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ABSTRACT1

After the seminal works of Daganzo (1) and Geroliminis and Daganzo (2), the traffic simulation2

based on the Macroscopic Fundamental Diagram (MFD) has been gaining more and more interest3

from the scientific community, especially in applications for control purposes. One fundamen-4

tal question for this type of simulation is the proper definition of the macroscopic trip lengths.5

Some approaches have been discussed in the literature (Daganzo, Yildirimoglu and Gerolimi-6

nis, Ramezani et al., 1, 3, 4). However, no study focus on the definition of the macroscopic trip7

lengths based on the microscopic network.8

In this paper, we discuss three methods to calculate the macroscopic trip lengths based on9

the aggregation of microscopic trips, within each reservoir considering: (i) no further information;10

(ii) the next reservoir to be traveled; and (iii) the related macro-path (i.e., the list of reservoirs that11

are crossed from the Origin to the Destination). Based on a static analysis of the network, we12

show that these methods: yield different average trip lengths at the reservoir level; and give similar13

average trip lengths at the macroscopic-path level, where the aggregation effect is on the standard14

deviation. We analyze the dependence of the trip lengths on the Origin-Destination matrix. We15

discuss a procedure to estimate the macroscopic trip lengths based on a new Origin-Destination16

matrix. We show that the estimated trip lengths show a good agreement with the ones calculated17

based on a new calculation of the microscopic trips, for the new Origin-Destination matrix. We18

analyze the impact of the macroscopic trip lengths on the traffic states, that are simulated using an19

accumulation-based simulator. We show that the trip lengths have a strong impact on the traffic20

states. And, the trip lengths are congestion-dependent when calculated at the reservoir level.21

Keywords: Macroscopic Trip Lengths, Accumulation-based Macroscopic Simulation, Macroscopic22

Fundamental Diagram, Congestion, MFD Dynamics23
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INTRODUCTION1

The first ideas of macroscopic traffic simulation based on the decomposition of a city into reser-2

voirs were introduced by Godfrey (5). But, it really started attracting more attention from the3

scientific community after the seminal works of Daganzo (1) and Geroliminis and Daganzo (2).4

Each reservoir is defined by a well-defined relation between mean flow and accumulation, the5

Macroscopic Fundamental Diagram (MFD). Based on Yokohama (Japan) traffic data, Geroliminis6

and Daganzo (2) provided ground truth evidence of the MFD existence. This has been confirmed7

by further studies: e.g., Buisson and Ladier, Ambühl and Menendez, Derrman et al., Lodera et al.8

(6, 7, 8, 9). The applications of the MFD in simulation has mostly been for now for testing different9

control algorithms: Haddad and Geroliminis (10); Ekbatani et al. (11); Ramezani et al. (4); and10

Haddad (12), for some examples.11

The mathematical formulation of the MFD was introduced by Daganzo (1), for a single12

reservoir. The traffic dynamics is governed by a state equation that relates the vehicle’s accu-13

mulation (n(t)) with the balance between the inflow (f(t)) and outflow (g(t)). Depending on the14

assumption made on g(t), one can distinguish two models in the literature: the accumulation-based15

model (Daganzo, Geroliminis and Daganzo, 1, 2); and the trip-based model (Arnott, 13). One16

main difference between both models lies in the definition of the trip lengths for a macroscopic17

path (macro-path). A macro-path is defined as a sequence of reservoirs in a multi-region network18

level approach.19

The first implementation of the accumulation-based model assumes a constant mean trip20

length (L̄) for all vehicles traveling inside the same reservoir (Daganzo, 1). This assumption might21

not be realistic in cases where the mean trip lengths are highly influenced by origins and desti-22

nations (Leclercq et al., 14). While, empirical results in Yokohama showed that this might be a23

reasonable assumption for a range of cases. Yildirimoglu and Geroliminis (3) proposes different24

average trip lengths for the different macro-paths crossing the same reservoir. The same work also25

proposes to split the conservation equation into different classes of vehicles that share a common26

travel distance. Ramezani et al. (4) proposes a more refined approach, where the trip lengths are27

dynamically calculated. The trip lengths are calculated for all vehicles traveling on reservoir i and28

going to a common adjacent reservoir j, depending on the exchange flows and accumulation. An29

accumulation-based model considers that the network outflow depends on the average trip length30

(without specifying in details which type of average is taken).31

A trip-based model (Arnott, Fosgerau, Lamotte and Geroliminis, Leclercq et al., Mariotte32

et al., 13, 15, 16, 17, 18) emphasizes that the outflow depends on the rate at which vehicles com-33

plete a generating trip length in the beginning of the trip and keeps track of the distance traveled34

for each vehicle. Recent work (Lamotte and Geroliminis, Mariotte et al., 16, 18) showed that hys-35

teresis loops might be generated in the outflow MFD between the onset and offset of congestion,36

even if the production MFD has no hysteresis.37

Both accumulation- and trip-based approaches thus require a proper estimation of trip38

lengths within reservoirs. On the other hand, a definition of the trip lengths at the macro-path39

level is required for the first traffic assignment iteration. Thus, dedicated methods able to scale up40

trips from the real (microscopic) network to the reservoirs (macroscopic) network should be de-41

signed and validated. These methods should be able to easily calculate trip lengths at the reservoir42

and at the macro-path levels.43

In this paper, we propose to investigate three methods to calculate macroscopic trip lengths.44

The idea is to use the microscopic network to generate individual trips and then aggregate them45
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Batista et al. 3

within the reservoirs considering: (i) no further information; (ii) the next reservoir to be traveled1

(i.e., the adjacent destination reservoir); and (iii) the related macro-path. These methods allow to2

obtain a trip length distribution at the reservoir level. The calculation of the trip lengths at the3

macro-path level is directly obtained by averaging the means of the trip length distribution over4

the sequence of reservoirs crossed. We note that these methods can be directly applied to both the5

accumulation- and trip-based models. We test these aggregation methods on the 6th Lyon district6

network (France), that is divided into eight reservoirs. We analyze the differences in the distribu-7

tions of trip lengths obtained through the three methods. We then discuss an approach to estimate8

the macroscopic trip lengths, considering the Origin-Destination (OD1) matrix between reservoirs9

without requiring the re-sampling of micro-trips. Finally, we test the three calculation methods by10

performing an accumulation-based dynamic simulations, considering the Wardrop equilibrium on11

the macro-paths. Finally, we show that the calculation methods highly influences the simulation12

results and the network equilibrium. We show that trip lengths are sensible to congestion at the13

reservoir level.14

1Capital letters refer to macroscopic OD’s, while lower case letters refer to microscopic od’s.
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THEORETICAL BACKGROUND ON THE ACCUMULATION-BASED MACROSCOPIC1

SIMULATION2

The traffic dynamics inside a single reservoir is governed by the evolution of the accumulation3

(n(t)):4

dn
dt

= f (t)−g(t) (1)

where f(t) is the inflow function and g(t) is the outflow function.5

Daganzo (1) proposes that the outflow function (g(t)) depends on n(t); and is proportional6

to the average trip length L̄:7

g(t)≈ P(n(t))
L̄

(2)

where P(n(t)) is the travel production that depends on the accumulation n(t).8

Daganzo (1) proposes to consider an average trip length L̄ for all vehicles traveling on9

the same reservoir. Some authors also consider an average trip length at the reservoir level and10

independent of the OD, for: a macroscopic simulator set-up (Daganzo, Ramezani et al., Gayah and11

Dagamzo, 1, 4, 19); control purposes (see e.g., Haddad, 12).12

Yildirimoglu and Geroliminis (3) and Ramezani et al. (4) propose more refined approaches13

for the definition of the trip lengths. Yildirimoglu and Geroliminis (3) proposes an average trip14

length for all vehicles traveling on the same reservoir and on the same macro-path. Ramezani et al.15

(4) proposes a dynamic calculation of the trip lengths that depend on the accumulation ni(t) inside16

reservoir i and on the MFD dynamics. The authors separate internal from other trips going to the17

adjacent reservoirs:18

Li(t) =
P(ni(t))

qi(t)
(3)

Li j(t) =
ni j(t)
ni(t)

P(ni(t))
qi j(t)

(4)

where Eq. 3 is valid for internal trips (or internal trip endings) to reservoir i; and Eq. 4 is valid for19

the trips going to the adjacent reservoirs. Li(t) is the internal trip length for reservoir i. qi(t) is20

the internal flow on reservoir i. ni j(t) is the accumulation that goes from reservoir i to the adjacent21

reservoir j. qi j(t) is the transfer flow between reservoirs i and j.22
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TRIP LENGTH DISTRIBUTIONS: METHODOLOGICAL FRAMEWORK1

In this section, we describe the proposed methods to calculate the trip lengths. We start from the2

microscopic network and perform a uniform sampling of Ntrips od pairs. For each od pair, we3

calculate effective micro-trips using the Dijkstra algorithm. Micro-trips represent shortest-paths4

between the od pairs. Let Γ be the set of the calculated micro-trips. We describe now three meth-5

ods to aggregate micro-trips and calculate macroscopic trip lengths. We present the mathematical6

formulation of these methods at: (i) the reservoir level that is crucial for the macroscopic simula-7

tion; and (ii) the macro-path level that is important for the first assignment iteration.8

At the reservoir level, these methods are defined as:9

1. Method 1: no information. All micro-trips that travel on the i−th reservoir are aggre-10

gated to calculate the average trip length L̄i of reservoir i:11

L̄i =
∑k lk

i

∑k δik
,∀k ∈ Γ (5)

where lk
i is the portion of micro-trip k that belongs to reservoir i; and δik is a dummy12

variable that equals 1 if micro-trip k travels on reservoir i.13

The set of trip lengths of reservoir i is:14

Li = {lk
i },∀k ∈ Γ (6)

2. Method 2: next destination adjacent reservoir. All micro-trips traveling on the i−th15

reservoir and going to the j−th adjacent reservoir are aggregated to define the average16

trip length L̄i j to go from reservoir i to j:17

L̄i j =
∑k δi jklk

i

∑k δi jk
,∀k ∈ Γ∧∀ j ∈ Λ (7)

where δi jk is a dummy variable that equals 1 if micro-trip k travels on reservoir i and18

goes to reservoir j; and Λ is the set of adjacent reservoirs to i.19

The set of trip lengths of reservoir i that goes to j is:20

Li j = {δi jklk
i },∀k ∈ Γ (8)

3. Method 3: related macro-path p. All micro-trips that travel on reservoir i and both21

belong to macro-path p are aggregated to define the average trip length of p on reservoir22

i (L̄p
i ):23

L̄p
i =

∑k δ p
iklk

i

∑k δ p
ik

,∀k ∈ Γ (9)

where δ p
ik is a dummy variable that equals 1 if micro-trip k travels on reservoir i and both24

define macro-path p.25
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Batista et al. 6

The set of trip lengths for macro-path p on reservoir i is:1

Lp
i = {δ p

iklk
i },∀k ∈ Γ (10)

Consider that macro-path p is defined as the following sequence of reservoirs:2

p = (p1, . . . pm, . . . , pR),∀m = 1, . . . ,R (11)

where R is the number of reservoirs that define p.3

The average trip lengths at the macro-path level (Lp) are directly calculated from the previ-4

ous definitions at the reservoir level:5

1. Method 1:6

L̄p =
pR

∑
m=p1

L̄m (12)

2. Method 2:7

L̄p =
pR

∑
m=p1

pR−1

∑
l=pm+1

¯Lml + ¯LpR pR (13)

3. Method 3:8

L̄p =
pR

∑
m=p1

L̄p
m (14)

At the macro-path level, the variances of Lp are calculated through the convolution of the9

variances of the set of trip lengths of the R reservoirs that define p. This means that we assume10

independent trip length distributions at the reservoir level.11

Note that, the set of the trip lengths previously defined at the reservoir level strongly depend12

on the algorithm used to calculate the micro-trips. For now, we focus on shortest-paths in distance13

over the microscopic network. More refined approaches like Frejinger et al. (20) and Flotterod and14

Bierlaire (21) will be investigated in future research.15

There are also other factors that may play an important role. Leclercq et al. (14) shows that16

(i) traffic conditions and (ii) od matrix influence the trip lengths. The (iii) value of Ntrips and (iv)17

the definition of a macro-path are other important factors. Points (iii) and (iv) will be subject to18

future research, while points (i) and (ii) will be investigated in this study.19
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Batista et al. 7

STATIC ANALYSIS OF THE MACROSCOPIC TRIP LENGTHS1

Network definition2

To test the proposed methods to calculate the trip length distributions, we consider the Lyon 6th3

district network shown in Fig. 1. This network has 757 links, 431 nodes and arbitrarily divided4

into 8 reservoirs.5
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FIGURE 1 : Top: Lyon 6th district network divided into 8 reservoirs. Bottom: MFD function of
each reservoir.

The MFD functions (Fig. 1) are determined using a microscopic simulator called Symuvia6

(Leclercq, 22). We consider a larger network that incorporates the 3rd and 6th districts of Lyon7

and the neighbor city of Villeurbarnne. This network covers a surface of 40 square kilometers. We8

consider two types of demand: a static demand that consists of ∼ 800.000 vehicles and is estimated9

using the model of Cabrera Delgado and Bonnel (23); and a dynamic demand that is obtained by10
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Batista et al. 8

combining daily demand and loop detectors measurements. We consider MFD sensors placed on1

the larger network and the data is aggregated every 10 minutes. We assume a bi-parabolic shape to2

fit the simulated data.3

We sample Ntrips = 10000 od pairs and calculate the micro-trips. We exclude the micro-4

trips that cross more than one time the same reservoir and we are left with ∼ 9200 micro-trips, that5

define 205 macro-paths. We hereafter refer to this set of macro-paths as Ψ and the corresponding6

set of micro-trips as Ξ. The aggregation of the od pairs into the OD matrix is listed in Table 1.7

We refer to this OD matrix as M. In this static analysis, we also have interest to investigate the8

impact of the OD matrix on the trip lengths. For this, we consider a second arbitrary sampling9

of Ntrips = 10000 od pairs, where there are more od pairs samples on the origin reservoir 1 and10

destination reservoirs 4, 6 and 8. This means, we are considering more micro-trips that go from11

the north to the south of the network (i.e., from reservoir 1 to 4, 6 and 8). For each of the previous12

OD, we sample 600 od pairs, out of the 10000. The remaining od pairs are uniformly sampled on13

the microscopic network. We refer to this second OD matrix as M∗ and the results are listed in14

Table 1. We consider M∗ to investigate the influence of the OD matrix on the trip lengths; and to15

introduce a procedure to calibrate the trip lengths based on the OD matrices information, without16

the need to recalculate the micro-trips.17

Destination reservoir
1 2 3 4 5 6 7 8

O
ri

gi
n

R
es

er
vo

ir

1 171 204 125 141 96 147 120 163
2 210 294 202 189 149 214 190 270
3 196 245 121 141 87 103 115 174
4 146 214 113 110 87 128 111 170
5 87 160 66 88 67 109 92 126
6 134 154 109 79 82 80 129 147
7 124 201 120 88 89 72 106 139
8 211 227 161 156 85 118 181 187

Destination reservoir
1 2 3 4 5 6 7 8

O
ri

gi
n

R
es

er
vo

ir

1 171 204 125 141 96 147 120 163
2 145 250 85 589 125 589 133 572
3 199 276 175 207 110 249 174 333
4 144 181 72 110 77 108 87 148
5 86 102 49 77 48 83 76 119
6 105 136 78 66 56 52 100 116
7 141 122 79 77 67 48 93 149
8 181 202 140 113 71 130 123 135

TABLE 1 : Number of trips between each macroscopic origin and destination reservoirs, for the
6th Lyon district network. Top: Matrix M. Bottom: Matrix M∗.
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Analysis of the trip length distributions1

We first consider the aggregation of the micro-trips by reservoir. In Fig. 2, we show the average trip2

length for the aggregation methods 1 and 2. For method 3, we show the histogram of trip lengths3

of all macro-paths that cross a reservoir. As observed in Fig. 2, it is clear that the destination and4

the specific macro-paths matter as the trip lengths are different than the mean of method 1, when5

we segment the micro-trips at the reservoir level. In fact, as shown by Leclercq et al. (14), the6

hypothesis of method 1 is clearly a strong restriction for MFD simulation. This will be investigated7

in the next section.8

We now investigate the impact of the three methods at the macro-path level. For this, we9

consider all possible OD pairs and the most sampled macro-path for each OD (i.e., the macro-paths10

that have the largest number of aggregated micro-trips, at the macro-path level). We show that the11

impact of the different aggregation methods is on the macroscopic trip length standard deviations12

and not on the averages. The averages are approximately similar for the three methods and the13

different OD’s. But there are some exceptions, such as for the following OD’s: 2-8; 3-8; 5-8;14

8-1; 3-1; 4-8; 7-8; or 8-4. As is it shown in Fig. 3, method 1 shows the largest standard deviation15

of the distributions, comparing the three methods. And, as expected the standard deviation is16

reduced from method 1 to 2 and to 3. Method 1 has the largest standard deviation because we17

are: aggregating a larger heterogeneity of micro-trips; and, assuming that the distributions of trip18

lengths are independent for different reservoirs, which is clearly not the case.19

Impact of the OD matrix on the trip lengths20

To analyze the impact of the OD matrix on the trip lengths, we calculate the associated micro-trips21

to M∗. We investigate this impact on methods 1 and 2. The micro-trips are aggregated at the22

reservoir level and the average values that are calculated are listed in Table 2, for methods 1 and23

2. As observed, method 1 is impacted, as shown for the cases of reservoirs 1, 2, 6 and 8. And, for24

method 2, the impact is observed for the cases of reservoirs: 1 to 2; 2 to 4; 2 to 5; 3 to 5; 3 to 7; 425

to 2; 4 to 6; 6 to 4; 6 to 8; and 7 to 6. Indeed, for both methods, the differences are of the order of26

10 to 50 meters. But, the study network is also small. And, these differences will indeed be more27

significant in larger networks.28

We discuss now a procedure to estimate the trip lengths based on the original calculation29

of micro-trips and M∗. One solution is to re-calculate the micro-trips for M∗, but this is time30

consuming. However for comparison, we do so for M∗.31

The trip lengths for method 1, are estimated as:32

L̂k =
1

N∗
k
∑

i
∑

j
α∗

i jL̄
k
i j,∀(i, j) ∈ Λ∧ i ̸= j (15)

where L̂k is the estimated trip length for reservoir k; N∗
k is the total number of micro-trips of M∗ that33

cross reservoir k; α∗
i j is the number of micro-trips of M∗ that are crossing reservoir k and coming34

from reservoir i and going to j; L̄k
i j is the average trip length calculated from the aggregation of35

all micro-trips of M that cross reservoir k. Such calculations are simple and allow to update trip36

lengths to dynamic variations of the OD matrix.37

We aim to show based on Eq. 15 that: L̂k ≈ L̄k. We estimate average trip length for all38

reservoirs based on M and M∗. The results are listed in Table 2. For a first test, we check that39

L̂k = L̄k, by setting M = M∗. The second test is based on M∗. As a reference for comparison,40
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FIGURE 2 : Average trip lengths for the three methods at the reservoir level.

we sample micro-trips based on M∗ and calculated the average trip lengths using method 1. The1

results are listed on the fourth column of Table 2. As it can be observed, the estimated average trip2
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Batista et al. 11

lengths (L̂) show a very good agreement with the average trip length (L̄) calculated directly from1

the micro-trips aggregation. The largest absolute difference is 10 meters for reservoir 4.2

For method 2, the trip lengths are estimated as:3

L̂k =
1

N∗
k

R

∑
i

α∗
idL̄k

id,∀i ∈ Λ∧ i ̸= d (16)

where α∗
id is the number of micro-trips crossing reservoir k and going to the destination adjacent4

reservoir d, calculated based on the new sampling; R is the number of adjacent reservoirs to k; and5

L̄k
id is the average trip length calculated through method 2, considering M.6

To test the estimation of average trip lengths for method 2, using Eq. 16, we consider: the7

OD matrices M and M∗; and the micro-trips that are sampled based on M∗. We aggregate these8

micro-trips according to method 2, to estimate the average trip lengths. The results are listed in9

Table 2. We also check that L̂k = L̄k, by setting M = M∗. The estimated average trip lengths (L̂)10

show a good agreement with the ones (L̄) calculated directly from the aggregation of the micro-trips11

through method 2.12
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FIGURE 3 : Average and standard deviations for the most sampled macro-paths for each OD of
the network. The results are calculated at the macro-path level. Each subplot correspond to an
origin reservoir. The vertical dashed lines separate the different destination reservoirs.
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Reservoir
M M∗ Static Dynamic

L̄ L̂ L̄ L̂ L̄ σL L̄ σL
1 322 322 289 290 322 221 414 233
2 363 363 383 375 363 184 294 166
3 342 342 340 346 342 154 396 164
4 311 311 311 301 311 185 411 211
5 287 292 290 289 287 153 205 122
6 256 256 241 242 256 152 332 157
7 302 302 298 298 302 186 259 130
8 305 305 295 304 305 170 377 185

Reservoir M M∗ Static Dynamic
Origin Destination L̄ L̂ L̄ L̂ L̄ σL L̄ σL

1 2 277 277 256 259 277 210 360 212
1 3 51 51 49 51 51 11 471 272
2 1 392 392 399 391 392 138 299 117
2 3 424 424 430 424 424 235 344 231
2 4 347 347 362 357 347 206 320 154
2 5 368 368 403 391 368 151 268 132
3 1 408 408 409 417 408 117 403 107
3 2 373 373 369 372 373 153 369 161
3 5 346 346 332 334 346 157 495 214
3 7 336 336 360 356 336 146 468 145
4 2 375 375 396 379 375 174 382 167
4 5 332 332 323 331 332 172 370 182
4 6 357 357 369 379 357 211 542 205
5 2 253 262 248 256 253 141 161 89
5 4 217 217 206 220 217 174 137 104
5 6 277 277 275 278 277 92 234 101
5 7 325 327 319 313 325 169 229 164
6 4 310 310 282 284 310 125 365 138
6 5 198 198 200 201 198 116 245 142
6 8 263 263 238 230 263 161 354 137
7 3 254 254 257 254 254 141 228 97
7 5 305 305 303 305 305 156 276 115
7 6 177 177 152 151 177 117 221 128
7 8 527 527 559 555 527 151 380 90
8 7 295 295 299 294 295 162 357 170

TABLE 2 : Average (L̄) and estimated (L̂) (m) trip lengths (at the reservoir level), for each reservoir
and considering the two trip matrices: M; and M∗. Average (L̄) and standard deviation (σL) of the
trip lengths calculated based on the time-dependent micro-trips are also listed. Top: Method 1.
Bottom: Method 2.
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TRIP LENGTH DISTRIBUTIONS AND THE MACROSCOPIC SIMULATION1

Simulation settings2

For the accumulation-based macroscopic simulation, we consider the network and MFD functions3

shown in Fig. 1. A total simulation period of T = 10000 seconds is considered, discretized into4

intervals of δ t = 10 seconds.5

We consider three OD pairs: 1 to 6; 8 to 4; and 3 to 4. For each OD pair, we consider a6

maximum of three macro-paths. A macro-path is given by the aggregation of the micro-trips by the7

set of crossed reservoirs. We stress out, that a complete investigation of the macro-path definition8

based on the aggregation of micro-trips will be subject to a future research. For the three OD pairs,9

we have seven macro-paths. These macro-paths and corresponding average trip lengths calculated10

at the reservoir level using each method, are listed in Table 3. We consider the following demand11

levels. For OD 1-6, we consider the following demand levels: 0.3 (veh/s) for δ t ∈ [0,1000]; 1.112

(veh/s) for δ t ∈ [1000,3000]; and 0.2 (veh/s) for δ t ∈ [3000,10000]. For OF 8-4, we consider the13

following demand levels: 0.2 (veh/s) for δ t ∈ [0,2000]; 0.9 (veh/s) for δ t ∈ [2000,4000]; and 0.314

(veh/s) for δ t ∈ [4000,10000]. For OD 3-4, we consider the following demand levels: 0.2 (veh/s)15

δ t ∈ [0,3000]; 0.7 (veh/s) for δ t ∈ [3000,5000]; and 0.1 (veh/s) for δ t ∈ [5000,10000].16

The traffic flow assignment is performed using the Wardrop principle. That is, we assume17

that users are perfectly rational and utility minimizers. To solve the Stochastic User Equilibrium18

fixed point problem, we use the Method of Successive Averages (MSA). The convergence criterium19

of the MSA is defined by the root mean square error (RMSE):20

RMSE =

√√√√∑
O

∑
D

∑
k

(Q j+1
k −Q j

k)
2

N
≤ tol (17)

where Q j+1
k and Q j

k are the new and old flows of macro-path k; N is the number of macro-paths for21

each OD; and tol is the convergence criterium. We set tol = 0.01.22

Does trip length definition affect the simulated traffic states?23

We investigate the influence of the three methods used to calculate the trip lengths, on the traffic24

states. The evolution of the accumulation and mean speed inside each reservoir is shown in Fig. 4.25

We observe a clear impact on the congestion pattern and duration. For methods 1 and 2, the26

congestion lasts between 2000 and 5000 seconds of the simulation period. Whilst, for method 3,27

it lasts until 8000 seconds. Indeed, different trip lengths at the reservoir level means completely28

different traffic states. Method 3 has a larger heterogeneity of trip lengths at the reservoir level29

than methods 1 and 2 (see Table 3). And, the succession of trip lengths for the same macro-path is30

different for the three methods. Consider, for example, the macro-path 3-2-4. For this macro-path,31

the trip length for reservoir 2 is: 684 meters, according to method 3; and 363 meters according32

to method 1. A larger trip length means a potential bottleneck (i.e., a reduction on the inflow33

capacity for this reservoir and specific macro-path) of this macro-path, considering method 3.34

Then, the congestion patterns are different for methods 1 and 3. One can also observe the evolution35

of the accumulation inside reservoir 2, for methods 1 and 3. The peak of the accumulation, is36

much larger for method 3, when compared to method 1. This is also explained by the larger37

heterogeneity of average trip lengths given by method 3 (see Table 3). The impact of considering38

a larger heterogeneity of trip lengths at the reservoir level is also discussed by Yildirimoglu and39
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Method 1 - Trip lengths

Macro-path
Reservoir

Ntrips1 2 3 4 5 6 7 8
1-2-5-6 322 363 ∼ ∼ 287 256 ∼ ∼ 97

1-2-5-7-6 322 363 ∼ ∼ 287 256 302 ∼ 48
3-2-4 ∼ 363 342 311 ∼ ∼ ∼ ∼ 63

3-2-5-6-4 ∼ 363 342 311 287 256 ∼ ∼ 46
3-2-5-7-6-4 ∼ 363 342 311 287 256 302 ∼ 13

8-7-6-4 ∼ ∼ ∼ 311 ∼ 256 302 305 116
8-7-3-5-2-4 ∼ 363 342 311 287 ∼ 302 305 37

Method 2 - Trip lengths

Macro-path
Reservoir

1 2 3 4 5 6 7 8
1-2-5-6 277 368 ∼ ∼ 277 245 ∼ ∼

1-2-5-7-6 277 368 ∼ ∼ 325 245 177 ∼
3-2-4 ∼ 347 373 259 ∼ ∼ ∼ ∼

3-2-5-6-4 ∼ 368 373 259 277 310 ∼ ∼
3-2-5-7-6-4 ∼ 368 373 259 325 310 177 ∼

8-7-6-4 ∼ ∼ ∼ 259 ∼ 310 177 295
8-7-3-5-2-4 ∼ 347 346 259 253 ∼ 347 259

Method 3 - Trip lengths

Macro-path
Reservoir

1 2 3 4 5 6 7 8
1-2-5-6 211 460 ∼ ∼ 289 254 ∼ ∼

1-2-5-7-6 260 407 ∼ ∼ 361 114 104 ∼
3-2-4 ∼ 684 358 185 ∼ ∼ ∼ ∼

3-2-5-6-4 ∼ 416 335 206 267 260 ∼ ∼
3-2-5-7-6-4 ∼ 75 304 258 248 411 104 ∼

8-7-6-4 ∼ ∼ ∼ 296 ∼ 411 299 275
8-7-3-5-2-4 ∼ 403 467 101 215 ∼ 182 300

TABLE 3 : Average trip lengths (m) at the reservoir level, for the seven macro-paths considered
for the accumulation-based simulation. Top: Method 1. The number of micro-trips that define
each macro-path is also listed. Middle: Method 2. Bottom: Method 3.

Geroliminis (3).1

Despite at the macro-path level, the three methods yield similar average trip lengths, the2

succession of trip lengths for the macro-paths calculated by the three methods have a clear impact3

on the traffic states inside each reservoir.4

In order to highlight which method is more realistic, a comparison with a trip-based simula-5
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tion, where vehicles follow the same trip sequence with the estimated micro-trips, will be discussed1

in the extended version of this paper. This aims to put in evidence the importance of variable trip2

lengths versus average trip lengths assumption, for different trips inside the same reservoir.3
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FIGURE 4 : Evolution of n(t) and v(t) during the simulation period, considering the three methods
to calculate the trip lengths.
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Are the trip length distributions congestion dependent?1

For now, the trip lengths were calculated based on shortest-paths in distance on the microscopic2

network, without considering travel times and thus traffic states. Hereby, we investigate the de-3

pendence of the trip lengths on the traffic states. For this purpose, we calculate time-dependent4

micro-trips, based on the mean speed given by the MFD dynamics. We consider the evolution5

of the mean speed, for Method 3 (Fig. 4), between 2000 and 8000 seconds. Based on this, we6

estimate an average mean speed for each reservoir. Considering the latter and the link lengths of7

the microscopic network, we calculate time-dependent micro-trips based on the same microscopic8

od pairs of the micro-trips listed in Ξ. We recover the microscopic lengths of these micro-trips and9

aggregate them according to the three methods the reservoir level. We then compare these results10

against the static trip lengths, calculated based on Ξ. For the comparison at the reservoir level, we11

define a parameter α that defines the absolute difference between the dynamic (Ld) and static (Ls)12

average trip lengths, as:13

α = Ld −Ls (18)

The static (Ls) and dynamic (Ld) average trip lengths and corresponding standard deviations14

are listed on Table 2, for methods 1 and 2. The absolute differences defined by α for the three15

methods, at the reservoir level, is shown in Fig. 5. As a reference for method 3, we consider the set16

of macro-paths Ψ. The histograms represent the relative differences of trip lengths, for the same17

macro-path, defined at the reservoir level.18

As observed in Table 2, the average trip lengths at the reservoir level are affected by ∼19

100 meters for method 1 and 2. There are a few exceptions. Consider as an example, the case of20

method 2 for micro-trips going from reservoir 1 to 3. At the static level, there are only 13 micro-21

trips that are aggregated, while for the dynamic one there are 635 micro-trips. In fact, performing22

the static sampling, micro-trips that departure from nodes close to the border between reservoirs23

1 and 3 are more probable to cross to reservoir 3 rather than 2. However, when reservoir 2 is24

congested, the link costs increase and consequently micro-trips that begin in nodes that are more25

far away from the border between reservoirs 1 and 3, will more probably cross it. On the other26

hand, the static micro-trips are not sensible to the reservoir definition. While in the dynamic case,27

we are considering the mean speed calculated through the MFD simulation and this induces also28

a dependence of the macroscopic network. Thus, the number of micro-trips that are aggregated29

to calculate the dynamic trip lengths is different. Method 3 is the more sensible to the number30

of aggregated micro-trips (Fig. 5). For this consider, as example, macro-path 1-3. The set of31

corresponding average trip lengths (in meters) are: 47 (reservoir 1) and 434 (reservoir 3) meters32

with 6 micro-trips associated, for the static case; and, 535 (reservoir 1) and 471 (reservoir 3)33

meters with 116 micro-trips associated, for the dynamic case. The latter also highlights the reasons34

previously mentioned. And, for this particular case, the difference between the static and dynamic35

cases are also due to the special geometry of the macroscopic network. Note that, there are only36

two connecting nodes between reservoirs 1 and 3 (Fig. 1).37
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FIGURE 5 : Absolute difference α (km) at the reservoir level, between the trip lengths calculated
based on the time-dependent micro-trips and the micro-trips listed on Ξ.
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CONCLUSIONS1

In this paper, we discuss three methods to calculate macroscopic trip lengths at both the reservoir2

and macro-path levels. These methods are based on the aggregation of micro-trips. We show that3

the different methods give different average trip lengths at the reservoir level. And, this has a4

significant impact on the macroscopic simulation. A trip-based simulation considering variable5

versus average trip lengths inside the same reservoir will be presented in the extended version6

of the paper, to put in evidence the importance of more refined definitions of trip lengths for the7

macroscopic simulation. Different trip lengths at the reservoir level yield completely different8

traffic dynamics. At the macro-path level, the impact of the different methods is on the standard9

deviation and not on the average of the trip lengths. We show that the trip lengths are congestion-10

dependent at the reservoir level. Method 3 is the more sensible to congestion, at the reservoir level.11

We also show the dependence of the trip lengths on the OD matrix. And, we discuss a procedure12

to quickly estimate the trip lengths based on a new definition of the OD matrix, without the need to13

recalculate the micro-trips. This is very useful when OD matrix is changing with time. We show14

that this procedure gives coherent average trip lengths for methods 1 and 2, compared to when we15

recalculate the micro-trips.16

As future research directions, we plan to investigate the dependence of the trip lengths on:17

the number of micro-trips Ntrips; and on the algorithm used to calculate the micro-trips. A ground-18

truth validation of these methods is also foreseen. We also plan to further tackle the question of19

the macro-path definition, based on the micro-trips aggregation.20
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