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. However, no study focus on the definition of the macroscopic trip lengths based on the microscopic network.

In this paper, we discuss three methods to calculate the macroscopic trip lengths based on the aggregation of microscopic trips, within each reservoir considering: (i) no further information;

(ii) the next reservoir to be traveled; and (iii) the related macro-path (i.e., the list of reservoirs that are crossed from the Origin to the Destination). Based on a static analysis of the network, we show that these methods: yield different average trip lengths at the reservoir level; and give similar average trip lengths at the macroscopic-path level, where the aggregation effect is on the standard deviation. We analyze the dependence of the trip lengths on the Origin-Destination matrix. We discuss a procedure to estimate the macroscopic trip lengths based on a new Origin-Destination matrix. We show that the estimated trip lengths show a good agreement with the ones calculated based on a new calculation of the microscopic trips, for the new Origin-Destination matrix. We analyze the impact of the macroscopic trip lengths on the traffic states, that are simulated using an accumulation-based simulator. We show that the trip lengths have a strong impact on the traffic states. And, the trip lengths are congestion-dependent when calculated at the reservoir level.

INTRODUCTION

The first ideas of macroscopic traffic simulation based on the decomposition of a city into reservoirs were introduced by Godfrey [START_REF] Godfrey | The mechanism of a road network[END_REF]. But, it really started attracting more attention from the scientific community after the seminal works of Daganzo [START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF] and Geroliminis and Daganzo [START_REF] Geroliminis | Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings[END_REF].

Each reservoir is defined by a well-defined relation between mean flow and accumulation, the Macroscopic Fundamental Diagram (MFD). Based on Yokohama (Japan) traffic data, Geroliminis and Daganzo [START_REF] Geroliminis | Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings[END_REF] provided ground truth evidence of the MFD existence. This has been confirmed by further studies: e.g., Buisson and Ladier, Ambühl and Menendez, Derrman et al., Lodera et al. [START_REF] Buisson | Exploring the Impact of Homogeneity of Traffic Measurements on the Existence of Macroscopic Fundamental Diagrams[END_REF][START_REF] Ambühl | Data fusion algorithm for macroscopic fundamental diagram estimation[END_REF][START_REF] Derrman | Towards Estimating Urban Macroscopic Fundamental Diagrams From Mobile Phone Signaling Data: A Simulation Study[END_REF][START_REF] Lodera | Data fusion algorithm for macroscopic fundamental diagram estimation[END_REF]. The applications of the MFD in simulation has mostly been for now for testing different control algorithms: Haddad and Geroliminis [START_REF] Haddad | On the stability of traffic perimeter control in two-region urban cities[END_REF]; Ekbatani et al. [START_REF] Ekbatani | Urban congestion gating control based on reduced operational network fundamental diagrams[END_REF]; Ramezani et al. [START_REF] Ramezani | Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control[END_REF]; and Haddad [START_REF] Haddad | Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics[END_REF], for some examples.

The mathematical formulation of the MFD was introduced by Daganzo (1), for a single reservoir. The traffic dynamics is governed by a state equation that relates the vehicle's accumulation (n(t)) with the balance between the inflow (f(t)) and outflow (g(t)). Depending on the assumption made on g(t), one can distinguish two models in the literature: the accumulation-based model (Daganzo,Geroliminis and Daganzo,[START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF][START_REF] Geroliminis | Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings[END_REF]; and the trip-based model (Arnott,[START_REF] Arnott | A bathtub model of downtown traffic congestion[END_REF]. One main difference between both models lies in the definition of the trip lengths for a macroscopic path (macro-path). A macro-path is defined as a sequence of reservoirs in a multi-region network level approach.

The first implementation of the accumulation-based model assumes a constant mean trip length ( L) for all vehicles traveling inside the same reservoir (Daganzo,[START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF]. This assumption might not be realistic in cases where the mean trip lengths are highly influenced by origins and destinations (Leclercq et al.,[START_REF] Leclercq | Macroscopic traffic dynamics with heterogeneous route patterns[END_REF]. While, empirical results in Yokohama showed that this might be a reasonable assumption for a range of cases. Yildirimoglu and Geroliminis (3) proposes different average trip lengths for the different macro-paths crossing the same reservoir. The same work also proposes to split the conservation equation into different classes of vehicles that share a common travel distance. Ramezani et al. [START_REF] Ramezani | Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control[END_REF] proposes a more refined approach, where the trip lengths are dynamically calculated. The trip lengths are calculated for all vehicles traveling on reservoir i and going to a common adjacent reservoir j, depending on the exchange flows and accumulation. An accumulation-based model considers that the network outflow depends on the average trip length (without specifying in details which type of average is taken).

A trip-based model (Arnott, Fosgerau, Lamotte and Geroliminis, Leclercq et al., Mariotte et al.,[START_REF] Arnott | A bathtub model of downtown traffic congestion[END_REF][START_REF] Fosgerau | Congestion in the bathtub[END_REF][START_REF] Lamotte | The morning commute in urban areas: Insights from theory and simulation[END_REF][START_REF] Leclercq | Dynamic macroscopic simulation of on-street parking search: A trip-based approach[END_REF][START_REF] Mariotte | A trip-based multi-reservoir MFD simulation framework[END_REF] emphasizes that the outflow depends on the rate at which vehicles complete a generating trip length in the beginning of the trip and keeps track of the distance traveled for each vehicle. Recent work (Lamotte and Geroliminis, Mariotte et al., [START_REF] Lamotte | The morning commute in urban areas: Insights from theory and simulation[END_REF][START_REF] Mariotte | A trip-based multi-reservoir MFD simulation framework[END_REF] showed that hysteresis loops might be generated in the outflow MFD between the onset and offset of congestion, even if the production MFD has no hysteresis.

Both accumulation-and trip-based approaches thus require a proper estimation of trip lengths within reservoirs. On the other hand, a definition of the trip lengths at the macro-path level is required for the first traffic assignment iteration. Thus, dedicated methods able to scale up trips from the real (microscopic) network to the reservoirs (macroscopic) network should be designed and validated. These methods should be able to easily calculate trip lengths at the reservoir and at the macro-path levels.

In this paper, we propose to investigate three methods to calculate macroscopic trip lengths.

The idea is to use the microscopic network to generate individual trips and then aggregate them TRB 2018 Annual Meeting Original paper submittal within the reservoirs considering: (i) no further information; (ii) the next reservoir to be traveled (i.e., the adjacent destination reservoir); and (iii) the related macro-path. These methods allow to obtain a trip length distribution at the reservoir level. The calculation of the trip lengths at the macro-path level is directly obtained by averaging the means of the trip length distribution over the sequence of reservoirs crossed. We note that these methods can be directly applied to both the accumulation-and trip-based models. We test these aggregation methods on the 6 th Lyon district network (France), that is divided into eight reservoirs. We analyze the differences in the distributions of trip lengths obtained through the three methods. We then discuss an approach to estimate the macroscopic trip lengths, considering the Origin-Destination (OD 1 ) matrix between reservoirs without requiring the re-sampling of micro-trips. Finally, we test the three calculation methods by performing an accumulation-based dynamic simulations, considering the Wardrop equilibrium on the macro-paths. Finally, we show that the calculation methods highly influences the simulation results and the network equilibrium. We show that trip lengths are sensible to congestion at the reservoir level. 1 Capital letters refer to macroscopic OD's, while lower case letters refer to microscopic od's.
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THEORETICAL BACKGROUND ON THE ACCUMULATION-BASED MACROSCOPIC

SIMULATION

The traffic dynamics inside a single reservoir is governed by the evolution of the accumulation (n(t)):

dn dt = f (t) -g(t) (1) 
where f(t) is the inflow function and g(t) is the outflow function.

Daganzo [START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF] proposes that the outflow function (g(t)) depends on n(t); and is proportional to the average trip length L:

g(t) ≈ P(n(t)) L ( 2 
)
where P(n(t)) is the travel production that depends on the accumulation n(t).

Daganzo [START_REF] Daganzo | Urban gridlock: Macroscopic modeling and mitigation approaches[END_REF] proposes to consider an average trip length L for all vehicles traveling on the same reservoir. Some authors also consider an average trip length at the reservoir level and independent of the OD, for: a macroscopic simulator set-up (Daganzo, Ramezani et 

L i (t) = P(n i (t)) q i (t) (3) 
L i j (t) = n i j (t) n i (t) P(n i (t)) q i j (t) (4) 
where Eq. 3 is valid for internal trips (or internal trip endings) to reservoir i; and Eq. 4 is valid for the trips going to the adjacent reservoirs. L i (t) is the internal trip length for reservoir i. q i (t) is the internal flow on reservoir i. n i j (t) is the accumulation that goes from reservoir i to the adjacent reservoir j. q i j (t) is the transfer flow between reservoirs i and j.
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TRIP LENGTH DISTRIBUTIONS: METHODOLOGICAL FRAMEWORK

In this section, we describe the proposed methods to calculate the trip lengths. We start from the microscopic network and perform a uniform sampling of N trips od pairs. For each od pair, we calculate effective micro-trips using the Dijkstra algorithm. Micro-trips represent shortest-paths between the od pairs. Let Γ be the set of the calculated micro-trips. We describe now three methods to aggregate micro-trips and calculate macroscopic trip lengths. We present the mathematical formulation of these methods at: (i) the reservoir level that is crucial for the macroscopic simulation; and (ii) the macro-path level that is important for the first assignment iteration.

At the reservoir level, these methods are defined as:

1. Method 1: no information. All micro-trips that travel on the i-th reservoir are aggregated to calculate the average trip length Li of reservoir i:

Li = ∑ k l k i ∑ k δ ik , ∀k ∈ Γ (5) 
where l k i is the portion of micro-trip k that belongs to reservoir i; and δ ik is a dummy variable that equals 1 if micro-trip k travels on reservoir i.

The set of trip lengths of reservoir i is:

L i = {l k i }, ∀k ∈ Γ (6) 
2. Method 2: next destination adjacent reservoir. All micro-trips traveling on the i-th reservoir and going to the j-th adjacent reservoir are aggregated to define the average trip length Li j to go from reservoir i to j:

Li j = ∑ k δ i jk l k i ∑ k δ i jk , ∀k ∈ Γ ∧ ∀ j ∈ Λ (7) 
where δ i jk is a dummy variable that equals 1 if micro-trip k travels on reservoir i and goes to reservoir j; and Λ is the set of adjacent reservoirs to i.

The set of trip lengths of reservoir i that goes to j is:

L i j = {δ i jk l k i }, ∀k ∈ Γ (8) 
3. Method 3: related macro-path p. All micro-trips that travel on reservoir i and both belong to macro-path p are aggregated to define the average trip length of p on reservoir i ( Lp i ):

Lp i = ∑ k δ p ik l k i ∑ k δ p ik , ∀k ∈ Γ (9)
where δ p ik is a dummy variable that equals 1 if micro-trip k travels on reservoir i and both define macro-path p.
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The set of trip lengths for macro-path p on reservoir i is:

L p i = {δ p ik l k i }, ∀k ∈ Γ (10) 
Consider that macro-path p is defined as the following sequence of reservoirs:

p = (p 1 , . . . p m , . . . , p R ), ∀m = 1, . . . , R (11) 
where R is the number of reservoirs that define p.

The average trip lengths at the macro-path level (L p ) are directly calculated from the previous definitions at the reservoir level:

1. Method 1:

Lp = p R ∑ m=p 1 Lm ( 12 
)
2. Method 2:

Lp = p R ∑ m=p 1 p R-1 ∑ l=p m+1 L ml + Lp R p R ( 13 
)
3. Method 3:

Lp = p R ∑ m=p 1 Lp m ( 14 
)
At the macro-path level, the variances of L p are calculated through the convolution of the variances of the set of trip lengths of the R reservoirs that define p. This means that we assume independent trip length distributions at the reservoir level.

Note that, the set of the trip lengths previously defined at the reservoir level strongly depend on the algorithm used to calculate the micro-trips. For now, we focus on shortest-paths in distance over the microscopic network. More refined approaches like Frejinger et al. [START_REF] Frejinger | Sampling of alternatives for route choice modeling[END_REF] and Flotterod and Bierlaire (21) will be investigated in future research.

There are also other factors that may play an important role. Leclercq et al. [START_REF] Leclercq | Macroscopic traffic dynamics with heterogeneous route patterns[END_REF] shows that (i) traffic conditions and (ii) od matrix influence the trip lengths. The (iii) value of N trips and (iv)

the definition of a macro-path are other important factors. Points (iii) and (iv) will be subject to future research, while points (i) and (ii) will be investigated in this study.
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STATIC ANALYSIS OF THE MACROSCOPIC TRIP LENGTHS Network definition

To test the proposed methods to calculate the trip length distributions, we consider the Lyon 6 th district network shown in Fig. 1. This network has 757 links, 431 nodes and arbitrarily divided into 8 reservoirs.

x The MFD functions (Fig. 1) are determined using a microscopic simulator called Symuvia (Leclercq,[START_REF] Leclercq | Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model[END_REF]. We consider a larger network that incorporates the 3 rd and 6 th districts of Lyon and the neighbor city of Villeurbarnne. This network covers a surface of 40 square kilometers. We consider two types of demand: a static demand that consists of ∼ 800.000 vehicles and is estimated using the model of Cabrera Delgado and Bonnel [START_REF] Cabrera Delgado | Level of aggregation of zoning and temporal transferability of the gravity distribution model: The case of Lyon[END_REF]; and a dynamic demand that is obtained by TRB 2018 Annual Meeting Original paper submittal combining daily demand and loop detectors measurements. We consider MFD sensors placed on the larger network and the data is aggregated every 10 minutes. We assume a bi-parabolic shape to fit the simulated data.

We sample N trips = 10000 od pairs and calculate the micro-trips. We exclude the microtrips that cross more than one time the same reservoir and we are left with ∼ 9200 micro-trips, that define 205 macro-paths. We hereafter refer to this set of macro-paths as Ψ and the corresponding set of micro-trips as Ξ. The aggregation of the od pairs into the OD matrix is listed in Table 1.

We refer to this OD matrix as M. In this static analysis, we also have interest to investigate the impact of the OD matrix on the trip lengths. For this, we consider a second arbitrary sampling of N trips = 10000 od pairs, where there are more od pairs samples on the origin reservoir 

Analysis of the trip length distributions

We first consider the aggregation of the micro-trips by reservoir. In Fig. 2, we show the average trip length for the aggregation methods 1 and 2. For method 3, we show the histogram of trip lengths of all macro-paths that cross a reservoir. As observed in Fig. 2, it is clear that the destination and the specific macro-paths matter as the trip lengths are different than the mean of method 1, when we segment the micro-trips at the reservoir level. In fact, as shown by Leclercq et al. [START_REF] Leclercq | Macroscopic traffic dynamics with heterogeneous route patterns[END_REF], the hypothesis of method 1 is clearly a strong restriction for MFD simulation. This will be investigated in the next section.

We now investigate the impact of the three methods at the macro-path level. For this, we consider all possible OD pairs and the most sampled macro-path for each OD (i.e., the macro-paths that have the largest number of aggregated micro-trips, at the macro-path level). We show that the impact of the different aggregation methods is on the macroscopic trip length standard deviations and not on the averages. The averages are approximately similar for the three methods and the different OD's. But there are some exceptions, such as for the following OD's: 2-8; 3-8; 5-8;

8-1; 3-1; 4-8; 7-8; or 8-4. As is it shown in Fig. 3, method 1 shows the largest standard deviation of the distributions, comparing the three methods. And, as expected the standard deviation is reduced from method 1 to 2 and to 3. Method 1 has the largest standard deviation because we are: aggregating a larger heterogeneity of micro-trips; and, assuming that the distributions of trip lengths are independent for different reservoirs, which is clearly not the case.

Impact of the OD matrix on the trip lengths

To analyze the impact of the OD matrix on the trip lengths, we calculate the associated micro-trips to M * . We investigate this impact on methods 1 and 2. The micro-trips are aggregated at the reservoir level and the average values that are calculated are listed in Table 2, for methods 1 and 2. As observed, method 1 is impacted, as shown for the cases of reservoirs 1, 2, 6 and 8. And, for method 2, the impact is observed for the cases of reservoirs: 1 to 2; 2 to 4; 2 to 5; 3 to 5; 3 to 7; 4 to 2; 4 to 6; 6 to 4; 6 to 8; and 7 to 6. Indeed, for both methods, the differences are of the order of 10 to 50 meters. But, the study network is also small. And, these differences will indeed be more significant in larger networks.

We discuss now a procedure to estimate the trip lengths based on the original calculation of micro-trips and M * . One solution is to re-calculate the micro-trips for M * , but this is time consuming. However for comparison, we do so for M * .

The trip lengths for method 1, are estimated as:

Lk = 1 N * k ∑ i ∑ j α * i j Lk i j , ∀(i, j) ∈ Λ ∧ i ̸ = j ( 15 
)
where Lk is the estimated trip length for reservoir k; N * k is the total number of micro-trips of M * that cross reservoir k; α * i j is the number of micro-trips of M * that are crossing reservoir k and coming from reservoir i and going to j; Lk i j is the average trip length calculated from the aggregation of all micro-trips of M that cross reservoir k. Such calculations are simple and allow to update trip lengths to dynamic variations of the OD matrix.

We aim to show based on Eq. 15 that: Lk ≈ Lk . We estimate average trip length for all reservoirs based on M and M * . The results are listed in For method 2, the trip lengths are estimated as:

Lk = 1 N * k R ∑ i α * id Lk id , ∀i ∈ Λ ∧ i ̸ = d ( 16 
)
where α * id is the number of micro-trips crossing reservoir k and going to the destination adjacent reservoir d, calculated based on the new sampling; R is the number of adjacent reservoirs to k; and Lk id is the average trip length calculated through method 2, considering M.

To test the estimation of average trip lengths for method 2, using Eq. 16, we consider: the OD matrices M and M * ; and the micro-trips that are sampled based on M * . We aggregate these micro-trips according to method 2, to estimate the average trip lengths. The results are listed in Table 2. We also check that Lk = Lk , by setting M = M * . The estimated average trip lengths ( L)

show a good agreement with the ones ( L) calculated directly from the aggregation of the micro-trips through method 2.
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Simulation settings

For the accumulation-based macroscopic simulation, we consider the network and MFD functions shown in Fig. 1. A total simulation period of T = 10000 seconds is considered, discretized into intervals of δt = 10 seconds.

We consider three OD pairs: 1 to 6; 8 to 4; and 3 to 4. For each OD pair, we consider a maximum of three macro-paths. A macro-path is given by the aggregation of the micro-trips by the set of crossed reservoirs. We stress out, that a complete investigation of the macro-path definition based on the aggregation of micro-trips will be subject to a future research. For the three OD pairs, we have seven macro-paths. These macro-paths and corresponding average trip lengths calculated at the reservoir level using each method, are listed in Table 3. We consider the following demand levels. For OD 1-6, we consider the following demand levels: 0. The traffic flow assignment is performed using the Wardrop principle. That is, we assume that users are perfectly rational and utility minimizers. To solve the Stochastic User Equilibrium fixed point problem, we use the Method of Successive Averages (MSA). The convergence criterium of the MSA is defined by the root mean square error (RMSE):

RMSE = ∑ O ∑ D ∑ k (Q j+1 k -Q j k ) 2 N ≤ tol (17) 
where

Q j+1 k
and Q j k are the new and old flows of macro-path k; N is the number of macro-paths for each OD; and tol is the convergence criterium. We set tol = 0.01.

Does trip length definition affect the simulated traffic states?

We investigate the influence of the three methods used to calculate the trip lengths, on the traffic states. The evolution of the accumulation and mean speed inside each reservoir is shown in Fig. 4.

We observe a clear impact on the congestion pattern and duration. For methods 1 and 2, the congestion lasts between 2000 and 5000 seconds of the simulation period. Whilst, for method 3, it lasts until 8000 seconds. Indeed, different trip lengths at the reservoir level means completely different traffic states. Method 3 has a larger heterogeneity of trip lengths at the reservoir level than methods 1 and 2 (see Table 3). And, the succession of trip lengths for the same macro-path is different for the three methods. Consider, for example, the macro-path 3-2-4. For this macro-path, the trip length for reservoir 2 is: 684 meters, according to method 3; and 363 meters according to method 1. A larger trip length means a potential bottleneck (i.e., a reduction on the inflow capacity for this reservoir and specific macro-path) of this macro-path, considering method 3.

Then, the congestion patterns are different for methods 1 and 3. One can also observe the evolution of the accumulation inside reservoir 2, for methods 1 and 3. The peak of the accumulation, is much larger for method 3, when compared to method 1. This is also explained by the larger heterogeneity of average trip lengths given by method 3 (see Table 3). The impact of considering a larger heterogeneity of trip lengths at the reservoir level is also discussed by 3 : Average trip lengths (m) at the reservoir level, for the seven macro-paths considered for the accumulation-based simulation. Top: Method 1. The number of micro-trips that define each macro-path is also listed. Middle: Method 2. Bottom: Method 3.

Geroliminis [START_REF] Yildirimoglu | Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams[END_REF]. For now, the trip lengths were calculated based on shortest-paths in distance on the microscopic network, without considering travel times and thus traffic states. Hereby, we investigate the dependence of the trip lengths on the traffic states. For this purpose, we calculate time-dependent micro-trips, based on the mean speed given by the MFD dynamics. We consider the evolution of the mean speed, for Method 3 (Fig. 4), between 2000 and 8000 seconds. Based on this, we estimate an average mean speed for each reservoir. Considering the latter and the link lengths of the microscopic network, we calculate time-dependent micro-trips based on the same microscopic od pairs of the micro-trips listed in Ξ. We recover the microscopic lengths of these micro-trips and aggregate them according to the three methods the reservoir level. We then compare these results against the static trip lengths, calculated based on Ξ. For the comparison at the reservoir level, we define a parameter α that defines the absolute difference between the dynamic (L d ) and static (L s ) average trip lengths, as:

R 1 R 2 R 3 R 4 R 5 R 6 R 7
α = L d -L s ( 18 
)
The static (L s ) and dynamic (L d ) average trip lengths and corresponding standard deviations are listed on Table 2, for methods 1 and 2. The absolute differences defined by α for the three methods, at the reservoir level, is shown in Fig. 5. As a reference for method 3, we consider the set of macro-paths Ψ. The histograms represent the relative differences of trip lengths, for the same macro-path, defined at the reservoir level.

As observed in Table 2, the average trip lengths at the reservoir level are affected by ∼ 100 meters for method 1 and 2. There are a few exceptions. Consider as an example, the case of method 2 for micro-trips going from reservoir 1 to 3. At the static level, there are only 13 microtrips that are aggregated, while for the dynamic one there are 635 micro-trips. In fact, performing the static sampling, micro-trips that departure from nodes close to the border between reservoirs 1 and 3 are more probable to cross to reservoir 3 rather than 2. However, when reservoir 2 is congested, the link costs increase and consequently micro-trips that begin in nodes that are more far away from the border between reservoirs 1 and 3, will more probably cross it. On the other hand, the static micro-trips are not sensible to the reservoir definition. While in the dynamic case, we are considering the mean speed calculated through the MFD simulation and this induces also a dependence of the macroscopic network. Thus, the number of micro-trips that are aggregated to calculate the dynamic trip lengths is different. Method 3 is the more sensible to the number of aggregated micro-trips (Fig. 5). For this consider, as example, macro-path 1-3. The set of corresponding average trip lengths (in meters) are: 47 (reservoir 1) and 434 (reservoir 3) meters with 6 micro-trips associated, for the static case; and, 535 (reservoir 1) and 471 (reservoir 3) meters with 116 micro-trips associated, for the dynamic case. The latter also highlights the reasons previously mentioned. And, for this particular case, the difference between the static and dynamic cases are also due to the special geometry of the macroscopic network. Note that, there are only two connecting nodes between reservoirs 1 and 3 (Fig. 1).
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CONCLUSIONS

In this paper, we discuss three methods to calculate macroscopic trip lengths at both the reservoir and macro-path levels. These methods are based on the aggregation of micro-trips. We show that the different methods give different average trip lengths at the reservoir level. And, this has a significant impact on the macroscopic simulation. A trip-based simulation considering variable versus average trip lengths inside the same reservoir will be presented in the extended version of the paper, to put in evidence the importance of more refined definitions of trip lengths for the macroscopic simulation. Different trip lengths at the reservoir level yield completely different traffic dynamics. At the macro-path level, the impact of the different methods is on the standard deviation and not on the average of the trip lengths. We show that the trip lengths are congestiondependent at the reservoir level. Method 3 is the more sensible to congestion, at the reservoir level.

We also show the dependence of the trip lengths on the OD matrix. And, we discuss a procedure to quickly estimate the trip lengths based on a new definition of the OD matrix, without the need to recalculate the micro-trips. This is very useful when OD matrix is changing with time. We show that this procedure gives coherent average trip lengths for methods 1 and 2, compared to when we recalculate the micro-trips.

As future research directions, we plan to investigate the dependence of the trip lengths on:

the number of micro-trips N trips ; and on the algorithm used to calculate the micro-trips. A groundtruth validation of these methods is also foreseen. We also plan to further tackle the question of the macro-path definition, based on the micro-trips aggregation.
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8 FIGURE 3 :

 83 FIGURE 3 : Average and standard deviations for the most sampled macro-paths for each OD of the network. The results are calculated at the macro-path level. Each subplot correspond to an origin reservoir. The vertical dashed lines separate the different destination reservoirs.

1 3 time

 3 Despite at the macro-path level, the three methods yield similar average trip lengths, the 2 succession of trip lengths for the macro-paths calculated by the three methods have a clear impact 3 on the traffic states inside each reservoir.[START_REF] Ramezani | Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control[END_REF] In order to highlight which method is more realistic, a comparison with a trip-based simula-5 TRB 2018 Annual MeetingOriginal paper submittal tion, where vehicles follow the same trip sequence with the estimated micro-trips, will be discussed 1 in the extended version of this paper. This aims to put in evidence the importance of variable trip 2 lengths versus average trip lengths assumption, for different trips inside the same reservoir.

3 FIGURE 4 :

 34 FIGURE 4 : Evolution of n(t) and v(t) during the simulation period, considering the three methods to calculate the trip lengths.

,

  

FIGURE 5 :

 5 FIGURE 5 : Absolute difference α (km) at the reservoir level, between the trip lengths calculated based on the time-dependent micro-trips and the micro-trips listed on Ξ.

Table 1 .

 1 1 and destination reservoirs 4, 6 and 8. This means, we are considering more micro-trips that go from the north to the south of the network (i.e., from reservoir 1 to 4, 6 and 8). For each of the previous OD, we sample 600 od pairs, out of the 10000. The remaining od pairs are uniformly sampled on the microscopic network. We refer to this second OD matrix as M * and the results are listed in We consider M * to investigate the influence of the OD matrix on the trip lengths; and to introduce a procedure to calibrate the trip lengths based on the OD matrices information, without the need to recalculate the micro-trips.

				Destination reservoir	
		1	2	3	4	5	6	7	8
		1 171 204 125 141 96 147 120 163
	Origin Reservoir	2 210 294 202 189 149 214 190 270 3 196 245 121 141 87 103 115 174 4 146 214 113 110 87 128 111 170 5 87 160 66 88 67 109 92 126 6 134 154 109 79 82 80 129 147 7 124 201 120 88 89 72 106 139
		8 211 227 161 156 85 118 181 187
				Destination reservoir	
		1	2	3	4	5	6	7	8
		1 171 204 125 141 96 147 120 163
	Origin Reservoir	2 145 250 85 589 125 589 133 572 3 199 276 175 207 110 249 174 333 4 144 181 72 110 77 108 87 148 5 86 102 49 77 48 83 76 119 6 105 136 78 66 56 52 100 116 7 141 122 79 77 67 48 93 149
		8 181 202 140 113 71 130 123 135

TABLE 1 :

 1 Number of trips between each macroscopic origin and destination reservoirs, for the 6

th Lyon district network. Top: Matrix M. Bottom: Matrix M * . TRB 2018 Annual Meeting Original paper submittal

Table 2
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		40		Reservoir 3			40		Reservoir 4
	Counts	20 30				M 3 M 1 M 2 : 3 to 1 M 2 : 3 to 2 M 2 : 3 to 5 M 2 : 3 to 7 M 2 : 3 to 3	Counts	30 20			M 3 M 1 M 2 : 4 to 2 M 2 : 4 to 5 M 2 : 4 to 6 M 2 : 4 to 4
		10						10		
		0						0		
		0	200	400	600	800 1000		0	200	400	600	800 1000
				L [m]					L [m]
		40		Reservoir 5			40		Reservoir 6
	Counts	20 30				M 3 M 1 M 2 : 5 to 2 M 2 : 5 to 4 M 2 : 5 to 6 M 2 : 5 to 7 M 2 : 5 to 5	Counts	20 30			M 3 M 1 M 2 : 6 to 4 M 2 : 6 to 5 M 2 : 6 to 7 M 2 : 6 to 8 M 2 : 6 to 6
		10						10		
		0						0		
		0	200	400	600	800 1000		0	200	400	600	800 1000
				L [m]					L [m]
		40		Reservoir 7			40		Reservoir 8
	Counts	20 30				M 3 M 1 M 2 : 7 to 3 M 2 : 7 to 5 M 2 : 7 to 6 M 2 : 7 to 8 M 2 : 7 to 7	Counts	30 20			M 3 M 1 M 2 : 8 to 6 M 2 : 8 to 7 M 2 : 8 to 8
		10						10		
		0						0		
		0	200	400	600	800 1000		0	200	400	600	800 1000
				L [m]					L [m]

. For a first test, we check that Lk = Lk , by setting M = M * . The second test is based on M * . As a reference for comparison, TRB 2018 Annual Meeting Original paper submittal

FIGURE 2 : Average trip lengths for the three methods at the reservoir level.

we sample micro-trips based on M * and calculated the average trip lengths using method 1. The 1 results are listed on the fourth column of Table 2. As it can be observed, the estimated average trip 2 TRB 2018 Annual Meeting Original paper submittal lengths ( L) show a very good agreement with the average trip length ( L) calculated directly from the micro-trips aggregation. The largest absolute difference is 10 meters for reservoir 4.

TABLE 2 :

 2 

	TRB 2018 Annual Meeting

Average ( L) and estimated ( L) (m) trip lengths (at the reservoir level), for each reservoir and considering the two trip matrices: M; and M * . Average ( L) and standard deviation (σ L ) of the trip lengths calculated based on the time-dependent micro-trips are also listed. Top: Method 1. Bottom: Method 2. TRB 2018 Annual Meeting Original paper submittal TRIP LENGTH DISTRIBUTIONS AND THE MACROSCOPIC SIMULATION

  3 (veh/s) for δt ∈ [0, 1000]; 1.1 (veh/s) for δt ∈ [1000, 3000]; and 0.2 (veh/s) for δt ∈ [3000, 10000]. For OF 8-4, we consider the following demand levels: 0.2 (veh/s) for δt ∈ [0, 2000]; 0.9 (veh/s) for δt ∈ [2000, 4000]; and 0.3 (veh/s) for δt ∈ [4000, 10000]. For OD 3-4, we consider the following demand levels: 0.2 (veh/s)

δt ∈ [0, 3000]; 0.7 (veh/s) for δt ∈ [3000, 5000]; and 0.1 (veh/s) for δt ∈ [5000, 10000].
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