rate,

and this, without requiring the use of viscosity in the model, or of

any characteristic time. This confirms the inertia-based hypoth-

esis: In other words, the increase of the dynamic strength in this

range of strain rates is merely apparent and seems to be a struc-

tural effect.

SHPB tension tests are now being simulated to study the strain

rate dependency under this type of loading. Then, steel-reinforced

concrete structures under dynamic loading should be modeled.

Notation

The following symbols are used in this paper:

Ã int 5 average surface where an interaction is defined;

Ãnm
5 average surface where an interaction between

particles n and m;

C 5 celerity of the specimen’s medium;

C f 5 unloading velocity;

c 5 cohesion;

Da ,b
5 D distance between centroids of two discrete

elements a and b;

Fig. 15. From the left- to right-hand side: Stress/strain curves for ms2b, ms3b, and ms5b

Fig. 16. Damage for: From top to bottom, ms2b, ms5b. Axial cuts.

Fig. 17. Simplified lateral unloading process proposed for cylindri-

cal specimen that fails by brittle fracture in split Hopkinson pressure

bar compressional tests
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Dcorrection
a ,b

5 correction distance for unloading;

Deq
a ,b

5 Deq equilibrium distance between two discrete

elements a and b;

Dmax 5 maximum interaction distance;

E 5 Young’s modulus;

Eapp 5 apparent Young’s modulus;

Em 5 average Young’s modulus;

E sc 5 strain energy stored in the equivalent continuous

medium;

E sd 5 strain energy stored in the discrete assembly;

e 5 interaction coefficient;

F 5 interaction force vector;

Fa→b
5 force from particle a on particle b;

Fn
5 normal interaction force vector;

Fs
5 shear interaction force vector;

Freduced
s

5 updated shear force vector during slip;

F input 5 input force at the bar–specimen interface;

Foutput 5 output force at the bar–specimen interface;

Fmax
n

5 maximum normal force;

Fmax
s

5 maximum shear force;

G f 5 fracturation energy of the material;

Ia 5 set of particles in contact with particle a;

Kn
5 interaction normal stiffness;

K s
5 interaction shear stiffness;

, 5 length of the real specimen;

,app 5 apparent length of the numerical specimen;

n 5 unit interaction vector;

nab
5 unit interaction vector pointing from element a

to element b;

Ra
5 R radius of a discrete element a;

S 5 cross-sectional area of the real specimen;

Sapp 5 apparent cross-sectional area of the numerical

specimen;

T 5 maximum tensile strength;

UI n
5 displacement of the element n;

V 5 homogenization volume;

V input 5 input velocity at the bar–specimen interface;

Voutput 5 output velocity at the bar–specimen interface;

xa
5 x position vector of a discrete element a;

xa ,b
5 vector location of the interaction point between

a and b;

ẋ 5 velocity vector of a discrete element;

ẍ 5 acceleration vector of a discrete element;

xa
5 component of the position vector of a discrete

element a;

a 5 unloading factor;

b 5 softening factor;

g 5 interaction range;

DFs
5 incremental interaction shear force vector;

DUs
5 shear displacement increment vector;

Dt 5 integration time step;

« i 5 strain of the longitudinal incident wave;

« r 5 strain of the longitudinal reflected wave;

« t 5 strain of the longitudinal transmitted wave;

«c= 5 strain matrix in the continuous medium;

«d= 5 strain matrix in the discrete medium;

«̇ 5 strain rate;

«̇ s 5 average strain rate imposed on the specimen;

n 5 Poisson’s ratio;

nm 5 average Poisson’s ratio;

r 5 density of the specimen;

sc 5 compressive strength;

scm 5 average compressive strength;

s s 5 average stress imposed on the specimen;

s t 5 tensile strength;

s tm 5 average tensile strength;

s= 5 stress matrix in the continuous medium;

sd= 5 stress matrix in the discrete medium;

fc 5 contact friction angle;

f i 5 internal friction angle; and

Vd 5 volume occupied by the assembly.
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