
HAL Id: hal-02004430
https://hal.science/hal-02004430

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosability improvement of dynamic clustering
through automatic learning of discrete event models

Nathalie A Barbosa, Louise Travé-Massuyès, Victor H Grisales

To cite this version:
Nathalie A Barbosa, Louise Travé-Massuyès, Victor H Grisales. Diagnosability improvement of dy-
namic clustering through automatic learning of discrete event models. IFAC-PapersOnLine, 2017, 50
(1), pp.1037-1042. �10.1016/j.ifacol.2017.08.214�. �hal-02004430�

https://hal.science/hal-02004430
https://hal.archives-ouvertes.fr


IFAC PapersOnLine 50-1 (2017) 1037–1042

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.214

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2017.08.214 2405-8963

Diagnosability improvement of dynamic
clustering through automatic learning of

discrete event models

Nathalie A. Barbosa ∗,∗∗ Louise Travé-Massuyès ∗∗
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Abstract: This paper deals with the problem of improving data-based diagnosis of continuous
systems taking advantage of the system control information represented as discrete event
dynamics. The approach starts from dynamic clustering results and, combining the information
about operational modes, automatically generates a discrete event system that improves
clustering results interpretability for decision-making purposes and enhances fault detection
capabilities by the inclusion of event related dynamics. The generated timed discrete event
system is adaptive thanks to the dynamic nature of the clusterer from which it was learned,
namely DyClee . The timed discrete event system brings valuable temporal information to
distinguish behaviors that are non-diagnosable based solely on the clustering itself.

Keywords: Clustering, DES, Diagnosability, Machine learning, Situation assessment

1. INTRODUCTION

The problem of diagnosing continuous systems, discrete
event systems and systems exhibiting both, continuous
and discrete dynamics, has been proposed in many forms
(Travé-Massuyès et al., 2001; Sampath et al., 1996; Bay-
oudh et al., 2008; Gaudel et al., 2015) from which the
following definition of diagnosability is extracted:

Definition 1. (Diagnosability). A system is diagnosable
with a given set of sensors if and only if (i) for any
relevant combination of sensor readings (measurements)
there is only one diagnosis candidate and (ii) all faults of
the system belong to a candidate diagnosis for some sen-
sor readings (Console et al., 2000; Travé-Massuyès et al.,
2001).

In complex processes, the physical plant is mostly contin-
uous, so the set of sensors are usually related to continu-
ously changing variables. Nevertheless, the system control
is often performed by a supervisory controller that im-
poses discrete switching behavior between several operat-
ing modes (Bayoudh et al., 2008). This approach, discrete
in a high level of abstraction but continuous in the low
level dynamics is known as hybrid. Definition 1 implies
that it is not possible to differentiate the occurrence of

� This work was partially supported by the Administrative De-
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one behavior over another if the set of sensors used to
observe them is statistically similar. In such cases, the
two behaviors are non-diagnosable (or equivalently the
fault underlying the faulty behavior is non-diagnosable)
and more information has to be introduced in order to
differentiate them. This information may come from the
discrete behavior (Bayoudh and Travé-Massuyès, 2014).

Clustering techniques establish a representation of the pro-
cess behaviors directly from the data acquired by sensors.
The sensed quantities are also known as features. They
work by grouping samples in the feature space and then
assessing the process situation online by tracking the pro-
cess measurements (which is called ‘situation assessment’)
(Kempowsky et al., 2006). The above definition of diagnos-
ability, based on sensor readings, is the most appropriate in
the clustering-based (or data based) situation assessment
context. Note however that definitions better suited to
model based approaches have been proposed for contin-
uous systems (Travé-Massuyes et al., 2006) and discrete-
event systems (Lin and Lin, 1993; Sampath et al., 1995).
An analysis of the correspondance of these definitions can
also be found in (Travé-Massuyès et al., 2006).

If dynamic clustering (Aggarwal et al., 2003; Angelov,
2011; Kwak et al., 2015) is used, the ageing dynamics of
the process can be integrated as cluster drifts (Barbosa
Roa et al., 2015). The dynamism of the clusterer allows
correct tracking of evolving systems without generating
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an increased number of non representative clusters, the
number of clusters then remaining finite.

In spite of this advanced capability, if diagnosis is per-
formed along a pure online clustering approach, the order
in which clusters are identified and recognized in time is
not recorded and is lost. In this paper an improvement
in the diagnostic capabilities of the dynamic clustering
algorithm that we presented in (Barbosa Roa et al., 2015)
is introduced. The algorithm, called DyClee , is improved
with the knowledge of the order in which process discrete
dynamics change and with event-based temporal informa-
tion.

It is well accepted that, for several purposes among which
diagnosis, large scale dynamic systems involving contin-
uous processes can be viewed as discrete event systems
(DES) at some level of abstraction (Sampath et al., 1996).
In (Kempowsky et al., 2006) the system trajectory is
described by a sequence of fuzzy classes to which the actual
situation (normal or faulty) belongs. (Sampath et al.,
1996) achieve system diagnosis from a set of finite-state
models of the subsystems to be diagnosed and then build-
ing a finite-state machine known as the diagnoser based on
observable events. The diagnoser can also serve as the basis
for diagnosability analysis. Decentralised DES diagnosis
approaches have been proposed to achieve on-line diagno-
sis while reducing diagnosis computational requirements
(Pencolé and Cordier, 2005; Cordier et al., 2007).

In this paper we show that DyClee can be used to learn
a timed DES from which it can distinguish behaviors that
were non-diagnosable before. Indeed, the DES allows to
incorporate event based knowledge (for example coming
from the control system) that is more adequately described
with discrete dynamics. In addition, the DES provides
temporal information that is not present in the classifi-
cation itself.

The developments made in this paper are based on the
following hypotheses:

Hypothesis 1. Normal and abnormal behaviors are statis-
tically different from each other.

Hypothesis 2. The system expert is able to provide the
labels of the (finite) set of nominal operational modes as
well as the set-point changes to transition between them.

Hypothesis 3. Changes in the system set-points happen in
a much slower timescale than system dynamics.

The paper is organized as follows: Section 2 introduces
the benchmark and the simulation scenario used to illus-
trate the developments. Section 3 introduces DyClee and
presents the clustering results on the test case. Section
4 presents the method to build a DES from dynamic
clustering results. Section 5 shows how diagnosability is
improved by the introduction of the DES in the test case.
Finally, section 6 concludes the paper and provide some
ideas for future work.

2. TEST CASE: THE CSTH

The continuous stirred tank heater (CSTH) is a bench-
mark of a stirred tank in which hot (50◦) and cold (24◦)
water are mixed and further heated using steam; the final
mix is then drained using a long pipe (Thornhill et al.,

Fig. 1. The continuous stirred tank heater

Table 1. Test scenario: Multiple fault simulation over a
month timespan. (Simulation time in sec× 105)

t Event

0 Start at OP1
1.5 e-leak 1 starts
2.4 e-leak 1 fixed
3.5 e-leak 1 restarts
3.8 e-leak 2 starts
4.5 Leaks 1 & 2 fixed
5.5 Svalve stuck 0%
5.8 Valve repaired
6.5 HWvalve stuck 10%
7.0 Valve repaired

t Event

9.0 e-leak 3 starts
9.6 e-leak 3 fixed

12.0 Changed to OP2
15.0 Svalve stuck 10%
15.6 Valve repaired
18.0 e-leak 4 starts
18.4 e-leak 4 fixed
20.0 HWvalve stuck 40%
20.6 Valve repaired
24.2 End

2008), as shown in Figure 1. Process inputs are set-points
for the cold water, hot water and steam valves. Process
outputs are cold water flow, tank level and temperature.
Process inputs and outputs represent electronic signals in
the range 4 − 20mA. The benchmark is tested in closed-
loop. PID controllers are used to guide the plant for the
suggested operation points. The difference between the op-
erational point (OP ) OP1 and OP2 is reflected in whether
or not the hot water flow is used.

In (Barbosa Roa et al., 2016) we implemented dynamic
faults as evolving leaks or pipe clogging in this benchmark
and presented two different scenarios to prove DyClee
capacity to track state drift and multiple non-persistent
faults. The second scenario evidenced how the no inclusion
of event related information, e.g. operating mode, reduce
DyClee capacity to distinguish the occurrence of faults
when its observable behavior is similar to that of a normal
state. In this paper we use the same scenario to show how
the DyClee diagnosis capabilities can be improved.

Test scenario description: Several faults between evolving
leaks (e−leaks) and stuck valves were simulated. The total
simulation time of this scenario is equivalent to a timespan
of a month (2.419.200 seconds) in which the plant works
half of the time in OP1 and the other half in OP2. The
faulty events included in this scenario are detailed in Table
1 and its time of occurrence is illustrated along with CSTH
output signals in Figure 2 1

3. DYNAMIC CLUSTERING ALGORITHM

DyClee algorithm is conformed by two clustering stages
one based on distance and one based on density. The
algorithm macro-description is shown in Figure 3. System

1 In figure 2 e−leaks are denoted as li and stuck valves are denoted
as sj .
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Fig. 2. CSTH output measurements and faulty events.DataInput

Fig. 3. Principle of DyClee

Fig. 4. Cold water flow episodes found between t = [0, 2.5× 105]

t= 45000
t= 240000

Fig. 5. Output of the distance based stage at t = 0.45 × 105 and
t = 2.5× 105

data is considered to arrive in stream. Data streams take
the form of time series providing the values of the signals
measured on a given process at each sampled time. When
data arrives, a preprocessing stage finds the underlying
trend by using polynomial fit. Using the found polynomial
coefficients as trend context TC and adding some set of
auxiliary variables AV the signal can be represented in a
time interval Ti as e(xi) = {TC,AV, Ti}. e(xi) is called a
episode of the signal xi. As an example the episodes found
by DyClee for the cold water flow in the tested scenario
at t = [0, 2.5× 105]sec are shown in Figure 4.

The distance-based clustering stage groups episodes into
µ-clusters that are summarized representations of the data
statistical and temporal information. The definition of µ-
cluster is given in (Barbosa Roa et al., 2016).

In order to maintain an up-to-date structure allowing to
track system evolution, µ-clusters are weighted with a
forgetting function. Figure 5 show two snapshots of the
µ-clusters distribution as 3d-representation choosing the

t= 45000
t= 240000

Unc. OMC Clus 1 Clus 2

Fig. 6. Output of the density based stage at t = 2.5× 105
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Fig. 7. DyClee clustering results reported in (Barbosa Roa et al.,
2016) vs Scenario true classes

features with the biggest variance. The µ-cluster opacity
represents its density.

The density-based stage analyses the distribution of those
µ-clusters whose density is considered as medium or high
and creates the final clusters by a density based approach,
that is, dense µ-clusters that are close enough (connected)
are said to belong to the same cluster. A µ-cluster is
qualified as one of three options: dense µ-cluster (DµC),
semi-dense µ-cluster (SµC) or low density (outlier) Oµ-
cluster (OµC) depending on whether its density exceed
two chosen thresholds: the average and the median density
of a µ-cluster group Gk.

The results of this density based stage at t = 2.5 × 105

are illustrated in the Figure 6. This stage assigns the label
to each µ-cluster, allowing the visualization of the results.
Note that DyClee works under a non-supervised learning
paradigm, so, only the system measures are necessary as
input to the algorithm.

Figure 7 compares the classes, i.e. operation modes, discov-
ered by DyClee and the true operation modes. The label
associated to these clusters is related to their order of de-
tection, and ’Unc. OµC’ represents the non-representative
behavior caused by extremely noised samples or by tran-
sition states (outliers). There is full concordance with
true operation modes, except for operation modes s2 (non
observable) and s4 that are confused with OP1. This
result is not actually false because the later is indeed
undiscriminable from operation mode OP1.

4. BUILDING DES FROM DYNAMIC CLUSTERING

To improve the diagnostic capabilities ofDyClee a DES is
built from its clustering results and adding the information
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(Pencolé and Cordier, 2005; Cordier et al., 2007).

In this paper we show that DyClee can be used to learn
a timed DES from which it can distinguish behaviors that
were non-diagnosable before. Indeed, the DES allows to
incorporate event based knowledge (for example coming
from the control system) that is more adequately described
with discrete dynamics. In addition, the DES provides
temporal information that is not present in the classifi-
cation itself.

The developments made in this paper are based on the
following hypotheses:

Hypothesis 1. Normal and abnormal behaviors are statis-
tically different from each other.

Hypothesis 2. The system expert is able to provide the
labels of the (finite) set of nominal operational modes as
well as the set-point changes to transition between them.

Hypothesis 3. Changes in the system set-points happen in
a much slower timescale than system dynamics.

The paper is organized as follows: Section 2 introduces
the benchmark and the simulation scenario used to illus-
trate the developments. Section 3 introduces DyClee and
presents the clustering results on the test case. Section
4 presents the method to build a DES from dynamic
clustering results. Section 5 shows how diagnosability is
improved by the introduction of the DES in the test case.
Finally, section 6 concludes the paper and provide some
ideas for future work.

2. TEST CASE: THE CSTH

The continuous stirred tank heater (CSTH) is a bench-
mark of a stirred tank in which hot (50◦) and cold (24◦)
water are mixed and further heated using steam; the final
mix is then drained using a long pipe (Thornhill et al.,

Fig. 1. The continuous stirred tank heater

Table 1. Test scenario: Multiple fault simulation over a
month timespan. (Simulation time in sec× 105)

t Event

0 Start at OP1
1.5 e-leak 1 starts
2.4 e-leak 1 fixed
3.5 e-leak 1 restarts
3.8 e-leak 2 starts
4.5 Leaks 1 & 2 fixed
5.5 Svalve stuck 0%
5.8 Valve repaired
6.5 HWvalve stuck 10%
7.0 Valve repaired

t Event

9.0 e-leak 3 starts
9.6 e-leak 3 fixed

12.0 Changed to OP2
15.0 Svalve stuck 10%
15.6 Valve repaired
18.0 e-leak 4 starts
18.4 e-leak 4 fixed
20.0 HWvalve stuck 40%
20.6 Valve repaired
24.2 End

2008), as shown in Figure 1. Process inputs are set-points
for the cold water, hot water and steam valves. Process
outputs are cold water flow, tank level and temperature.
Process inputs and outputs represent electronic signals in
the range 4 − 20mA. The benchmark is tested in closed-
loop. PID controllers are used to guide the plant for the
suggested operation points. The difference between the op-
erational point (OP ) OP1 and OP2 is reflected in whether
or not the hot water flow is used.

In (Barbosa Roa et al., 2016) we implemented dynamic
faults as evolving leaks or pipe clogging in this benchmark
and presented two different scenarios to prove DyClee
capacity to track state drift and multiple non-persistent
faults. The second scenario evidenced how the no inclusion
of event related information, e.g. operating mode, reduce
DyClee capacity to distinguish the occurrence of faults
when its observable behavior is similar to that of a normal
state. In this paper we use the same scenario to show how
the DyClee diagnosis capabilities can be improved.

Test scenario description: Several faults between evolving
leaks (e−leaks) and stuck valves were simulated. The total
simulation time of this scenario is equivalent to a timespan
of a month (2.419.200 seconds) in which the plant works
half of the time in OP1 and the other half in OP2. The
faulty events included in this scenario are detailed in Table
1 and its time of occurrence is illustrated along with CSTH
output signals in Figure 2 1

3. DYNAMIC CLUSTERING ALGORITHM

DyClee algorithm is conformed by two clustering stages
one based on distance and one based on density. The
algorithm macro-description is shown in Figure 3. System

1 In figure 2 e−leaks are denoted as li and stuck valves are denoted
as sj .
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about the desired OP , provided in the system log files. In
industrial environments, the set of set-points that form an
OP is sometimes equal or bigger in size than the set of
output system measurements. Considering the size of the
set-points vector and under Hypothesis 3, we consider that
adding all these variables to the clustering stage would
increase its complexity and reduce its efficiency. Instead,
we propose to use the information of the system OP as
a discrete variable representing the system discrete state
(under Hypothesis 2).

Timed automata (with guards), as defined below, are
chosen as DES formalism. With this choice we aim at
improve diagnosability by adding to the already modeled
time-driven dynamics new event-driven dynamics.

Definition 2. (Timed Automaton, Alur and Dill (1994)). A
time automaton At is a tuple 〈E,S,S0, T ft,Sm, C〉 where
S is a finite set of states, E is a finite set of events, S0 ⊆ S
is a finite set of start states, Tft : S×E×2CK×Υ(CK) → S
is the timed transition function. Sm is the set of accepted
or final states and CK is a finite set of clocks.

When the automaton is in the state s and the event a
is detected, the automaton changes state from s to s′

iff the clock constraint δ is fulfilled, that is the tuple
〈s, a, ι, δ〉 ∈ Tft. The subset ι ⊆ C makes the clocks to
be reset with this transition.

The state of the system is now given by a tuple formed
by the clusterer state (provided by the cluster label and
representing the continuous behavior) and the discrete
state (provided by the OP ) of the system.

In this paper At is built automatically from the clusterer
transition matrix found directly from DyClee clustering
results in the following way:

E: The system arrivals and departures in and from
clusters are used as events, i.e. for each characterized
cluster Cli an arrival event Clusi and a departure
event Clusi are created.

S0: The set of states of the automaton is given by the
set of natural clusters. This set is incremented if new
clusters are created.

S0: The initial state is the first characterized cluster.
Tft: The transition function is constructed incrementally

as new clusters are detected. The time constraints are
described as time intervals

[
τ ij , τ̄ij

]
representing the

minimum and maximum time of transition between
two clusters Cli and Clj

2 . This interval is updated
as more transitions are observed.

Sm: The DES implementation estimates the set of ac-
cepted states.

CK: One clock is created for each characterized cluster.
Clock notation is cci, with i been the index of Cli.

4.1 Adding information to the timed automaton

DyClee clustering results include temporal information
that is included in the Timed Automata formalism. The
transition table columns coli and rows ri correspond to the

2 This time interval corresponds to the time in which DyClee
tracks the current state as transitional or unknown, i.e. the system
measurements are considered as low density samples and assigned to
Oµ-cluster.

system states and each cell ij stores a transition interval[
τ ij , τ̄ij

]
characterizing the time constraints cci ≥ τ ij and

cci ≤ τ̄ij . The diagonal of the matrix (cell ij with i = j)
include the minimum and maximum Di registered values.
To reset each clock a set of complementary states Sc is
added to S0, S = S0 ∪ Sc. These complementary states
represent the fact of not been in a cluster. The clock cci is
set to zero (denoted as cci := 0) when the Clusi event is
detected and the system goes from state Cli to state ∼i,
with ∼i ∈ Sc.

Another temporal information that is important in process
monitoring refers to how long the system remains in a
particular state. This time is denoted as Di. To better
describe this information the median of the past stays
is added to the timed automaton At. The Cli cluster’s
median time of stay is called D̂i.

Reflecting clusterer evolution in the At is crucial to keep
the system automaton updated. The following explains
how parametric and structural clusterer changes are rep-
resented in the DES.

Modeling structural changes To handle the structural
changes in the clusterer the following procedures are used:

Cluster creation When the kth cluster is created the fol-
lowing changes are performed in the At automatically:
• the state Clk and the state ∼k are added to S
• the counter cck is added to CK
• a kth row is added to the transition matrix
• a kth column is added to the transition matrix
• Clusk and Clusk are added to the event set E

Cluster elimination When a cluster is eliminated, the
state remains in the At but its graphical representation
changes to a smaller gray circle, which intuitively places
the cluster as old.

Cluster merge When two or more clusters are merged,
the transition matrix is rebuilt using the union of
both states. In the case that both states have arriving
transitions departing from the same state the time
constraints are set as the interval union of those of
the previous transitions. The same principle applies to
transitions departing from the old states to a same
destination. It is worth noting that the label assigned
to a merged cluster, corresponds to the oldest original
label.

Cluster split When a cluster is split into two o more
clusters, the transitions are recalculated from available
history (recent data). The transitions that cannot be
confirmed by looking at available history are depicted as
dotted lines until confirmed or deprecated. A transition
is deprecated if in a time-span corresponding to three

times the sum of all elements in D̂ = ∪iD̂i. Deprecated
transitions do not cause loss of information under hy-
pothesis 4,below:

Hypothesis 4. A system is considered as a regular sys-
tem, i.e. the system behavior is repeatable. Any possible
transition from a system state to another repeats with
some frequency.

Modeling parametric changes Changes in the cluster
parameters are not reflected directly in the DES, neverthe-
less, since they are also important to the system operator,
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about the desired OP , provided in the system log files. In
industrial environments, the set of set-points that form an
OP is sometimes equal or bigger in size than the set of
output system measurements. Considering the size of the
set-points vector and under Hypothesis 3, we consider that
adding all these variables to the clustering stage would
increase its complexity and reduce its efficiency. Instead,
we propose to use the information of the system OP as
a discrete variable representing the system discrete state
(under Hypothesis 2).

Timed automata (with guards), as defined below, are
chosen as DES formalism. With this choice we aim at
improve diagnosability by adding to the already modeled
time-driven dynamics new event-driven dynamics.

Definition 2. (Timed Automaton, Alur and Dill (1994)). A
time automaton At is a tuple 〈E,S,S0, T ft,Sm, C〉 where
S is a finite set of states, E is a finite set of events, S0 ⊆ S
is a finite set of start states, Tft : S×E×2CK×Υ(CK) → S
is the timed transition function. Sm is the set of accepted
or final states and CK is a finite set of clocks.

When the automaton is in the state s and the event a
is detected, the automaton changes state from s to s′

iff the clock constraint δ is fulfilled, that is the tuple
〈s, a, ι, δ〉 ∈ Tft. The subset ι ⊆ C makes the clocks to
be reset with this transition.

The state of the system is now given by a tuple formed
by the clusterer state (provided by the cluster label and
representing the continuous behavior) and the discrete
state (provided by the OP ) of the system.

In this paper At is built automatically from the clusterer
transition matrix found directly from DyClee clustering
results in the following way:

E: The system arrivals and departures in and from
clusters are used as events, i.e. for each characterized
cluster Cli an arrival event Clusi and a departure
event Clusi are created.

S0: The set of states of the automaton is given by the
set of natural clusters. This set is incremented if new
clusters are created.

S0: The initial state is the first characterized cluster.
Tft: The transition function is constructed incrementally

as new clusters are detected. The time constraints are
described as time intervals

[
τ ij , τ̄ij

]
representing the

minimum and maximum time of transition between
two clusters Cli and Clj

2 . This interval is updated
as more transitions are observed.

Sm: The DES implementation estimates the set of ac-
cepted states.

CK: One clock is created for each characterized cluster.
Clock notation is cci, with i been the index of Cli.

4.1 Adding information to the timed automaton

DyClee clustering results include temporal information
that is included in the Timed Automata formalism. The
transition table columns coli and rows ri correspond to the

2 This time interval corresponds to the time in which DyClee
tracks the current state as transitional or unknown, i.e. the system
measurements are considered as low density samples and assigned to
Oµ-cluster.

system states and each cell ij stores a transition interval[
τ ij , τ̄ij

]
characterizing the time constraints cci ≥ τ ij and

cci ≤ τ̄ij . The diagonal of the matrix (cell ij with i = j)
include the minimum and maximum Di registered values.
To reset each clock a set of complementary states Sc is
added to S0, S = S0 ∪ Sc. These complementary states
represent the fact of not been in a cluster. The clock cci is
set to zero (denoted as cci := 0) when the Clusi event is
detected and the system goes from state Cli to state ∼i,
with ∼i ∈ Sc.

Another temporal information that is important in process
monitoring refers to how long the system remains in a
particular state. This time is denoted as Di. To better
describe this information the median of the past stays
is added to the timed automaton At. The Cli cluster’s
median time of stay is called D̂i.

Reflecting clusterer evolution in the At is crucial to keep
the system automaton updated. The following explains
how parametric and structural clusterer changes are rep-
resented in the DES.

Modeling structural changes To handle the structural
changes in the clusterer the following procedures are used:

Cluster creation When the kth cluster is created the fol-
lowing changes are performed in the At automatically:
• the state Clk and the state ∼k are added to S
• the counter cck is added to CK
• a kth row is added to the transition matrix
• a kth column is added to the transition matrix
• Clusk and Clusk are added to the event set E

Cluster elimination When a cluster is eliminated, the
state remains in the At but its graphical representation
changes to a smaller gray circle, which intuitively places
the cluster as old.

Cluster merge When two or more clusters are merged,
the transition matrix is rebuilt using the union of
both states. In the case that both states have arriving
transitions departing from the same state the time
constraints are set as the interval union of those of
the previous transitions. The same principle applies to
transitions departing from the old states to a same
destination. It is worth noting that the label assigned
to a merged cluster, corresponds to the oldest original
label.

Cluster split When a cluster is split into two o more
clusters, the transitions are recalculated from available
history (recent data). The transitions that cannot be
confirmed by looking at available history are depicted as
dotted lines until confirmed or deprecated. A transition
is deprecated if in a time-span corresponding to three

times the sum of all elements in D̂ = ∪iD̂i. Deprecated
transitions do not cause loss of information under hy-
pothesis 4,below:

Hypothesis 4. A system is considered as a regular sys-
tem, i.e. the system behavior is repeatable. Any possible
transition from a system state to another repeats with
some frequency.

Modeling parametric changes Changes in the cluster
parameters are not reflected directly in the DES, neverthe-
less, since they are also important to the system operator,
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Table 2. Final labels found pairing the continuous and
discrete information

Cluster a New label

1
OP1 1

OP2 1’

2 OP1 2

3 OP1 3

4 OP1 4

Cluster a New label

5 OP1 5

6 OP1 6

7 OP2 7

8 OP2 8

9 OP2 9

Table 3. Transition table of the simulated scenarioFrom/to C l1 C l2 C l3 C l4 C l5 C l6 C l7 C l8 C l9 C l1 0C l1 # [97500, 297500] 2 0 1 0 1 1 0 0 0T I [2500, 10000] [-,-] [20000] [-,-] [10000] [40000] [-,-] [-,-] [-,-]C l 2 # 1 [25000, 77500] 1 0 0 0 0 0 0 0T I [0 .0 ] [10000] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]C l 3 # 1 0 [57500] 0 0 0 0 0 0 0T I [0 .0 ] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]C l 4 # 0 0 0 [5000] 1 0 0 0 0 0T I [-,-] [-,-] [-,-] [12500] [-,-] [-,-] [-,-] [-,-] [-,-]C l 5 # 1 0 0 0 [5000] 0 0 0 0 0T I [2500] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]C l 6 # 1 0 0 0 0 [52500] 0 0 0 0T I [0 .0 ] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [-,-]C l 7 # 0 0 0 0 0 0 [157500, 352500] 1 1 1T I [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [40000] [10000] [0 .0 ]C l 8 # 0 0 0 0 0 0 1 [15000] 0 0T I [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [5000] [-,-] [-,-]C l 9 # 0 0 0 0 0 0 1 0 [27500] 0T I [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [0 .0 ] [-,-] [-,-]C l 1 0 # 0 0 0 0 0 0 1 0 0 [57500]T I [-,-] [-,-] [-,-] [-,-] [-,-] [-,-] [2500] [-,-] [-,-]
a descriptive table including the following information is
also available.

• Time of last assignation of system data to any µ-
clusters in cluster k. This indicates the last time in
which the cluster was active.

• Number of µ-clusters conforming the cluster.
• Median of cluster densities.
• Cluster center of gravity calculated,for each of the j
features, as:

Cj
g =

∑
k
Cj

k
∗Dk∑

k
Dk

(1)

• Minimum of the feature ranges for the cluster
• Maximum of the feature ranges for the cluster

Cluster drift can be easily detected by the change in
the cluster center of gravity Cg and/or an augmented
number of µ-cluster.

5. IMPROVING DIAGNOSABILITY

As shown in Figure 7, DyClee can successfully track
online the process and its evolution, however, the faulty
state s4 (hot water valve stuck) is confused with OP1,
since both have the same observable behavior. The key
information that allows to distinguish between these two
behaviors is the system desired OP represented by the
discrete state.

As stated in section 4 in order to build a timed automaton
from DyClee clustering results, the clusterer states have
to be paired with the discrete states. The association is
made using the time as key. Table 2 shows the pairs and the
new labels. The transition table considers the new cluster
labels. Even if the At is generated on-line at the same time
as the clustering results, for the sake of brevity only the
final results on the scenario are going to be depicted. The
transition table generated for the tested scenario is shown
in Table 3.

Figure 8 represents the generated automaton At at the
end of the simulated Scenario. The states are represented
as nodes. The initial state is determined as Cl1 (the first
encountered state). The transition functions correspond
to all the non-empty cells in the transition matrix and

are represented as edges in Figure 8. To determine the set
of accepted states, the information about the number of
OP s is used, so, in this case there are two accepted states,
namely Cl1 and Cl2 (double-circle representation).

The only events depicted explicitly are the OP , neverthe-
less each transition from a Cli state to a ∼i state implies
the Clusi event and each transition from a ∼i state to a Clj
state implies a Clusj event. Each cluster state includes,
below the cluster identification, the information related to
the median time that the system had remained in each of
these states. As stated in section 4 one clock is created
for each state. Clock constraints (transitions from ∼i to
Clj) and resets (transitions from in Cli to ∼i) are included
in the graph according to the notation explained before.
The probability of a transition is represented as Pi→j . A
red colored font indicates the current state. The orange
polygon form depicts the node that could not have been
generated using only the clustering results. In this node
the information of the clusterer state is also depicted as
reference.

Summarizing:

E: {Clus1, Clus2, Clus3, Clus4, Clus5, Clus6, Clus7, Clus8,
Clus9, Clus1, Clus2, Clus3, Clus4, Clus5, Clus6,
Clus7, Clus8, Clus9, OP1, OP2

}
S: {Cl1, Cl2, Cl3, Cl4, Cl5, Cl6, Cl7, Cl8, Cl9, Cl1′ ,∼ 1,∼ 2,∼ 3,

∼ 4,∼ 5,∼ 6,∼ 7,∼ 8,∼ 9,∼ 1′}
S0: {Cl1}

Tft:

< Cl1, (Clus1), cc1, >→ ∼ 1
< ∼ 1, (Clus7, OP2), , cc1 ∈ [40000, 40000] >→ Cl7
< ∼ 1, (Clus2, OP1), , cc1 ∈ [2500, 10000] > → Cl2
< ∼ 7, (Clus1, OP2), , > → Cl1′

· · ·
Sm: {Clus1, Clus7}
CK: {cc1, cc2, cc3, cc4, cc5, cc6, cc7, cc8, cc9, cc1′}

It can be seen that the cluster Cl1 (OP1) is the focus of the
graph having transitions to states Cl2, Cl4, Cl6 and Cl7.
The graph also shows that the state Cl5 is only accessible
from Cl4 and that Cl3 only from Cl2. This indicates strong
dependencies. From a point of view of supervision these
transitions indicate that the faulty states Cl3 and Cl5 are
a degradation of already degraded states Cl2 and Cl4. The
system current state at the end of the simulated scenario
is Cl7, meaning that the system is currently in OP2 and
no faulty behavior is currently detected. The state Cl1′
that has the same continuous behavior as Cl1 is now
diagnosable since it is only accessible from Cl7 when the
system is in OP2, as opposed to Cl1.

6. CONCLUSIONS

In this paper we show that dynamic clustering results
provided by DyClee can be used to learn a timed dis-
crete event system that brings valuable temporal infor-
mation to distinguish behaviors that are non-diagnosable
based solely on the clustering itself. This automaton also
improves clustering results interpretability for decision-
making purposes. This adaptive model, built automat-
ically as new data of the system is gathered, provides
a high level abstraction of the system with information
about the system past and current states along with the
possible transitions identified by their probabilities, the
time of transition and time constraints. The At is a very
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DyClee Timed automaton
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Fig. 8. DyClee timed automaton generated from clustering results
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Fig. 9. Final diagnosis achieved by coupling continuous and discrete
information

interesting piece of information on its own as it may be
used to support other tasks, like control, reachability anal-
ysis, etc. Future work will consider to extend the present
clustering/At framework to distributed architectures that
are better suited to represent complex power plants in
which the dynamics of the different processes interact.
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Barbosa Roa, N., Travé-Massuyès, L., and Grisales, V.H.
(2015). A data-based dynamic classification technique:
A two-stage density approach. In Proc. of the 9th
IFAC Symp. on Fault Detection, Supervision and Safety
for Technical Processes Safeprocess’15, Paris (France),
1224–1231. IFAC.
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