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A novel algorithm for dynamic clustering:
properties and performance

Nathalie Barbosa Roa, Louise Travé-Massuyès, and Victor Hugo Grisales

Abstract—In this paper, we present a novel dynamic clustering
algorithm that efficiently deals with data streams and achieves
several important properties which are not generally found
together in the same algorithm. The dynamic clustering algorithm
operates online in two different time-scale stages, a fast distance-
based stage that generates micro-clusters and a density-based
stage that groups the micro-clusters according to their density
and generates the final clusters. The algorithm achieves novelty
detection and concept drift thanks to a forgetting function
that allows micro-clusters and final clusters to appear, drift,
merge, split or disappear. The outlier identification is made
in a natural way using micro-clusters density. This algorithm
has been designed to be able to detect complex patterns even
in multi-density distributions and making no assumption of
cluster convexity. The performance of the dynamic clustering
algorithm is assessed theoretically through complexity analysis
and empirically through a set of experiments that compare the
algorithm with other algorithms of the literature on popular data
sets that have interesting characteristics regarding the emergence,
disappearance and movement of clusters as well as multi-density,
non-convexity and noise.

Index Terms—Dynamic clustering, incremental learning, online
learning, multi-density, non-convex data sets.

I. INTRODUCTION

With computer storage capacities of today, massive his-
torical data can be recorded and stored in all the socio-
economic domains : engineering, environment, finance, etc.
The cloud also brings an enormously cost-effective way to
increase storage. Hence, huge amounts of data, arising from
various sources, are collected and they are available for
further analysis. Data can indeed be a tremendous source of
information and knowledge if it is mined in a smart way.
Machine learning, an essential ingredient in the data mining
field, currently face new challenges, in particular, building
classification techniques able to handle complex data sets and
scaling to big data.

Classification algorithms typically include two phases: a
training phase that makes use of a training data set to generate
a set of classes considered as the model and a recognition
phase that uses the model to assign the new objects to one
of the classes. The training phase may be supervised if the
training data set is labeled, i.e. expertise of the domain has
allowed to label each object of this set. In this case, the training
phase aims at defining the shape of the classes corresponding
to the different concepts existing in the labels and one refers
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to supervised classification. However, data mining and knowl-
edge discovery generally require unsupervised classification
schemes as the concepts of the domain may not even be (all)
known a priori. In this case, also known as clustering, the
training phase works by grouping the objects according to
some predefined criteria. Every cluster is then interpreted as
a class for which a concept can be assigned afterwards by an
expert.

The above framework defines the static classification
paradigm in which the model remains unchanged during the
recognition phase [1]. However, in evolving environments,
this paradigm is not relevant and the model needs to account
for the properties of the new objects and adapt continuously.
The training and recognition phases are hence interlinked and
the task becomes dynamic classification and rises the novelty
detection and concept drift problems [2], [3].

In fact, due to the arrival of new objects and the discarding
of old data being irrelevant, the concepts represented by the
classes may change and accordinly a dynamic classifier should
be able to [4]:

• Create new clusters in order to represent novel behavior.
• Merge several clusters if the concept represented by one

of them can incorporate the others.
• Split one cluster into two or more clusters if new infor-

mation allow the distinction between them.
• Eliminate old and irrelevant clusters.
• Change the location of the clusters to follow data drift.

These properties will be referred as dynamic structural changes
of a classifier.

Dynamic classification has been tackled by several authors.
Among the main techniques we can mention: Evolving Clus-
tering [5], [6], Self-Adaptive Feed-Forward Neural Networks
(SAFN) [7], LAMDA (Learning Algorithm for Multivariable
Data Analysis) [8] and Growing Gaussian Mixture Models
(2G2M) [9]. Some of these alternatives are really complex,
with high requirements in terms of memory and processor
power and hence, not suitable for handling online large
amounts of data, such as data arriving in a stream.

Different approaches to data stream clustering have been
proposed since the 90’s. Among these, incremental approaches
have emerged as a solution for incoming data arriving at high
rates. This limits the possibility of storing all the samples, and
reduces the time available for processing them. Among the
main techniques we can mention: CluStream [10], ClusTree
[11] and DenStream [12]. These approaches use a two-phase
scheme which consists of processing the raw data stream in
real time producing some summary data and then using this
summary data offline to generate the clusters.
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In other words, the real-time component forms micro-
structures characterized by a feature vector that summarizes
the information of all individuals contained therein [10], [11],
[12], [13], [14]. The use of this vector makes the algorithms
suitable for online applications since the storage of each
individual becomes unnecessary. These micro-structures may
be arranged in an ordered manner (e.g. grids or trees) with the
purpose of making the belonging structure location easier. The
“offline” component of the algorithms takes the micro-clusters
features as source data for final clustering. K-means based
techniques are a common choice in the offline component
[10], [11], since the one-pass only condition (for high stream
rates) is not necessary in this stage (advantage given by the
offline nature of the component). Density-based clustering
algorithms are also used in the offline component, showing
an improvement in their capacity to handle clusters of any
shape including non-convex sets [12], [13]. To the best of our
knowledge, no streaming clustering technique can handle the
five dynamic structural changes described above.

The dynamic clustering algorithm presented in this paper
is able to deal with large amounts of data arriving at fast
rates by adopting a two stages strategy similar to [10], [11],
[12]. The first stage is a fast scale distance-based algorithm
that collects, pre-processes and compresses data samples to
form so-called micro-clusters (µ-clusters). The second stage
is a slower scale density-based algorithm that groups the µ-
clusters into actual clusters that can be interpreted semantically
as classes. The forgetting process implemented allows novelty
detection, concept drift detection and identifies outliers in
a natural way. The second, density-based, stage detects µ-
clusters evolution and changes the dynamic cluster structure
accordingly.

In particular, our algorithm is able to deal with multi-density
clusters and can hence cope with more complex data sets that
previous density-based approaches [12], [14]. The first goal
of this paper is to present our algorithm and its enhancements
over previous density-based approaches and the second goal
is to assess its properties and performance by analyzing its
theoretical complexity and by testing it empirically through
a set of experiments that compare the algorithm with other
algorithms of the literature on popular data sets that have inter-
esting characteristics regarding the emergence, disappearance
and movement of clusters as well as distributions exhibiting
multi-density, non-convexity and noise. It is shown that the
dynamic clustering algorithm proposed in this paper achieves
several important properties which are not generally found
together in the same algorithm.

The remainder of the paper is organized as follows. Section
II presents the distance/density-based two-stages clustering
algorithm and the novelty detection, emphasizing the multi-
density extension. Section III introduces other properties of
the algorithm and assesses the performance of the algorithm
by illustrating the results with several known data sets. Section
IV position our work with respect to the main references in
streaming clustering using the introduced data sets. Finally,
section V concludes the paper and outlines future research
directions.

DataInput
Fig. 1: Global description of the algorithm

II. TWO STAGES DYNAMIC CLUSTERING

This paper uses the two stages distance- and density-based
clustering approach proposed in [14] modified to be able to
discover clusters of different densities. In our proposal both
stages work on-line, but operate at different time scales. In
addition, µ-clusters of similar densities can form clusters of
any shape and any size. This multi-density feature allows the
detection of novelty behavior in its early stages when only a
few objects giving evidence of this evolution are present.

The first stage operates at the rate of the data stream and
creates µ-clusters putting together data samples that are close,
in the sense of a given distance, to each other. µ-clusters are
stored in the form of summarized representations including
statistical and temporal information.

The second stage takes place once each tslow seconds and
analyses the distribution of µ-clusters. The density of a µ-
cluster is considered as low, medium or high and is used
to create the final clusters by a density based approach, i.e.
dense µ-clusters that are close enough (connected) are said
to belong to the same cluster. Similarly to [13], a cluster
is defined as the group of connected µ-clusters where every
inside µ-cluster presents high density and every outside µ-
cluster exhibits either medium or low density. The above dense
µ-cluster structure allows the algorithm to create clusters of
non convex shapes even in high dimensional spaces and it has
proved outliers rejection capabilities in evolving environments
([12], [14]).

The two stages are further explained in II-A and II-B. The
multi-density proposal is explained in II-C.

A. Distance-based clustering stage

Considering a d-dimensional object E qualified by d fea-
tures, a µ-cluster gathers a group of data samples close in
all dimensions and whose information is summarized in a
characteristic feature vector (CF). For a µ-cluster µCk, CF
has the following form:

CFk = (nk, LSk, SSk, tlk, tsk, Dk, Classk) (1)

where nk ∈ < is the number of objects in the µ-cluster k,
LSk ∈ <d is the vector containing the linear sum of each
feature over the nk objects, SSk ∈ <d is the square sum of
features over the nk objects, tlk ∈ < is the time when the
last object was assigned to that µ-cluster, tsk ∈ < is the time
when the µ-cluster was created, Dk is the µ-cluster density
and Classk is the µ-cluster label if known. Using LSk, SSk
and nk the variance of the group of objects assigned to the
µ-cluster k can be calculated.
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The µ-cluster is shaped as a d-dimensional box since the
L1-norm is used as distance measure. The distance between
an object Ex = [x1, . . . , xd]T and a µ-cluster µCk is
calculated as the sum of the distances between the vector
LSk = [c1k, . . . , c

d
k]T and the object value for each feature

as shown in equation (2):

dis(Ex, µCk) =

d∑
i=1

∣∣xi − cik∣∣ (2)

The size of the boxes Sik along each dimension di is set as
a fraction of the feature range. This fraction can be established
according to the data context, i.e. min and max values of the
feature, which is used for normalization purposes. If no context
is available in advance, it may be established online. The box
size for the feature along dimension di is found according to
(3), where φi is a constant establishing the fraction:

Sik = φi|maxi −mini|, ∀i = 1, . . . , d. (3)

Whenever an object E arrives, the algorithm searches for
the closest µ-cluster. Once found, a maximal distance criterion
is evaluated to decide whether or not the object fits inside the
µ-cluster hyper-box. If the fitting is sufficient the µ-cluster
feature vector is updated using the object information; if not,
a new µ-cluster is created with the object information using
its time-stamp as cluster time of creation.

B. Density-based clustering

In this stage, density-based clustering is executed over the µ-
clusters, which allows the algorithm to find clusters of arbitrary
shape. A µ-cluster may be of three different types: dense
µ-cluster (Dµ-cluster), semi-dense µ-cluster (Sµ-cluster) and
low density or outlier µ-cluster (Oµ-cluster). The difference
between each type is established based on dynamic thresholds
found locally (see subsection II-C). Sµ-clusters may result
from an increase in the number of outliers from which one
can expect a cluster creation, so they have to be updated more
frequently than other µ-clusters.

The density of a µ-cluster µCk is calculated using the
current number of objects nk and the current hyper-volume
of the bounding box Vk =

∏d
i=1 S

i
k, as shown in (4):

Dk =
nk
Vk
. (4)

To find the final clusters, the dense character of a µ-cluster
and its neighbors is analyzed with some periodicity. Let µCkα
and µCkβ be two µ-clusters, then µCkα and µCkβ are said to
be directly connected if their hyper-boxes overlap in all but ϕ
dimensions. The parameter ϕ establishes the feature selectivity
of the classifier.

A µ-cluster µCk1 is said to be connected to µCkn if there
exists a chain of µ-clusters {µCk1 , µCk2 , · · · , µCkn} such that
µCki is directly connected to µCki+1

for i = 1, 2, · · · , n− 1.
A set of connected µ-clusters is said to be a group. Groups
of µ-clusters are analyzed recursively. A cluster is created if
every inside µ-cluster of a group is a Dµ-cluster and every
border µ-cluster is either a Dµ-cluster or an Sµ-cluster. Once

a cluster is create, the rest of the group is analyzed in turn. Oµ-
clusters then correspond to the local lowest density samples
and do not contribute to the final clusters.

Once the clustering distribution is found, a copy of the
µ-clusters distribution is stored as a snapshot that may be
examined in the future in order to extract more information
about the system evolution. Snapshots are stored following
a pyramidal time scheme as the one proposed in [10]. This
storage efficiently stacks past snapshots according to several
sampling times.

C. Extension to Multi-density Clustering

Density based algorithms as those from [15], [12], [13],
[14] group data samples according to their density. The
connection between dense samples is key in forming clusters
with arbitrary shapes. Nevertheless, in these implementations,
the concept of ‘dense’ is related to a global threshold. The
problem in taking a global threshold to identify a sample as
dense appears when regions with varied densities are present
in the same dataset as can be seen in figure 2. In this case,
the above algorithms may misclassify low density samples as
noise, as can be seen in figure 2 where DBSCAN fails to
detect the two clusters with lower density.

Fig. 2: DBSCAN fails to detect the four different clusters,
instead it provides only the highest density clusters (Yellow
and Red) and outliers

While it is deemed desirable to be able to learn and
recognize clusters of multiple densities, it is also important to
maintain the ability to reject outliers. Our solution to multi-
density clustering is based on local analysis. Differently from
[15], [12], [14], we analyze the dense character of each µ-
cluster with respect to the density of the other µ-clusters in
the same group.

Two measures are considered as representative of the µ-
clusters density distribution in a local sense, the average of the
µ-cluster’s density in the group and the median. These mea-
sures work as thresholds for establishing the dense character of
each µ-cluster in the group. The intuition behind the selection
of these measures is that the median and average densities of
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an heterogeneous group are significantly different, although, if
the group is uniformly dense, these two quantities are equal.

In other words, for each group Gk, the µ-clusters having
their density higher than or equal to the average density of
the group (avg(DGk)) and higher than or equal to the median
density of the group (median(DGk)) are considered as dense.
µ-clusters having a density higher than or equal to only one of
those measures (either average or median) are considered as
Sµ-clusters and those with density below both measures are
considered as Oµ-clusters. Summarizing :

µCkdense⇔ Dk ≥ median
(
DGk

)
∧Dk ≥ avg

(
DGk

)
, (5)

µCksemi-dense⇔ Dk ≥ median
(
DGk

)
∨Dk ≥ avg

(
DGk

)
, (6)

µCkoutlier⇔ Dk < median
(
DGk

)
∧Dk < avg

(
DGk

)
. (7)

Interestingly, using the multi-density scheme helps to better
shape clusters that share frontiers, that is, clusters that are side
by side, in highly overlapping situations as will be shown in
the section III.

D. Novelty detection and cluster evolution

In order to maintain an up-to-date model, more weight
should be given to newly incoming data. In our algorithm, µ-
clusters are weighted with a decay function dependent on the
current time t and the last assignment time tlk. The function
is chosen to be β−λ(t−tlk) to emulate an ageing process over
a damped window.

When a new d-dimensional object E = [ed1 , . . . , edi ], with
i = {1, . . . , d} is assigned to a µ-cluster µCk at t, tlk = t. The
other attributes of the feature vector are updated as follows:

n
(t)
k = n

(t−1)
k β−λ(t−tlk) + 1 (8)

LS
(t)
k,di

= LS
(t−1)
k,di

β−λ(t−tlk) + edi ∀ di, i = 1, . . . , d. (9)

SS
(t)
k,di

= SS
(t−1)
k,di

β−λ(t−tlk) + e2
di ∀ di, i = 1, . . . , d. (10)

Generalizing, if no object is added to a µ-cluster during
the time interval (t, t+ ∆t), its CF at t + ∆t can be calcu-
lated from CF (t) using the decay function for the weighted
parameters as follows:

CF (t+∆t) = β(−λ∆t)CF (t) (11)

If the object cannot be assigned to any of the existing µ-
clusters, a new Oµ-cluster is created using the object infor-
mation as model. We assume that µ-clusters with low density
(Oµ-cluster), are either outliers or potential clusters in an
emerging state. The later case reveals itself with an increment
in the cluster density and consequently, this µ-cluster grows
into an Sµ-cluster as new data arrives.

E. Dynamic clustering algorithm operation with grid indexing

When a new identified object E arrives, the algorithm uses
a grid indexing algorithm. The feature space is assumed to be
partitioned in the form of a grid, in which each cell is identified
by a 3 bits (per dimension) index. The algorithm maps the
object information into the grid and verifies the existence of
µ-clusters in the corresponding cell. If no µ-cluster exists, it
creates a µ-cluster using the data of the object and indexes it
with the cell mapping coordinates.

If there are already one or more µ-clusters in that cell,
our algorithm finds out which Dµ-cluster or Sµ-cluster is the
closest. The Manhattan distance is used as similarity measure.
Once the closest µ-cluster is found, the maximal distance
condition is verified to asses whether the object fits inside
the maximal possible bounding box MAXBB centered on the
µ-cluster. If there is a fit, the object is absorbed by the µ-
cluster.

Otherwise our algorithm tries to assign the object to the
closest Oµ-cluster in the same cell. When the object is
assigned, the density of the Oµ-cluster is calculated to verify
whether or not it has grown into an Sµ-cluster. When an Oµ-
cluster becomes denser it is removed from the outlier list and
inserted as Sµ-cluster into the active µ-cluster list.

The second stage analyses the µ-cluster density checking
for changes. Oµ-clusters are evaluated to find out if their
density is below a low-density threshold. If that is the case
the Oµ-cluster is eliminated and no longer considered. Once
filtered, the remaining active µ-clusters are analyzed looking
for groups. For each group the local density analysis is
performed recursively to find all possible clusters and detect
local outliers. Locally, the algorithm checks each Sµ-cluster
to find out whether its density has decreased below the semi-
dense threshold. If this is the case, the Sµ-cluster is eliminated
and with its statistics an Oµ-cluster is created. This update
may create new low density regions inside a cluster, changing
its form and even causing it to split into two or more clusters,
following data evolution. In the same way, if inside a group
some Oµ-clusters have grown into Sµ-clusters, two clusters
that were separated may be merged.

III. ASSESSING THE PROPERTIES AND PERFORMANCE OF
THE ALGORITHM

In this section the algorithm is analyzed, then tested and
compared to other known algorithms to assess its performance.

A. Complexity Analysis

Since the algorithm has two stages that work independently,
its complexity can be evaluated independently for the two
stages. The complexity of the distance-based stage is O (dM)
for each incoming d-dimensional object, where M is the
number of µ-clusters. Since the algorithm is incremental, in
general M << n, n being the number of elements to cluster,
which leads us to a global complexity of O (n). It is worth
noticing that in the exceptional case of small high dimensional
datasets with sparse distributions, the inequalities M << n
and d << n do not stand any more. In consequence, in
these exceptional cases, the complexity becomes O (dMn).
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Fig. 3: Comparison of six algorithms for the concentric circles
data set. Top left to right: MiniBatch KMeans, Agglomerative
Clustering, Affinity Propagation. Bottom: DBSCAN, BIRCH,
our algorithm

Fig. 4: Comparison of six algorithms for the moons data
set. Top left to right: MiniBatch KMeans, Agglomerative
Clustering, Affinity Propagation. Bottom: DBSCAN, BIRCH,
our algorithm

Nevertheless, small datasets are not the objective of this study.
The complexity of the density based stage is O

(
dM2

)
.

B. Algorithm comparison with literature synthetic test cases

The algorithm was faced with several test cases presented
in the literature. In Figures 3 to 7, we show the algorithm’s
clustering results for different test cases compared with the
results achieved by those proposing the test. Cluster are
represented using a combination of colors and glyph. Samples
that belong to the same cluster have both the same tone and
the same glyph.

Test cases will show that our algorithm performance is up to
the performance of several different clustering algorithms and
achieves several important properties which are not generally
found together in the same algorithm.

1) Detection of non-convex distributions: The clustering
method implemented in our algorithm can detect convex and
non convex distributions. To show this feature we have chosen
to cluster some synthetic sets available in the scikit-learn

Python module [16]. Our algorithm is compared to scikit-learn
module provided implementations of different clustering algo-
rithms, namely MiniBatch KMeans (MBK-m), Agglomerative
Clustering (AC), Affinity Propagation (AP), DBSCAN [15]
and BIRCH [17].

Two noisy data sets were evaluated named concentric circles
and moons. In each data set 1500 samples were considered.
These data sets were generated using the scikit-learn.dataset
module. The distributions are time invariant. In consequence,
the forgetting process of our algorithm µ-clusters is disabled
for this test. 1

The results of the tests for the concentric circles data set
can be seen in Figure 3 and for the moons data set in Figure
4. In the figures the cluster centers found by MBK-m and AP
are drawn as colored circles for illustrative purposes as well as
our algorithm Dµ-clusters (colored squares). MBK-m, AC and
BIRCH require the number of clusters as a initial parameter
but even with this information, MBK-m and BIRCH are not
able to cluster these non convex sets properly. AP does not
perform well at all in these distributions. Moreover, it creates
a high number of clusters. Our algorithm is able to detect
non convex distributions as well as DBSCAN does, since they
are both density based. Nevertheless, the test shows that our
algorithm rejects more outliers than DBSCAN.

2) Robust path based clustering: Figure 5 shows the three
spirals distribution used in [18]. In the centre of each spiral,
samples are more abundant and then they become sparser as
spirals grow out. This kind of distribution is path based and
it is particularly difficult to handle for clustering algorithms
only based on distance or only based on density. Since our
algorithm uses both, distance and density it can overcome this
kind of challenge. It indeed achieves results comparable to
those of the original article presented by Chang and Yeung
[18] obtained with their robust path-based spectral clustering
method as can bee seen in Figure 5.

(a) Results in [18] (b) Our results

Fig. 5: Robust path-based spectral clustering and our algorithm
tested against the three spirals distribution

3) Clustering aggregation problem: Figure 6 shows the test
case used by Gionis et al. in its clustering aggregation problem
[19]. An intuitively good clustering for this dataset consists of

1The algorithm parameters for the test were: MBK-m (# of clusters), AC
(linkage "average", affinity "cityblock", # of clusters, connectivity
(estimated using n neighbors=10.)), AP (damping=0.9, preference=−200),
BIRCH (# of clusters), DBSCAN (eps=0.2), our algorithm (box relative
size=0.06).
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the seven perceptually distinct groups of objects. The authors
in [19] ran five different clustering algorithms implemented in
MATLAB (single linkage, complete linkage, average linkage,
Ward’s clustering, and k-means), setting the number of clusters
to 7 in each case. None of these five algorithms obtained
an appropriate cluster distribution. As seen in Figure 6, our
algorithm clusters correctly the test set, achieving by itself
the result that Gionis et al. achieve aggregating the clustering
results of five different algorithms. In addition, our algorithm
does not need the number of clusters as input parameter.

(a) Results in [19] (b) Our results

Fig. 6: Gionis et al. clustering aggregation results and our
algorithm clustering results for the clustering aggregation
problem

4) Clustering multi-density distributions: As explained in
subsection II-C, our algorithm is capable to cluster multi-
density distribution thanks to its local density analysis. To
probe this we take the test case introduced in subsection II-C
that exhibits varied-density clusters with no separation among
them. The original results of [20] and our results are shown
in Figure 7.

(a) Results in [20] (b) Our results

Fig. 7: Results on varied-density clusters with no separation
among them.

The multi-density scheme that we propose helps to better
shape clusters that share frontiers. Figure 7 shows that cluster
borders are better shape in our results (right) that in the original
results of [20] (left). To achieve this, our algorithm finds all
possible cluster, and then it analyzes every µ-cluster in the
border of the clusters. These µ-clusters are assigned to the
connected cluster that has the most similar average density.
In that way clusters frontiers can be precisely drawn which is
key in highly overlapping distributions.

C. Concept drift problem

In this section, our algorithm is confronted with real concept
drift in time varying distributions. Concept drift refers to a
subtle change of the underlying data distribution that may (or
may not) also involve change in the conditional distribution
of the target concept. In order to illustrate this concept,
three clearly differentiated distributions are used to form three
clusters. Cluster one is represented in green cluster two in blue
and cluster three in red in Figure 8. Cluster one and two drift
in time until shifting positions. Synthetic data are generated
changing the center of the distribution each 100 samples.
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Fig. 8: Concept drift toy example

Snapshots showing the distribution of µ-clusters (little
boxes) and clusters (same color) found by our algorithm at
several time instants are depicted in Figure 9. It can be
seen how clusters evolution is tracked thanks to the drift of
some of the existent µ-clusters and to the creation of new
µ-clusters. Growth in the amount of clusters is particularly
visible between snapshots one and two, and again between
snapshots two and three. Oµ-clusters are represented as gray
boxes.
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(d) t = 3300
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(e) t = 4400
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(f) t = 5400

Fig. 9: µ-clusters (little boxes) and clusters (same color)
distribution obtained with our algorithm for the concept drift
toy example

The values used in this experiment were β = 2 (value par
default) and λ = 1/500. In fact, if β is chosen as 2, the amount
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of time required for a cluster to forget half of the known values
(half-life) is 1

λ , λ > 0. The frequency of the second stage is an
parameter that can be provided by the user. The default value
is defined as 1/100 samples.

It is worth mentioning that, between the algorithm param-
eters, the forgetting factor is the one that influences the most
the global performance. This factor is directly related with
cluster reactivity. It should be high enough to assure that
micro clusters will be sensitive to distribution changes, but,
low enough to avoid over sensitivity, that may reduce the
outlier rejection capability. In fact, it should be guarantee that
tslow < 1/λ in order to avoid data lost before being clustered.
With respect to memory usage, if the forgetting factor is too
low, memory issues may arise.

IV. DISCUSSION

The toy data sets and the generated concept drift data set
were selected upon their ability to show complex problems
that may arise in real life. Path based clustering, for example,
recreates the intuitive reasoning that two objects should be
assigned to the same cluster if they can be connected by
a mediating path of objects. However, in the best of our
knowledge path based clustering is not achieved in dynamic
clustering algorithms (stream based or not).

The clustering aggregation problem and the multi-density
problem test the ability of clustering overlapping distributions
in which densities may vary, as is the case of industrial
processes where samples of normal behavior will be more
frequent that samples of faulty behavior. Quick detection of
faulty behavior and drift of the normal state are also essential.

To test concept drift, an artificial data set was created
because, as stated in [21] and [22], an influential problem in
most of the real-world data sets is that concept drift manifest
over very long periods of time and hence results in huge data
sets that are not freely available.

For the test shown in the previous section, the forgetting
processes were disabled in the static data sets, thus, only the
concept drift experiment was subject to this process. We have
shown that our algorithm can deal with these complex prob-
lems and in this section we also show that well known stream
algorithms cannot handle them. We used the implementations
of Clustream [10] and DenStream [12] available in the Massive
online analysis open source framework [23].

We chose the robust path based test case shown in subsec-
tion III-B2 as first example. The CluStream and Denstream
algorithms were confronted to this data set in two scenarios.
In the first scenario the time horizon was set to a third of
the data length, allowing the algorithms to forget the oldest
samples. In the second scenario the time horizon was chosen
in order to include all the samples in the dataset. Results for
the first scenario are shown at the top of Figure 10. CluStream
micro-clusters in Figure 10a are depicted in green and the final
cluster result in red. It can be seen that CluStream actually
creates the micro-cluster representation for the samples but
the final clusters mix samples of the three classes. DenStream
micro-clusters are depicted in green in Figure 10b, and the
final clusters are represented changing points color to blue.

(a) CluStream (b) DenStream

(c) CluStream (d) DenStream

Fig. 10: Clustering results of streaming algorithms for the
path-based test case. Screenshot from MOA software [23].
Neither of these algorithm achieve correct classification. Time
horizon was set to 100 samples (a and b) and 300 samples (c
and d)

TABLE I: Clustering evaluation of streaming methods over
the path-based test case

Algorithm Purity Precision Recall NumClusters
Clustream 0.43 1.0 0.82 3
Denstream 1.0 1.0 0.6 32
Our proposal 1.0 1.0 1.0 3

DenStream, on the other hand, does not mix elements of
several classes, but it creates 32 clusters putting apart samples
of the same.

The second scenario is the one giving the same importance
to all the samples, this scenario was also the test scenario for
our algorithm. Clustering results of CluStream and DenStream
for this scenario are shown in the bottom of Figure 10. We
can see that both algorithms fail again in finding the correct
clustering. DenStream results do not change between both
scenarios. Table I summarizes the clustering results for the
tested algorithms.

As second example, we analyze the streaming algorithm
results in the case of multi-density distributions. CluStream
and DenStream results for the test case introduced in [20] are
shown in figure 11. Once again the tested algorithms fail to
detect the data classes correctly. DenStream results are similar
to those achieved by DBSCAN shown in Figure 2, that is, it
can only detect the two denser classes. Even if in this example
the target classes are convex sets, CluStream fails to correctly
cluster them due mainly to the overlapping of the distributions.
Table II summarize the clustering results.

Dynamic data cause several clustering algorithms to fail
because they can not cope with evolution. To illustrate this
let us consider the concept drift example of the previous
section (Figure 8) and evaluate the clustering performance of
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(a) CluStream (b) DenStream

Fig. 11: Clustering results of streaming algorithms for the
multi-density test case introduced in [20]. Neither of these
algorithm achieve the correct classification. Screenshot from
MOA software [23].

TABLE II: Clustering evaluation of streaming methods over
the multi-density test case

Algorithm Purity Precision Recall NumClusters
Clustream 0.83 1.0 0.82 4
Denstream 0.70 1.0 0.69 2
Our proposal 1.0 1.0 1.0 4

several algorithms. Let us start with the DBSCAN algorithm
implementation found in the scikit-learn project [16]. DB-
SCAN clustering results2 are shown in Figure 12a. Since the
DBSCAN implementation does not consider time evolution, it
mixes samples of classes 1 (green) and 2 (blue) into one class
that is depicted in Figure 12a in green.

−10 0 10−4

0

4

(a) DBSCAN

−10 0 10−4

0

4

(b) Incremental DBSCAN

−10 0 10−4

0

4

(c) Mini Batch K-means

−10 0 10−4

0

4

(d) Our algorithm

Fig. 12: Clustering results of four different algorithms for
the concept drift example. Only our algorithm can track the
concept drift.

An incremental implementation of DBSCAN was also
tested with this dataset. The clustering result can be seen
in Figure 12b. Incremental DBSCAN results are similar to

2Parameters for DBSCAN test: min samples = 5 and eps = 0.2.

DBSCAN results. We also tested the MiniBatchKMeans al-
gorithm, an alternative online implementation of k-means that
does incremental updates of the center positions using mini-
batches. The implementation of this algorithm can be found in
[16]. The number of clusters were given to the algorithm and
also the size of the batch. Its results are shown in Figure 12c.
Since one of the cluster’s distribution is time invariant (cluster
3, in the middle of the figure), MiniBatchKMeans links some
samples of the clusters drifting to that cluster, losing clusters’
evolution. The final clustering results of this dataset provided
by our algorithm are shown in Figure 12d for comparative
purposes. It is clear that even if the incremental DBSCAN
and MiniBatchKMeans are online batch implementations of
clusterers, they do not properly follow the evolution. The
efficiency of our algorithm with respect to the concept drift
problem, in particular real concept drift [3], compared to these
algorithms is clearly illustrated by this experiment.

V. CONCLUSIONS

In this paper, a novel algorithm for dynamic clustering,
its properties and performance have been explored. The per-
formance of the algorithm is assessed theoretically through
complexity analysis and empirically through a set of com-
parative experiments using popular data sets. The presented
dynamic clustering method bases its structure on micro-
clusters allowing the handle of non-convex, multi-density
clustering with outlier rejection even in highly overlapping
situations. This approach to unsupervised learning implements
a local-density analysis that allows to detect rare, infrequent
behaviors improving novelty detection. This is possible since,
with only a few objects, new classes can be characterized
and recognized. The algorithm was compared with several
different clustering algorithms, both static and dynamic, and it
has proved to achieve similar or better results than several of
them, hence pushing forward the state of the art. Even more,
this proposal has proved to exceed the performance of well-
known distance-based and density-based streaming algorithms.
The dynamic clustering approach presented in this paper has
shown excellent results in presence of concept drift. Future
works will include dynamic clustering of dependent and auto-
correlated time series, investigating a proper representation
of temporal information, and achieving dynamic clustering of
multiple time-scale changing patterns.

REFERENCES

[1] A. Joentgen, L. Mikenina, R. Weber, and H. Zimmermann, “Dynamic
fuzzy data analysis based on similarity between functions,” Fuzzy Sets
and Systems, vol. 105, no. 1, pp. 81–90, 1999.

[2] M. Markou and S. Singh, “Novelty detection: a review–part 1: statis-
tical approaches and part 2: neural network based approaches,” Signal
processing, vol. 83, no. 12, pp. 2481–2497, 2003.
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