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ABSTRACT: Many researches have been conducted in the structural engineering field in order to develop
efficient numerical tools able to reproduce the complex nonlinear behavior of reinforced concrete structures.
In the case of slender elements, enhanced beam models have been developed to try to introduce shear effects,
but in these models, the transverse steel is sometimes taken into consideration with approximated manner or
often not at all. However, as shown by some experimental tests, the amount of transverse reinforcement triggers
significantly the behavior of beam elements, especially under cyclic loading. The present study adresses this
problem by investigating solutions for an enhanced multifiber beam element, accounting for vertical stretching
of the cross-section occurring due to the presence of stirrups. A timoshenko beam element with internal degrees
of freedom and higher order interpolation functions is selected. Full 3D stresses and strains are obtained and
the construction of the element and sectional stiffness matrices is detailed. The element presented hereafter is
suitable for an arbitrary shape cross-section made of heterogeneous materials. Numerical applications on a plain
concrete cantilever beam subjected to tension and bending tests respectively are presented. Moreover, as a first
application, a dilation effect is added to the concrete fibers in order to highlight the role of transversal rebars.
All the numerical results are confronted to the outcomes of stantard 3D finite element computations.

1 INTRODUCTION

To study the seismic vulnerability of existing rein-
forced concrete structures, numerical computations
at the structural scale able to account for material
nonlinearities are needed. 2D and 3D finite element
formulations are too costly, whereas multifiber beam
elements combine the advantages of high computa-
tional speed with an increased accuracy for nonlin-
ear materials. The principle of multifiber modelling
consists on adding a two dimensional section at the
Gauss point of the element. Each section is afterwards
discretized into several elements presenting Gauss
points where stresses and strains are computed. To
this end, generalized strains are obtained at the beam
Gauss points from the node displacements. Then,
based upon Euler-Bernoulli or Timoshenko’s theory,
they are used to calculate the total strains, and with an
adequate constitutive law, stresses are deduced at the

Gauss points of the section. The generalized forces
are finally derived after an integration made over the
cross-section (Guedes et al. 1994).

A variety of approaches have been developed to try
to introduce shear effects, such as those proposed by
(Le Corvec 2012), but whose model can’t be applied
to reinforced concrete elements, and the numerical
formulation of (Mohr et al. 2010) which is adapted
to reinforced concrete applications but works only in
2D. More recently, (Capdevielle et al. 2016) devel-
oped a nonlinear multifiber beam model which pro-
vides robust results by the introduction of torsional
warping in the case of reinforced concrete beams sub-
jected to shear dominating loads.

In the above mentioned works, the transverse steel
is sometimes taken into consideration with approxi-
mated manner or often not at all. However, as shown
by some experimental tests conducted by Cusson &
Paultre (1995), the amount of transverse reinforce-



ment triggers significantly the behavior of beam el-
ements, especially under cyclic loading.

Hereafter, a 3D enhanced multifiber beam model
able to account for the distortion of the section is
presented. It’s a displacement-based formulation and
higher order interpolation functions are involved in
order to avoid shear locking problems. Moreover, lon-
gitudinal and transversal rebars are introduced in the
numerical model and their implementation is vali-
dated by comparisons performed with results of 3D
finite element calculations in the linear elastic frame-
work.

2 PROPOSED MODEL

2.1 Section Kinematics

A 3D multifiber Timoshenko beam, displacement-
based, element has been developed. The main as-
sumption considered herein is that the full displace-
ment of any fiber at the cross-section level is defined
by the superposition of the traditional rigid body dis-
placements of the plane section (uP ) obtained with
Timoshenko’s theory, plus an additional displacement
field (uw). The latter one has two transversal compo-
nents, uwy and uwz , which stand for the distortion of the
section in y and z directions respectively. The total
displacement (u) of any fiber is given by the follow-
ing equation:

u =

[
Ux(x)− yθz(x) + zθy(x)

Uy(x)− zθx(x)
Uz(x) + yθx(x)

]
︸ ︷︷ ︸

uP

+

[
0

uwy (x, y, z)
uwz (x, y, z)

]
︸ ︷︷ ︸

uw

(1)

Ux, Uy and Uz being the translations in x, y and z di-
rections respectively. As for θx, θy and θz, they denote
the three rotations about x, y and z axes respectively,
for a standard 3D beam element.

Under the assumption of small displacements, the
total strain at any point will be formed by the sum of
the plane strain field (εP ) and the distortional strain
(εw) as follows:

ε =
1

2
(grad(u) + grad(u))T = εP (uP ) + εw(uw)

(2)

Therefore, the 6 components of the total strain field
are defined as:

εxx = dUx

dx
− y dθz

dx
+ z dθy

dx

εyy =
∂uwy
∂y

εzz = ∂uwz
∂z

γxy = −θz + dUy

dx
− z dθx

dx
+

∂uwy
∂x

γxz = θy + dUz

dx
+ y dθx

dx
+ ∂uwz

∂x

γyz =
∂uwy
∂z

+ ∂uwz
∂y

(3)

With equation (3), the plane strain field can be ex-
pressed in function of the generalized deformation
vector es, and a compatibility matrix as(y, z) so that
εP takes the following form:

εP =



1 0 0 0 +z −y
0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 −z 0 0

0 0 1 y 0 0

0 0 0 0 0 0


︸ ︷︷ ︸

as(y,z)



dUx

dx
dUy

dx
− θz

dUz

dx
+ θy
dθx
dx
dθy
dx

dθz
dx


︸ ︷︷ ︸

es

(4)

Also, as can be seen from equation (3), the dis-
tortional displacement (uw) contributes to the lat-
eral deformation components (εyy) and (εzz). There-
fore, transverse strains are not null, and the additional
strains (εw) play an important role in the description
of the vertical stretching of the section. As a con-
sequence, the effect of transversal reinforcement de-
scribed by lateral expansion and contraction, can be
taken into account. Hence, the behavior of confined
reinforced concrete elements can be studied.

2.2 Caillerie’s Timoshenko beam element with
internal degrees of freedom

In order to avoid shear locking problems (Stolarski
and Belytschko 1982, Ibrahimbergović and Frey
1993) coming from the use of linear interpolation
functions, several authors have developed numerical
models based on higher order interpolation functions
or functions depending on material properties. How-
ever, the latter ones present the disadvantage of not
being updated after damage. Recently, a new multi-
fiber beam element has been developed by Caillerie
et al. (2015) and has been chosen to be introduced in
our model. It is presented by Figure 1.

Figure 1: Definition of the degrees of freedom in the 3D version
of Caillerie’s beam element

Each of the two nodes (i and j) has 6 degrees
of freedom: 3 translations (u, v,w) and 3 rotations
(θx, θy, θz) about x, y and z axes respectively. The
proposed element was developed by Caillerie et al.
(2015) for 2D applications and was extended in our
model to a 3D formulation. Therefore, it presents an
internal node K, with 8 internal degrees of freedom
(∆v1,∆v2,∆w1,∆w2,∆θx,∆θy,∆θz and ∆u).



The generalized displacement field can be therefore
written as:

Ux = N1ui +N2∆u+N3uj

Uy = H1
Rvi +L1

R∆v1 +L2
R∆v2 +H2

Rvj

Uz = H1
Rwi +L1

R∆w1 +L2
R∆w2 +H2

Rwj

θx = N1θxi +N2∆θx +N3θxj

θy = L′1Rθyi +M3
R∆θy +L′2Rθyj

θz = L′1Rθzi +M3
R∆θz +L′2Rθzj

(N1,N2,N3) and (L′1R,L
′2
R,M

3
R, ) are defined as

quadratic interpolation functions, whereas cubic
shape functions (H1

R,H
2
R,L

1
R,L

2
R) are used for trans-

verse displacements. It’s worth mentioning that these
higher order interpolation functions are independent
of material properties. They are calculated at the beam
Gauss points and take the following form:

N1 = 1
2
ξ(ξ − 1) L1

R = (ξ−1)2(ξ+1)
4

N2 = 1− ξ2 L2
R = (ξ−1)(ξ+1)2

4

N3 = 1
2
ξ(ξ + 1) L′1R = (ξ−1)(3ξ+1)

4

H1
R = (ξ−1)2(ξ+2)

4
L′2R = (ξ+1)(3ξ−1)

4

H2
R = − (ξ−2)(ξ+1)2

4
M3

R = 1− ξ2

(5)

All degrees of freedom are collected in a column vec-
tor U e structured as follows:

Ue =
[
U i

eT ∆U eT U j
eT
]T (6)

such as:

U i
e =

[
ui, vi,wi, θxi, θyi, θzi

]T
∆U e =

[
∆v1,∆θz,∆v2,∆w1,∆θy,∆w2,∆u,∆θx

]T
U j

e =
[
uj, vj,wj, θxj, θyj, θzj

]T
(7)

As a consequence, the generalized strain field es can
be written in function of a matrix Bp which gathers
the derivatives of the above mentioned interpolation
functions related to longitudinal spatial discretization.
Then, the new expression of the plane strain field εP
becomes:

εP = as(y, z)BpU
e (8)

2.3 Distortional displacement field interpolation

It is assumed that the distortional displacement (uw)
has two non-zero components in y and z directions

accounting for the vertical stretching of the cross-
section. It is defined as:

uw(x, y, z) =
[
0 uwy (x, y, z) uwz (x, y, z)

]
(9)

Where:
uwx (x, y, z) = 0

uwy (x, y, z) = c1(x)ϕ1(y, z)

uwz (x, y, z) = c2(x)ϕ2(y, z)

(10)

The interpolation is performed independently along
the beam axis with the quadratic functions c1(x)and
c2(x), and on the cross-section with functionsϕ1(y, z)
and ϕ2(y, z). The latter ones are the classical
quadratic functions used for 6 nodes triangular el-
ements TRI6 and they are computed at the section
Gauss points.

Distortional strains components can be therefore
presented as follows:

εwxx = ∂uwx
∂x

= 0

εwyy =
∂uwy
∂y

= c1(x)∂ϕ1

∂y

εwzz = ∂uwz
∂z

= c2(x)∂ϕ2

∂z

γwxy = ∂uwx
∂y

+
∂uwy
∂x

= dc1
dx
ϕ1

γwxz = ∂uwx
∂z

+ ∂uwz
∂x

= dc2
dx
ϕ2

γwyz =
∂uwy
∂z

+ ∂uwz
∂y

= c1(x)∂ϕ1

∂z
+ c2(x)∂ϕ2

∂y

(11)

The enhanced strain field can be given by the fol-
lowing expression:

εw = aw(y, z)ew = aw(y, z)BwW
e (12)

And by the use of a matrix notation, εw becomes:

εw =



εwxx

εwyy

εwzz

γwxy

γwxz

γwyz


=



0 0 0 0

0 0 ∂ϕ1

∂y
0

0 0 0 ∂ϕ2

∂z

ϕ1 0 0 0

0 ϕ2 0 0

0 0 ∂ϕ1

∂z
∂ϕ2

∂y


︸ ︷︷ ︸

aw(y,z)


dc1
dx

dc2
dx

c1

c2


︸ ︷︷ ︸

ew

(13)

The matrix Bw collects the longitudinal interpola-
tion functions and their derivatives. As for the vector
W e, it gathers all the distortional degrees of freedom
of the points located on the section i of each element.
They are treated as global DOFs of the beam element
as shown by Figure 2.



Figure 2: Distribution of the distortional degrees of freedom

Hence,

W e =
[
W e

yi
T ,W e

zi
T ,∆W y

T ,∆W z
T ,W e

yj
T ,W e

zj
T
]T

(14)

With:

W e
y(i,j) =

[
uwy1(i,j) . . . uwynw(i,j)

]T
W e

z(i,j) =
[
uwz1(i,j) . . . uwznw(i,j)

]T
∆W (y,z) =

[
∆uw(y,z)1 . . . ∆uw(y,z)nw

]T (15)

nw being the total number of the nodes per section.
Once, the plane strain εP and the distortional strain

fields εw computed at the Gauss points of the sec-
tion, the stress distribution at the concrete fibers is de-
duced.

3 Gauss points per element are needed in order to
correctly integrate the higher order polynoms, which
means 3 sections per element. Thus, the calculation
procedure can be illustrated by Figure 3.

Figure 3: Calculation Procedure

3 GOVERNING EQUATIONS

Beam equilibrium is written in its weak form by equa-
tion (16). In addition, the plane section displacement

uP and the distortion one uw assumed to be orthog-
onal, the projection of the weak form equilibrium on
these two subspaces lead to two equilibrium equations
(17). The first one representing the classical equilib-
rium of the beam element, and the second one being
the equilibrium equation of the cross-section. F de-
notes the external forces and Pw the forces coming
from constrained distortion at the beam ends.∫

Ω

ε∗TσdΩ = U ∗TFext (16)

⇔


∫

Ω

δεP
T
σ̂(εP , εw)dΩ = F∫

Ω

δεwT σ̂(εP , εw)dΩ = Pw

(17)

At the element level, the beam is discretized into ne
Timoshenko beam elements, of length le, each hav-
ing 3 Gauss points, i.e. 3 sections, whose contribution
should be summed in order to compute the terms of
the element force vector Pe and the element stiffness
matrixKe.

Therefore, the expression of the element stiffness
matrix is given by:

Ke =

Kpp Kpw

Kwp Kww

 (18)

Where:

Kpp =

∫
le

Bp
Tas

TKmasBpdx

Kpw =

∫
le

Bp
Tas

TKmawBwdx

Kwp =

∫
le

Bw
Taw

TKmasBpdx

Kww =

∫
le

Bw
Taw

TKmawBwdx

(19)

Pe being the internal element force vector:

Pe =


∫
le

Bp
Tas

T σ̂(εP , εw)dx∫
le

Bw
Taw

T σ̂(εP , εw)dx

 (20)

Considering Km as the stiffness tangent operator,
the linearized form of the stress vector σ̂ is defined
as:

σ̂(x, y) =Kmε =Km(εP + εw) (21)

On the other hand, each cross section is discretized
into ns 6 nodes triangular elements. Therefore the sec-
tion stiffness matrix and the sectional force vector are
expressed as follows:



Ps =
ns∑

Se=1


∫
Se

as
T σ̂(εP , εw)dSe∫

Se

aw
T σ̂(εP , εw)dSe

 =

Psp,c

Psw,c


(22)

Ks =
ns∑

Se=1

Kspp Kspw

Kswp Ksww

 =

Kspp,c Kspw,c

Kswp,c Ksww,c


(23)

Where:

Kspp =

∫
Se

as
TKmasdS

e

Kspw =

∫
Se

as
TKmawdS

e

Kswp =

∫
Se

aw
TKmasdS

e

Ksww =

∫
Se

aw
TKmawdS

e

(24)

For all the integral calculations, the Gaussian
quadrature is applied.

4 IMPLEMENTATION OF LONGITUDINAL
AND TRANSVERSAL REBARS

In the case of reinforced concrete elements, the con-
tribution of the longitudinal rebars must be added to
that of the concrete fibers. The total section will thus
be represented by the sum of the concrete area and
the section of the longitudinal reinforcement. The lat-
ter one is modelled as point elements intersecting the
concrete cross-section. The shape and dimensions of
the bar are considered as negligible. Consequently,
the warping and distortion of this point element are
not taken into account. It follows that the deforma-
tions of these elements are composed only by the
terms of the plane strain field εP defined by Timo-
shenko’s theory.

Regarding the implementation of stirrups, they are
modelled as bar elements with linear elastic consti-
tutive law. Each leg of the transversal rebars is dis-
cretized into nst sub-elements of length lst, present-
ing two nodes where the transversal distortional dis-
placements components uwy and uwz are computed as
presented by Figure 4.

Figure 4: Cross-section discretization: concrete and transversal
steel reinforcement mesh

Linear Lagrange polynomials N1 and N2 are used
to interpolate distortion between these two nodes at a
single integration Gauss point P. All transversal sub-
element rebars colinear to y-direction belong to (Set
1) or (Set 2), whereas those towoards z-direction are
attributed to (Set 3) and (Set 4) as seen in Figure 4.

If a Gauss point P1 belongs to (Set 1) or (Set 2), its
total displacement uwst(P1) has only one distortional
component in y-direction interpolated as follows:

uwy,st(P1) = N1u
w
y,i +N2u

w
y,j (25)

As for (Set 3) and (Set 4), a single transversal compo-
nent along z-axis is assigned to the displacement field
uwst(P2) such as:

uwz,st(P2) = N1u
w
z,i +N2u

w
z,j (26)

Having the expression of the displacement at points
P1 and P2, the enhanced transversal strain can be de-
duced.

On the other hand, the contribution of the transver-
sal rebars can be seen at the sectional level, with extra
terms added to Ps andKs such that:

Ps =

 Psp,c

Psw,c +Psw,st

 (27)

Ks =

Kspp,c Kspw,c

Kswp,c Ksww,c +Ksww,st

 (28)

All the components of the sectional force vector Ps

and stiffness matrix Ks with indices c related to con-
crete fibers are expressed by equations ((22),(23) and



(24)). On the other hand, Psw,st and Ksww,st refer-
ring to transversal steel reinforcements are defined as
follows:

Psw,st =
Nst∑
e=1

∫
Ωe

Ast × aw,st
T ×σstdΩe

Ksww,st =
Nst∑
e=1

∫
Ωe

Ast × aw,st
T ×Es × aw,stdΩe

(29)

Ast, Nst and Es being respectively the area of
transversal rebars, the total number of transversal
steel sub-elements and the steel tangent stiffness.

Also, in order to attribute a realistic value for the
transversal reinforcement areaAst, an analogy is done
between the enhanced numerical model and a realis-
tic representation of a reinforced concrete beam con-
fined with stirrups equally distributed with a spacing
denoted s. Figure 5 presents the analogy made be-
tween the numerical beam element and a realistic re-
inforced concrete beam. Therefore, the adequate nu-

Figure 5: Analogy between a multifiber element presenting 3
sections (a) with a realistic representation of a reinforced con-
crete beam confined with stirrups (b)

merical rate of stirrups per meter can be obtained by
applying the following analogy:

numerical model analytical representation
Anum

steel

le
=

2×Anum
st ×nsection

le

Aanal
steel

s
=

2×Aanal
t

s
= 2×πd2

s×4

⇔ 2×Anumst × nsection
le

=
2×Aanalt

s
(30)

Hence, the section of transversal steel, Anumst , that
should be implemented in the numerical model is ob-
tained:

Ast = Anumst =
At × le

nsection × s
(31)

nsection being the notation used to refer to the num-
ber of sections per element of length le in the dis-
cretized multifiber beam.

5 VALIDATION PROCESS: NUMERICAL CASE
STUDIES

5.1 Linear elastic cantilever beam without stirrups

The enhanced multifiber beam element is validated by
performing tension and flexure tests on a plain con-
crete cantilever beam in the linear elastic range. It’s
a beam of length L =1 m , modelled using 11 Tim-
oshenko multifiber elements, each having 3 Gauss
points. The dimensions of the selected cross-section
which is meshed using TRI6 triangular elements are
represented in Figure 6. Concrete is modelled using a

Figure 6: Longitudinal beam element discretization (a). Cross-
section description (b).

3D linear elastic constitutive law and the stress-strain
relations are defined as follows: :

σ =
E

1 + ν
[ε+

ν

1− 2ν
Tr(ε)I] (32)

The efficiency of the proposed modelling strategies is
tested by confronting the numerically obtained resluts
with those of a standard 3D finite element model. To
this end, a 3D cantilever beam was meshed with tetra-
hedral elements. All the computational analysis for
both types of models was performed using the library
ATL S(A Tool and Language for Simplied Structural
Solution Strategy) developed on the Matlab platform
at INSA-Lyon by Prof. S. Grange.

Figure 7: Tension test: Variation of transversal stresses σyy with
respect to the length of the beam



Figure 8: Flexion test: Variation of transversal stresses σyy with
respect to the length of the beam

The first aim of the verification process is achieved
by plotting the variation of normal transversal stresses
σyy computed at each Gauss point of the cross-section
with respect to the beam length as seen in Figure 7
where a tension test is simulated and Figure 8 which
displays the outcomes of a simple flexure test. In both
cases, all the enhanced degrees of freedom are re-
strained at the fixed end, the reason why high gradi-
ents of σyy are observed at this location of the beam.
As for the free end, ux = 1mm and uy = 1mm are
applied in order to perform respectively the tension
(Figure 7) and bending (Figure 8) tests. The beam
is free to distort at the free end, hence, the value of
σyy tends to zero. The numerically obtained outcomes
prove that the equilibrium state is reached, and a good
matching between the results obtained with the 3D
enhanced multifiber model and the 3D finite element
solution.

Figure 9: Tension test: Transverse displacement maps obtained
with the 3D enhanced multifiber model and the standard 3D FE
model

Moreover, transversal displacement uy maps are
displayed in Figures 9 and 10. By confronting the
results provided by the proposed model with those
coming from a standard 3D finite element formula-
tion, good agreement can be observed showing the
efficiency of the proposed model in reproducing dis-
placements, strains and stresses in the linear elastic
framework.

Figure 10: Flexion test: Transverse displacement maps obtained
with the 3D enhanced multifiber model and the standard 3D FE
model

5.2 Concrete beam element confined with stirrups

This section highlights the role of stirrups on con-
fining concrete fibers. To this end, dilation effect is
simulated by imposing a thermal dilation effect to the
concrete fibers in the linear elastic phase. By apply-
ing this method and with a large section of stirrups
confining the concrete fibers, the initial and deformed
shapes of the cross-section are presented in Figure 11.
Also, it can be seen in Figure 12 that the comparison
between the proposed multifiber model and the 3D
FE model presents a reasonable agreement in terms
of transversal displacement maps.

Figure 11: Concrete section confined with stirrups (a). Initial
(red) and deformed (black) shape of the cross-section (b).

Figure 12: Transversal displacement maps for concrete fibers
confined by large section of stirrups



6 CONCLUSION

An efficient 3D multifiber beam model was presented
aiming at reproducing the vertical stretching of the
concrete cross-section confined by stirrups. This dis-
tortional effect is taken into account by adding new
degrees of freedom to the global level. A novel Timo-
shenko beam element recently developed by Caillerie
et al. (2015) for 2D applications, has been chosen and
extended in our model to the 3D formulation in or-
der to avoid shear locking problems. Also, it should
be mentioned that the present formulation of the sec-
tion equilibrium is derived from the one presented by
Capdevielle et al. (2016) which takes into account the
warping of the cross-section.
The presented model is suitable for an arbitrary cross-
section and material. Its efficiency is highlited by
comparing the numerically obtained results in terms
of stresses and displacement with those coming from
3D finite element modelling. Good matching was ob-
served showing the robustness of the enhanced model
and validating its performance in the linear elastic
phase.

Furthermore, longitudinal and transversal rebars
are modelled. Their implementation was validated by
introducing a dilatancy effect to the concrete fibers
and confronting the obtained outcomes with those
coming from a 3D FE model.

The case studies investigated herein are related
to static loadings, although cyclic loadings can take
place. A nonlinear dilatant constitutive law is to be
implemented and tested on reinforced concrete ele-
ments under monotonic and cyclic loadings and hence
study the nonlinear response of structural concrete el-
ements subjected to transverse shear. Also, the mass
matrix can be implemented in order to conduct dy-
namic simulation studies, and the warping effect,
taken into account by Capdevielle et al. (2016), can
be coupled with the distortion of the section in or-
der to obtain a complete 3D enhanced multifiber beam
model.
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