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Abstract: This paper addresses the problem of determining the diagnosability of hybrid systems by
abstracting hybrid models to a discrete event setting. From the continuous model the abstraction only
remembers two pieces of information: indiscernability between modes (when they are guaranteed to
generate different observations) and ephemerality (when the system cannot stay forever in a given set of
modes). Then, we use standard discrete event system diagnosability algorithms. The second contribution
is an iterative approach to diagnosability that starts from the most abstract discrete event model of the
hybrid system. If it is diagnosable, that means that the hybrid system is diagnosable. If it is not, the
counterexample generated by the diagnosability procedure is analysed to refine the DES. If no refinement
is found, then it can not be proved that the hybrid system is diagnosable. Otherwise, the refinement is
included in the abstract DES model and the diagnosability procedure continues.
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1. INTRODUCTION

Diagnosability is the property of a system and its instrumenta-
tion guaranteeing that all anticipated faulty situations can be de-
tected and identified without ambiguity on a bounded time win-
dow from the available observations of the system. Diagnos-
ability has been studied for continuous systems and for discrete
event systems (DES) separately. In case of continuous systems,
it is formulated in terms of fault detectability and isolability
from a structural point of view as in Blanke and Kinnaert (2016)
or accounting for the characteristics of model uncertainties and
noises impacting the system (Basseville et al., 2001). In the
case of DES, the first diagnosability definition was proposed in
Sampath et al. (1995) together with the necessary and sufficient
conditions for diagnosability based on the Sampath’s diagnoser,
a finite state machine built from the system model. Diagnos-
ability of hybrid systems was addressed later, benefiting from
the works existing in both the continuous systems and the DES
fields. Bayoudh and Travé-Massuyes (2014) exemplifies how
these works can be merged for hybrid systems represented by
hybrid automata. The discrete states of the hybrid automaton
represent the operation modes of the system for which differ-
ent continuous dynamics are specified via a set of differential
equations involving continuous variables. The diagnosability
of the continuously-valued part of the model is first analyzed
and the new concept of mode signature is shown to character-
ize mode diagnosability from continuous measurements, also
known as discernibility. Different mode signatures are then
translated into a set of so-called signature-events associated
to mode transitions resulting in a prefix-closed language over
the original event alphabet enriched by these additional events.
Based on this language, diagnosability analysis of the hybrid
system is cast in a discrete event framework. Other related
works can be mentioned. For instance, the approach of Daigle

et al. (2008) is similar to Bayoudh and Travé-Massuyes (2014)
and Cocquempot et al. (2004) bases the analysis on continuous
dynamics only and is hence limited to discernibility. Vento
et al. (2015) extends the work of Bayoudh and Travé-Massuyes
(2014) by proposing an incremental diagnosis framework in
which discernibility remains implicit.

This paper addresses the problem of determining the diagnos-
ability of hybrid systems with a different point of view. Instead
of enriching the DES with full information arising from con-
tinuous dynamics (e.g. signature-events that require to deter-
mine all mode signatures as in Bayoudh and Travé-Massuyes
(2014)), it proposes to abstract hybrid models to a discrete
event setting and check diagnosability in an incremental way.
The proposed approach starts by generating the most abstract
DES model of the hybrid system and checking diagnosability
of this DES model. If it is diagnosable, that means that the
hybrid system is diagnosable. While if it is not, we search for
a refinement that contradicts a counterexample generated by
the diagnosability procedure. If no refinement is found, then
it can not be proved that the hybrid system is diagnosable.
Otherwise, the refinement is included in the abstract DES model
and the diagnosability procedure continues. This approach uses
just the necessary information about continuous dynamics, in
an “on request” manner, hence potentially saving quite a lot of
computation.

The structure of the paper is as follows: Section 2 presents
the preliminaries regarding diagnosability. Section 3 describes
the hybrid systems that we consider and the DES setting used
for diagnosability. Section 4 shows how the hybrid system can
be abstracted to a DES and the properties involved in their
refinment. Section 5 presents how to test diagnosability of a
hybrid system incrementally and illustrates the method with an
application example presented in Section 6.
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2. PRELIMINARIES ON DIAGNOSABILITY

We start by providing a definition of diagnosability based on
models. Next we quickly discuss how abstract models can be
used to test diagnosability.

2.1 Model-Based Diagnosability

We call “model”, hereafter denoted M, the implicit representa-
tion of a set of “system behaviours” (both faulty and nominal),
where a system behaviour, denoted ¢ € M, represents the evolu-
tion of the system state during a (finite or infinite) time window.
The model is assumed to be prefix-closed (if a behaviour is
possible, its prefixes are possible) and live (all behaviours have
a future). We also assume a single fault, although the general-
ization to multiple fault is straightforward. We write M[N] and
M([F] the subsets of nominal and faulty behaviours of M.

A model M is equipped with an observation function obsyy
that indicates what can be observed when a specified behaviour
takes place: o € obsy(0) is one of the possible system observa-
tions for the behaviour o € M. It is assumed that the observation
function satisfies natural assumptions such as the fact that if ¢’
has a prefix o, then every observation o’ € obsy(c’) has a pre-
fix 0 € obsy (o). To simplify notations, we drop the references
to the model and simply write obs(c) when not ambiguous.

Model-Based Diagnosis is the problem of deciding whether
the observations generated by the system betray a nominal or
a faulty behaviour. Specifically, given a model M, given an
unknown behaviour 6 € M, given the observation 6 € 0bs(6),
the model-based diagnosis is defined as follows:
A(6)={6 € {N,F} | o € M[J]. 6 € obs(0)},

i.e., the hypotheses (N or F) for which there exists a behaviour
consistent with the observations. Under the usual assumptions
that the diagnosis model is complete (all possible system be-
haviours are in M and all possible observations of every be-
haviour ¢ are in obs(c)) the diagnosis is guaranteed to be
correct: 0 € A(d).

Diagnosability is the property that if a fault occurs on the
system, then this fault will eventually be diagnosed. Because we
limit ourselves to a single fault, this implies that the diagnosis
will eventually be A = {F}.

We use the notation ¢ C ¢’ to specify that ¢ is a prefix of ¢,
and 6 C; o’ to specify that the time window of ¢’ is at least d
units of time longer than that of .

Definition 1.
property holds:

Vo e M[F|.3d eN.Vo' eM.cC, 0
= Vo' € obs(c’). A(0') = {F}.

The model M is diagnosable if the following

In words, this definition states that for any faulty behaviour
o, after waiting for a sufficiently long time (d, leading to
extended behaviour ¢’ and observation o), the diagnosis is
unambiguously F.

2.2 Abstraction and Diagnosability

Abstraction plays an important role in this work. The idea
of abstraction is to remove some information included in the
model in order to make the task of diagnosis, or diagnosability,
computationally simpler or even decidable.
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A model M’ is an abstraction of M if the former allows for more
behaviours than the latter:

M DM A (Vo € M. obsyy(0) 2 obsy(0)).
M is then called a refinement of M.

Abstraction can help prove diagnosability through the follow-
ing lemma.

Lemma 1. Let M’ be an abstraction of M. If M’ is diagnosable,
then M is also diagnosable.

This lemma can be easily proved by noting that the condition
for diagnosability (Definition 1) is easier to satisfy for the
refined models. Notice that Lemma 1 does not tell us much
about diagnosability of M if M’ is not diagnosable.

3. HYBRID SYSTEMS AND DES ABSTRACTION

We first introduce the definition of hybrid systems that we are
considering in this paper. We then move to the discrete event
model. We review some results about verifying diagnosability
of DES. Finally, we show how the hybrid system can be
abstracted to a DES.

3.1 Hybrid Systems

In this paper, we consider uncertain hybrid systems that
can be represented by uncertain hybrid automata (Lunze and
Lamnabhi-Lagarrigue, 2009) :

M= (0,T,8,C,(q0,%0)) (D
where:

e (isthe set of discrete system states, i.e. modes. Each state
q € O, represents a mode of operation of the system.

e T C Qx Qis the set of transitions. A transition t(q;,q;)
may be guarded by a condition given as a set of equations
4(t(qi,q;)) = gij(x,0,) =0, O, being a constant param-
eter vector. The transition happens when the state x(¢)
hits the guard g;;. A reset map Z%;;, possibly equal to the
identity, is specified.

e ( is the set of continuous variables, functions of time
t, including state, input, and output variables as defined
below. Input/output variables form the set of observable,
i.e. measured, continuous variables denoted by {pps.

e C={C,} is the set of system constraints linking continu-
ous variables in mode ¢:

X(t) = fq(x(t, p),u(t), p)
{y(t) = g4(x(t,p),p) n<t<T (2
X (l‘()) = X0
where :

- x(t) € R™, u(t) € R™, and y(r) € R™ denote the
vectors of state, input, and output variable at time z,
respectively,

- the functions f; and g, are real and analytic on D, C
R", where Dy is the definition domain of x(¢) such
that x(7) € D, for every ¢ € [ty, T] and T is a finite or
infinite time bound,

- p € P CR? is the vector of parameters and x(tp) =
xo € Xo € R™ is the initial continuous state.

e (Qo,xo) is the initial condition of the hybrid system, where
Qo C Q is the initial mode.

Transitions from one mode to another change the continuous
dynamics driving the behavior of the system.
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3.2 Discrete Event Systems

A DES is a discrete state, event driven system where the state
evolution depends on the occurrence of asynchronous discrete
events. For consistency with hybrid systems, these states are
here referred to as “modes”.

Compared to hybrid systems, DES have discrete observations.
Contrary to the standard literature (Sampath et al. (1995);
Lamperti and Zanella (2003); Pencolé and Cordier (2005)) we
assume that the observations are state-based, but this choice
is purely for convenience: there is no fundamental difference
between state-based and event-based observations. We assume
a constant set I of indicators which are observable properties
about the current system mode—when the property holds in
the mode, we say that the indicator is satisfied. In a given
mode, an indicator could be always satisfied, never satisfied,
or sometimes satisfied.

Definition 2. A discrete event system is a tuple D = (Q,T,
4o, L,Eph) where Q is a set of modes with g, € Q the initial
mode, T C Q x Qs the set of transitions, L: Q x I —{0,1,—1}
is the indicator function, and Eph C 22 is a collection of
ephemeral sets.

A behaviour on the DES is a sequence of modes go — ... — g
such that g9 = ¢, and all (g;_1,¢;) are transitions. For every
mode ¢ € Q and every indicator indi € I, L(q,indi) = 1 (resp.
L(g,indi) = —1) specifies that the indicator is always (resp.
never) satisfied in this mode. We define 1°°(q) = {indi € I |
L(g,indi) > 0} as the list of indicators that are always satisfied
in mode ¢ and 12%(q) = {indi € I | L(q,indi) > 0} the list
of indicators that are always or sometimes satisfied. Then an
observation 6 in mode ¢ is the list of indicators satisfied in this
mode and is such that:

’(q) € 6 € I*(g).

Notice that at different times the observation of the same
mode may vary (but it always satisfies the subset constraint
above). An observation of gg — ... — ¢ is then a sequence
0=0y,...,0, where each ; is an observation of g;.

We now explain the last parameter of the DES definition. A
DES is event driven, meaning that the mode of the system
may remain the same over time. This is allowed via an explicit
transition (q,q) € T for all g € Q. There are however modes
in which one cannot stay forever. For example, in a situation
where a container is being filled at a non-trivial rate, the system
mode will eventually change (as e.g. the container will become
full, or it will start leaking). We model this with a notion of
ephemerality. Formally for any infinite sequence go — g1 — ...
let us denote Q.. the set of modes that appear infinitely often;
then this set of modes cannot appear in Eph:

Q. & Eph.
This property is similar to that of fairness frequently used in
model checking but also in diagnosis (Biswas et al., 2010).

3.3 Diagnosability of DES

Diagnosability of DES is a well-studied problem. It was intro-
duced by Sampath et al. (1995) and polynomial algorithms were
developed in parallel by Yoo and Lafortune (2002) and Jiang
et al. (2001). These papers assume event-based observations,
but state-based observations can be considered too. Similarly it
is possible to include fairness conditions (Grastien, 2009).
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The standard way to solve diagnosability of DES is to search
for two infinite behaviours in the model, a faulty one and a
nominal one, and that are observation-similar. This search is
implemented by constructing the twin plant (defined below)
and searching for reachable fair cycles, i.e., cycles that do not
remain in ephemeral sets of modes. We assume that the modes
are partitioned into nominal modes Qy and faulty modes Qf
(when faults are defined as events, we assume that every mode
remembers whether a faulty event occurred).

Definition 3. Given the DES D = (Q,T,q,,L,Eph) the twin
plant is the state machine (Q, %, q,, &) where:

o Q={{q1,q2) € Qx Q| Vindi € I{L(qy,indi),L(qy,indi)}
#{-1,1}},

. ??{<<q1,qz>7<61’1761’2>>EQXQI<q1761’1>€TA<qz,q’z>6

® (o ’: <Qan0>, and

e ¢={0Q'CNO|3IX €Ephwhere X ={q|(q,4") € Q'}}.

The first item in Definition 3 simply indicates that the twin
plant only includes states q = (gq1,q2) such that the two
modes ¢g; and ¢» do not disagree on any indicator. Indeed if
{L(q1,indi),L(g2,indi)} = {—1, 1} then the indicator is always
satisfied in one mode and always unsatisfied in the other mode.

Note that the indicators do not appear in the twin plant as they
are only relevant to define its states £. Notice also that the
ephemerality relation on the twin plant is defined only on the
first element of the twin plant: a set of states " of the twin
plant is ephemeral iff the set X of modes that are mentioned
in the states of Q' (as first element of the pair) is ephemeral.
Accordingly given a cycle q; — ... — q; (i.e., such that q; =
qi), we say that this cycle is fair iff {q1,...,q;} € €.

Proposition 1. (Grastien (2009)) Let 20 = (Qr x On) NQ be
the set of ambiguous states of the twin plant. The DES is
diagnosable iff the twin plant does not contain any fair cycle
of ambiguous states that can be reached from its initial state.

The cycle ¢ = q; — ... — q; mentioned in Proposition 1 (where
q; = (¢i»q}) for each index i) is called the counterexample. It
represents a possible faulty system behaviour (namely q; —
g>» — ...) that can be mistaken for a nominal behaviour (namely
q) — g5 — ...). We write Q(c) the list of (twin plant) states
that appear in the cycle.

4. DIAGNOSABILITY OF HYBRID SYSTEMS WITH DES
METHODS

In this section we reduce the problem of diagnosability of
hybrid systems to the problem of diagnosability of DES. To
this end we define D}, a DES abstraction of the hybrid system
M. All the continuous dynamics of the hybrid system are em-
bedded in the indicators (cf. Section 4.1) and ephemerality (cf.
Section 4.2) relations of the DES. Then from Lemma 1 diag-
nosability of Dj; implies diagnosability of the hybrid system.
Again, nondiagnosability of Dj; leaves open the question of
diagnosability of the hybrid system.

4.1 Residuals, discernibility and the indicator function

Discernibility of a pair of modes can be verified from the
residuals attached to the modes (Bayoudh and Travé-Massuyes
(2014) Vento et al. (2015)). Residuals are consistency indicators
used by the FDI community to check the measurements against
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the continuous dynamics of every mode. There are several
approaches for obtaining residual generators (Blanke and Kin-
naert, 2016) (as e.g., using structural methods, or decoupling
unknown variables), all of them based on the elimination of
the unknown variables x(¢). The elimination process produces
testable relations that only depend on variables that can be
determined from measured variables, i.e. input and output vari-
ables u(z) and y(¢) and their derivatives up to some order n gath-
ered in the vectors ) (¢) and 7 (¢). Thus, in the ideal case (no
noise and uncertainty) ! , as long as the hybrid system is actually
in mode ¢ and there is no fault, the residual (7 (r), 2" (¢)) (in
vector form) satisfies

r(3" (1), (1) =0 3)
Otherwise, the residual r(7 (¢), " (r)) (or r for short) is dif-

ferent from zero indicating that measurements are inconsistent
with the continuous dynamics of mode q.

In this paper, discernibility is not explicit. It is represented in
the first item of Definition 3 of the twin plant. But the set
of indicators I is built from the residuals generated for every
mode. An indicator indi € I is associated to the residual vectors
obtained for every mode. Denote by r, the residual vector for
mode g. Then, from the properties of residuals, we have:

o L(g,indi) = 1 because r, evaluates to zero when the
system is in mode g (unknown faults are not considered

in this paper),
e L(q ,indi) =1 when r, also evaluates to zero in ¢’ # g,
e L(q',indi) = —1 when r, never evaluates to zero in ¢/,

e L(q',indi) = 0 when r, sometimes evaluates to zero in ¢'.
4.2 Checking ephemerality

Ephemerality is a notion that, as far as we are aware, has never
been introduced before. Ephemerality means that the system
cannot stay forever in a given set of modes. We believe that
ephemerality is a problem that will require further investigation,
but we propose two methods to check it:

e by running a hybrid reachability procedure from all pos-
sible initial states. This method is applicable to a set of
modes,

e by computing the positive invariant set, i.e. the attractor
state region where the continuous dynamics drive the state
and where the state stays forever. As far as we know, this
method is applicable to one mode only.

The advantage of the invariant set theory is that it provides the
theoretical attractor set. However it only gives "static" informa-
tion, i.e. we know that the system converges towards this set.
On the contrary, reachability analysis provides the atteignable
set during transient behavior but it requires a sufficiently long
run (whose minimal temporal bound is unknown) to obtain the
invariant set.

Ephemerality via reachability — In this paper, we are con-
cerned by — possibly nonlinear — uncertain hybrid systems as
given by (1). For these systems, continuous dynamics, guard
sets and reset functions are defined by nonlinear functions and
all uncertainties are considered bounded. At some instant #, the
hybrid state (Q,x(r)) is uncertain, which means that Q, and
x(t) are set-valued, i.e. Q; C Q and x(t) =x; C R™. Q, is the set

' In case of noise or uncertainty the residual consistency is checked with
statistical or set-membership methods Blanke and Kinnaert (2016)
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of "active" modes at time ¢, i.e. the modes in which the system
may operate at ¢, and x; is the set of possible states at ¢ given
an uncertain initial hybrid state at time 7. In a given mode,
the continuous state trajectory takes the form of a "flow-pipe"
which defines the bounds of the continuous state in time. When
a flow-pipe of non-zero size reaches a mode guard condition,
there is a non-empty set of instants during which the constraints
are satisfied, leading to a continuum of switching times.

Running a hybrid reachability procedure for a set of modes
Q* C Q permits to envision all the hybrid states reachable by the
hybrid system from the initial hybrid state (Qgp,x0) = (Q*,X™),
where X* is the set of possible continuous states associated to
Q*. This can obviously be used to assess that the system cannot
stay forever in O, proving ephemerality 2. Several methods
have been developed recently for the explicit computation of
reachable sets. In this paper, we have used the method and
associated software presented in Maiga et al. (2016) that can be
decomposed in three algorithmic steps: 1) compute the reach-
able set, 2) compute the discrete transitions, and 3) enclose the
multiple trajectories resulting from an uncertain transition.

Ephemerality via set-invariance —  Another way of checking
ephemerality is based on the use of set-invariance based on the
positive invariant set concept (Seron et al. (2012); Blanchini
(1999)). The computation of these sets can be performed be-
forehand and depends on known system’s dynamics and bounds
on input signals and disturbances/uncertainties.

Definition4. The set . C R" is said to be positively invariant
w.r.t. the continuous dynamics of a mode ¢ of the hybrid system
(2) if every solution trajectory x(¢) with initial condition x(0) €
& is globally defined and such that x(¢) € . for > 0.

The application of the set-invariance approach to prove that one
mode g is ephemeral comes back to check whether all the states
in the minimal robust positive invariance (mRPI) set of a mode
satisfy the guard 3. If ephemerality must be proved for a set of
modes, reachability analysis is preferred.

5. INCREMENTAL DIAGNOSABILITY
5.1 Introduction

Computing precisely Dj; can be very expensive, and we also
want to identify which indicators are useful in ensuring diag-
nosability. For this reason we show how to test diagnosability
incrementally, i.e. by starting with abstract L and Eph param-
eters and incrementally refining them until diagnosability has
been shown, or an irrefutable counterexample is produced.

5.2 Description of the Approach

Our approach is summarized in Algorithm 1. We start with
a hybrid system model M. From this model we generate the
most abstract DES model D(,f,,. We check diagnosability of the
current abstract model. If it is diagnosable, then we found an
abstraction that allows us to diagnose precisely the system.

2 Note that reachability analysis can also be used to check discernibility.
Indeed, if reachability analysis is run for two modes starting with all their
possible initial continuous states, if the flow-pipes separate at some point in
time, it means that these modes are discernible.

3 Set-invariance can also be used to check discernibility. Indeed, two modes
that have mRPI sets that do not intersect are discernible.
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Algorithm 1 Incremental Diagnosability

Input: hybrid system model M
A:=DY,
Repeat
if A is diagnosable (using the Twin Plant method and Lemma 1)
return diagnosable (with abstraction A)
let ¢ be a counterexample for A
if there is a refinement of A that contradicts ¢
apply refinement to A
else
return could not prove diagnosability

If the current model is not diagnosable, then we analyse the
counterexample generated by the diagnosability procedure and
search for a refinement of L or Eph that contradicts the coun-
terexample. If no refinement is found, then we cannot prove
that the system is diagnosable. If a refinement is found, then it
is included to the abstract model and we test diagnosability of
this new model again. Given that the amount of information in
Dy is finite it is easy to demonstrate the following theorem.

Theorem 2. 1f Dy} is diagnosable and the search for refinements
contradicting counterexamples is complete, then Algorithm 1
always returns an abstraction of Dj; that is diagnosable.

6. APPLICATION EXAMPLE

To illustrate the proposed approach, consider the model of a
heating system of Figure 1. The system starts in mode N1 and
navigates between N1, N2, and N3. The value of state variable
X representing temperature increases in N1 and N2, albeit at a
different speed, and decreases in N3. Notice that the system can
transition freely between N1 and N2 but it has to transition to
N3 if the temperature becomes greater to 80. A fault leads to
a similar situation where the increase/decrease in the state are
modified and the models become uncertain. Observations y are
the state x and its derivative x = y.

X=—x

+[95,105]

Fig. 1. The System Model

Residuals (cf. Section 4.1) are equations involving observable
quantities that evaluate to zero in some modes. A set of primary
residuals for this model can be generated as follows:

N1 =y+y—100  rpi=y+y—[95,105]

v =y+y—90 rr2 =y +y—[85,95] “)

N3 =Y+y rp3 =y+y—[45,50]
From these residuals, the set / of indicators introduced in
Definition 2 can be obtained as explained in Section 4.1. Taking
into account the dynamic models associated to the modes of the
hybrid system of Figure 1, the corresponding invariance sets
can be computed as follows:
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Fy1 =100 . Fp =[95,105]
Fna =90 S =[85,95] (5)
Iz =1 Sz = [45,50]

Analyzing the position of these invariant sets with respect to
the mode’s guards, we can assess ephemerability. Moreover,
these invariant sets can also be used to evaluate the residuals
associated to the set I of indicators that allow distinguishing
in which mode ¢ the hybrid system is operating. In particular,
as e.g., residual ry; is zero and consequently the associated
indicator is Iy; = 1 when the system reaches the invariant
set .#y1 according to Section 4.1. A similar reasoning applies
for residuals ryo and rys. In case of residuals rg; to rgs3,
they do not evaluate to zero even if the hybrid system is in
some of the associated modes F; and F> because of model
uncertainty, being the corresponding indicator Iy; = —1. Thus,
invariant sets can be used in an analogous manner as residuals
to generate the indicators / introduced in Section 4.1. The
diagnosability procedure includes two components: a “discrete
component”, which generates “counterexamples” (that negate
diagnosability) and a “continuous component”, which tries to
invalidate the counterexamples. The algorithm starts with an
abstraction of the model where all the continuous aspects are
ignored (loops are added on each mode). Each call to the
continuous component refines the model. Here is part of the
execution of the procedure on this example:

[CEI]  The discrete component computes the following
counterexample: if the system takes the following infinite faulty
behaviour 6y = N1 — F1 (— F1)*, this behaviour cannot be
distinguished from oy = N1 — N1 (— N1)=.

This counterexample can be eliminated if we demonstrate that
the infinite faulty behaviour is impossible (ephemerality, i.e.,
if the system cannot stay in mode F1 forever) or that the
two behaviours can be distinguished (i.e., if N1 can always be
distinguished from F1). In this instance we see that {F1} is
ephemeral. Proof of ephemerality is simply obtained from the
invariant set of Fy: /F1 = [95,105]. For Fy, all the possible con-
tinuous state initial conditions are xo = [0,80], hence the system
must cross the guard x > 80 to converge to the invariant set.
The same result can be obtained by running hybrid reachability
starting with xo = [0,80[ as shown on Fig. 2.

140 T T T
F1

120 B

100 ,

80 - B

60 - &

40 - o

time

Fig. 2. Reachability analysis for F1 starting with all possible
initial states xo = [0, 80]

[CE2] Now the discrete component is not allowed to gener-
ate a counterexample with a faulty loop that contains only F'1
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Fig. 3. Reachability analysis for the set of modes {F1, F2}
starting with all possible initial states xp = [0,80[ and 11
transitions

or only F2, but the faulty loop may consists in {F1,F2}. New
counterexample:

e 6y=Nl—+Fl—=F2(—=F1—F2)~,
e oy =Nl —=N1—=NI(—=Nl—=NI1)~

But {F1,F2} is ephemeral. For a set of modes, proof of
ephemerality is obtained by hybrid reachability. Possible ini-
tial states are ([0,80[,F}) and ([0,80[, F). For any transition
sequence triggered by u(t), the system behavior converges to-
wards the invariant set of the last mode. Fig. 3 shows an 11
transitions scenario ending with mode F;.

[CE3] New counterexample:

e 6y=N1—F1—>F2—F3(—-Fl—F2—F3)~,
e oy=Nl—-N1—NIl—-NIl(—=Nl—-NIl—NI)~

Ephemerality does not allow to reject this counterexample.
Therefore, we need to check whether N1 can always be dis-
tinguished from F'1, whether N1 can always be distinguished
from F2, and whether N1 can always be distinguished from
F3. According to Equation (5), F2 and F3 can be distinguished
from N1 since the corresponding invariant sets do not intersect,
but not F'1 because in this case the intersection is not empty.
This means that the residuals rpp and rp3 can be used for
distinguishing from N1. But this is not the case of residual rr;.

[CE4] We generate a new counterexample that cannot have
the faulty behaviour in mode F2 while the nominal behaviour
is in mode N1:

¢ 0y=Nl—+Fl—>F2—=F3(=F1l—=>F2—F3)~,
e oy =Nl —>N1—-N2—NIl(—=Nl—N2—=NI1)~.

But F3 can be distinguished from N1 because the correspond-
ing invariant sets do not intersect according to (5), or equiv-
alently, the residuals rr3 and ry; can be used for distinguish-
ing between these two modes. The diagnosability algorithm
continues and eventually fails at producing a counterexample,
meaning that the system is diagnosable. By analysing this di-
agnosability proof, we notice that we need to distinguish the
following pairs of modes: (F3,N1), (F3,N2), (F3,N3), and
(F2,N1). However, we do not need any other distinguishability
check. For instance, we do not need to distinguish N1 from N2.
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7. CONCLUSIONS

This paper has addressed the problem of determining the diag-
nosability of hybrid systems by abstracting hybrid models to a
discrete event setting. The abstracted model only remembers
two pieces of information: distinguishability between modes
(when they are guaranteed to generate different observations)
and ephemerality (when the system cannot stay forever in a
given set of modes). Then, standard DES diagnosability algo-
rithms are applied to the abstracted model. An iterative ap-
proach to diagnosability is proposed that starts with the most
abstract DES model and iteratively calls for refinements until
diagnosability is proved or there are no more refinements avail-
able. The proposed approach has been illustrated with an aca-
demic example that clearly shows how the different techniques
used interplay.
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