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Local geometry of sub-Finslerian structures in dimension 3 associated with a maximum norm are studied in the contact case. A normal form is given. Short extremals, local switching conjugate and cut loci, and small spheres are described in the generic case.

Introduction

From a geometric point of view the sub-Finslerian (SF) structure we are interested in here is a triplet (M, ∆, |.| ∞ ) where M is a connected manifold, ∆ is a sub-bundle of the tangent bundle, and |.| ∞ is a maximum norm on ∆. With such a structure we can define Definition 1. Let γ : [0, T ] → M be a curve in M . It is said admissible if γ(t) ∈ ∆ γ(t) a.e. The length of an admissible γ is defined as

(γ) := T 0 | γ(t)| ∞ dt
and the distance between two point p and q in M as the infimum of the lengths of the curves that join p to q d(p, q) = inf{ (γ) | γ(t) ∈ ∆ γ(t) a.e., γ(0) = p, γ(T ) = q}.

If Lie q (∆) = T q M for any q then locally, for any couple of points (q 1 , q 2 ), exists an admissible curve joining q 1 and q 2 . The distance between q 1 and q 2 is defined as the infimum of the lengths of the admissible curves joining the two points.

we discuss the optimal synthesis linked to extremals with only one control switching several times, very different from the sub-Riemannian case. In section 8, we discuss the stability of the conjugate and cut loci constructed in the previous sections.

Normal form

In this section, the goal is to construct a normal form for the couple (G 1 , G 2 ) defined by G 1 = F 1 +F 2 and G 2 = F 1 -F 2 . As we will see later, ±G 1 and ±G 2 are the velocities of the non singular extremals of the optimal control system defined by ( 1) and ( 2). Since we consider only points q where the distribution is contact then

G 1 , G 2 and [G 1 , G 2 ] = -2[F 1 , F 2 ]
form a basis of T q R 3 . Hence, we can build a coordinate system centered at q, by the following way. Let denote e tX the flow at time t of a vector field X. We can define Ξ : (x, y, z) -→ e xG 1 e yG 2 e z[G 1 ,G 2 ] q, which to (x, y, z) associates the point reached by starting at q and following [G 1 , G 2 ] during time z, then G 2 during time y and finally G 1 during time x. The map Ξ is smooth and satisfies

∂Ξ ∂x (x, y, z) = G 1 , ∂Ξ ∂y (0, y, z) = G 2 , and ∂Ξ ∂z (0, 0, z) = [G 1 , G 2 ].
As a consequence Ξ is not degenerate at (0, 0, 0) and defines a coordinate system in a neighborhood of q. Such coordinates are called normal coordinates and G 1 and G 2 satisfy

G 1 (x, y, z) = ∂ x , G 2 (x, y, z) = x x (x, y, z)∂ x + (1 + x y (x, y, z)))∂ y + x(1 + z (x, y, z))∂ z
where x , y , z are smooth functions satisfying x (0, 0, z) = y (0, 0, z) = z (0, 0, z) = 0. Hence we can give the following expressions of G 2 where θ x , θ y and θ z are smooth functions such that θ x (0, 0, z) = θ y (0, 0, z) = θ z (0, 0, z) = 0 and whose Taylor series of respective order 1, 1, 2 are null with x and y of order 1 and z of order 2.

3 General facts about the computation of the optimal synthesis

In the following of the paper we are going to study the local geometry for a generic class of 3D sub-Finslerian metric defined by a maximum norm, that is for a residual set for the Whitney C ∞ topology on the set of such metrics. But, for this residual set of metrics, we are going to consider the local geometry only at points in the complementary of a set included in a finite union of codimension 1 submanifolds. For example, we consider only contact points and generically the set of points where the distribution is not contact is the Martinet surface which has codimension 1. We may also ask that an invariant appearing in the normal form is not null, which happens also outside a codimension 1 submanifold. All along the paper we will assume only a finite number of such assumptions.

Controllability and existence of minimizers

The contact hypothesis is span(

F 1 , F 2 , [F 1 , F 2 ]) = R 3 .
Hence, as a consequence of Chow-Rashevski theorem (see [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF][START_REF] Rashevsky | About connecting two points of complete nonholonomic space by admissible curve[END_REF][START_REF] Chow | ber systeme von linearen partiellen differentialgleichungen erster ordnung[END_REF]), such a control system is locally controllable that is locally, for any two points, always exists an admissible curve joining the two points.

Moreover, since at each point the set of admissible velocities is convex and compact (in the control version), thanks to Filippov theorem (see [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF][START_REF] Filippov | On some questions in the theory of optimal regulation: existence of a solution of the problem of optimal regulation in the class of bounded measurable functions[END_REF]), locally for any two points, always exists at least a minimizer.

Pontryagin Maximum Principle (PMP) and Switching Function

The Pontryagn Maximum Principle (PMP) gives necessary conditions for a curve to be a minimizer of the SF distance. For our problem it takes the following form.

Theorem 2 (PMP). Let define the Hamiltonian:

H(q, λ, u, λ 0 ) = u 1 λ.F 1 (q) + u 2 λ.F 2 (q) + λ 0 where q ∈ R 3 , λ ∈ T * R 3 , u ∈ R 2 and λ 0 ∈ R -.
For any minimizer (q(t), u(t)) there exist a never vanishing Lipschitz continuous covector λ : t → λ(t) ∈ T * R 3 and a constant λ 0 ≤ 0 such that for a.e. t ∈ [0, T ] we have i.

q(t) = ∂H ∂λ (q(t), λ(t), u(t), λ 0 ), ii. λ(t) = -∂H ∂q (q(t), λ(t), u(t), λ 0 ), iii. H(q(t), λ(t), u(t), λ 0 ) = max v {H(q(t), λ(t), v, λ 0 ) | max i=1,2 |v i | ≤ 1},
iv. H(q(t), λ(t), u(t), λ 0 ) = 0.

If λ 0 = 0 then q is said abnormal, if not q is said normal. It may be both. A solution of the PMP is called an extremal.

Remark 3. It is well known that for a contact distribution there is no abnormal extremal. In the following we fix λ 0 = -1.

In the following, we will have to consider the vector fields

F 3 = [F 1 , F 2 ], F 4 = [F 1 , [F 1 , F 2 ]] and F 5 = [F 2 , [F 1 , F 2 ]].
We can now define Definition 4. For an extremal triplet (q(.), λ(.), u(.)), we define the functions

φ i (t) =< λ(t), F i (q(t)) >, i = 1 • • • 5.
The functions φ 1 and φ 2 are called the switching functions.

Proposition 5. For i = 1, 2 1. If φ i (t) > 0 (resp φ i (t) < 0) then u i (t) = 1 (resp u i (t) = -1).
2. If φ i (t) = 0 and φi (t) > 0 (resp φi (t) < 0) then φ i changes sign at time t and the control u i switches from -1 to +1(resp from +1 to -1).

Proof: Point 1. is a direct consequence of the maximality condition of the PMP. Point 2. is a direct consequence of point 1.

Remark 6. One can computes easily that along a bang arc φ1 = -u 2 φ 3 and φ2 = u 1 φ 3 .

and moreover, since (F 1 , F 2 , F 3 ) is a frame of the tangent space, we can define the function f ij for i = 4, 5 and j = 1, 2, 3 by setting

F 4 = [F 1 , [F 1 , F 2 ]] = f 41 F 1 + f 42 F 2 + f 43 [F 1 , F 2 ], F 5 = [F 2 , [F 1 , F 2 ]] = f 51 F 1 + f 52 F 2 + f 53 [F 1 , F 2 ].
Now, along an extremal, one computes easily that

φ3 = u 1 φ 4 + u 2 φ 5 (3) = u 1 (f 41 φ 1 + f 42 φ 2 + f 43 φ 3 ) + u 2 (f 51 φ 1 + f 52 φ 2 + f 53 φ 3 ) (4) 
Definition 7. We call bang an extremal trajectory corresponding to constant controls with value 1 or -1 and bang-bang an extremal which is a finite concatenation of bangs. We call u i -singular an extremal corresponding to a null switching function φ i (. which determines entirely the control u 1 .

Change of coordinates

We first concentrate our attention on extremals with initial |λ z | very large corresponding to short cut times (as we will see later). Following the techniques used in the 3d-contact case in sub-Riemannian geometry (see Agrachev et al [START_REF] Agrachev | Sub-Riemannian metrics on R 3[END_REF]), one can make the following change of coordinates and time

r = 1 λ z , s = t r , p x = rλ x , p y = rλ y .
Denoting p = (p x , p y , 1) and q = (x, y, z) one gets the equations for the extremals

dq ds = r(u 1 F 1 (q) + u 2 F 2 (q)), dp ds = r(-p(u 1 dF 1 (q) + u 2 dF 2 (q)) + (p(u 1 ∂F 1 (q) ∂z +u 2 ∂F 2 (q) ∂z ))p), dr ds = r 2 p(u 1 ∂F 1 (q) ∂z + u 2 ∂F 2 (q) ∂z ).

Exponential map and conjugate locus

The set of initial condition is determined by

H = u 1 λ(0)F 1 (0) + u 2 λ(0)F 2 (0) -1 = 0 which implies max{|λ x (0)|, |λ y (0)|} = 1. This implies that max{|p x (0)|, |p y (0)|} = r(0).
If an extremal is not singular, then it starts by a first bang and hence by the speed ±G 1 or ±G 2 . Assume r 0 > 0. If the first bang follows ±G 1 then p x (0) = ±r 0 and we define α 2 by setting p y (0) = ∓r 0 α 2 with α 2 ∈] -1, 1]. If the first bang follows ±G 2 then p y (0) = ±r 0 and we define α 1 by setting p x (0) = ±r 0 α 1 with α 1 ∈] -1, 1]. With this convention, among the extremals starting with r 0 fixed and following ±G 1 (resp ±G 2 ), the last one to switch is the one with initial condition α 2 = 1 (resp. α 1 = 1).

We can hence define 4 exponential maps corresponding to the 4 initial speed ±G 1 and ∓G 2 and describing the bang-bang extremals. For these maps, depending on r 0 , α i and s, when α i = 1 and when s is not a switching time of the extremal with initial condition (r 0 , α i ), one can compute the jacobian with respect to the parameters (r 0 , α i , s).

Recall that we denote by t the time and s the new time after reparameterization.

Definition 10. The first conjugate time along an extremal is the infimum of the times t such that exist t 1 and t 2 with 0 < t 1 < t 2 < t such that Jac(t 1 )Jac(t 2 ) < 0. The first conjugate point along an extremal is the point reached at first conjugate time and the first conjugate locus is the set of the first conjugate points. The cut locus is the set of points where an extremal curve loses optimality. The Maxwell set is the set of points where two optimal curves meet. The sphere at time t is the collection of all end points at time t of the optimal extremals.

Remark 11. With this definition, it will happen that the Maxwell set is not always included in the cut locus (which is very different from the Riemannian case).

Nilpotent case

This part of the paper is not entirely new since this case has been studied in [START_REF] Barilari | Sub-finsler structures from the timeoptimal control viewpoint for some nilpotent distributions[END_REF][START_REF] Breuillard | On the rate of convergence to the asymptotic cone for nilpotent groups and subfinsler geometry[END_REF] As in sub-Riemannian geometry (see [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF][START_REF] Agrachev | Sub-Riemannian metrics on R 3[END_REF]), the nilpotent approximation plays an important role as "good estimation" of the real situation. The nilpotent approximation at (0, 0, 0) of G 1 , G 2 given in the normal form is

G 1 =   1 0 0   , G 2 =   0 1 x  
It is a left invariant sub-Finslerian metric defined on the Heisenberg group with the representation (x, y, z) (x , y , z ) = (x + x , y + y , z + z + xy ).

It is the tangent space in the sense of Gromov. See [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF].

The Hamiltonian for the nilpotent case is

H = u 1 + u 2 2 λ x + u 1 -u 2 2 (λ y + xλ z ) -1.
Thus the differential equations are given by

ẋ = u 1 +u 2 2 , λx = -u 1 -u 2 2 λ z , ẏ = u 1 -u 2 2 , λy = 0, ż = u 1 -u 2 2
x, λz = 0, which implies that λ y and λ z are constants. Before entering the computations, one can think that, thanks to the PMP, most of the optimal trajectories will be concatenations of bang arcs of ±G 1 and ±G 2 . Moreover, one shows relatively easily that the extremals are solutions of an isoperimetric problem, the z coordinate being a certain area defined from the projection on the (x, y)-plane of the trajectory, as it is in the Heisenberg case in subriemannian geometry. Hence it seems clear that many optimal curves project on squares. As we will see, a large class of optimal curves satisfy this property but many others, the singular ones, do not satisfy it which is very different to the subriemannian case.

Extremals with λ z = 0

Changing the variables and time for

r = 1 λ z , s = t r , p x = rλ x , p y = rλ y ,
and denoting ġ the derivate of a function g with respect to s we have

ẋ = r u 1 +u 2 2 , ṗx = -r u 1 -u 2 2 , ẏ = r u 1 -u 2 2 , ṗy = 0, ż = r u 1 -u 2 2 x, ṙ = 0.
Let present, for example, the computation of extremals with

λ z ≡ λ z (0) > 0, λ y ≡ λ y (0) = 1, λ x ∈ ] -1, 1]
. In x, y, z, p x , p y , r, s coordinates, one gets p y = r, p x = rα with α ∈ ] -1, 1] and φ 1 (s) = px(s)+py+x(s) 2r

and φ 2 (s) = px(s)-py-x(s) 2r

. We denote s 1 , s 2 , etc. the sequence of switching times along an extremal. During the first bang, since φ 1 (0) = ≤ 0 and φ2 (0) = -u 1 2 λ z < 0, the controls satisfy u 1 = 1 and u 2 = -1. Moreover

x(s) = 0, p x (s) = rα 1 -rs, φ 1 (s) = α 1 -s+1 2 , y(s) = rs, p y (s) = p y (0) = r, φ 2 (s) = α 1 -s-1 2 . z(s) = 0,
The first switching time s 1 corresponds to φ 1 (s 1 ) = 0 hence s 1 = 1 + α 1 .

During the second bang, the controls satisfy u 1 = -1 and u 2 = -1 and

x(s) = -sr + r + α 1 r, p x (s) = -r, φ 1 (s) = -s+1+α 1 2 , y(s) = r + α 1 r, p y (s) = p y (0) = r, φ 2 (s) = s-3-α 1 2 . z(s) = 0,
The second switching time s 2 corresponds to φ 2 (s 2 ) = 0 hence s 2 = 3 + α 1 .

Along the third bang, the controls satisfy u 1 = -1 and u 2 = 1 and

x(s) = -2r, p x (s) = -α 1 r -4r + sr, φ 1 (s) = -α 1 -5+s 2 , y(s) = 4r + 2α 1 r -sr, p y (s) = p y (0) = r, φ 2 (s) = -α 1 -3+s 2 . z(s) = 2r(s -(3 + α 1 )),
The third switching time s 3 corresponds to φ 1 (s 3 ) = 0 hence s 3 = 5 + α 1 .

During the fourth bang, the controls satisfy u 1 = 1 and u 2 = 1 and

x(s) = -7r -α 1 r + sr, p x (s) = r, φ 1 (s) = -5-α 1 +s 2 , y(s) = -r + α 1 r, p y (s) = p y (0) = r, φ 2 (s) = 7+α 1 -s 2 . z(s) = 4r 2 ,
The fourth switching time s 4 corresponds to φ 2 (s 4 ) = 0 hence s 4 = 7 + α 1 .

Along the fifth bang, the controls satisfy u 1 = 1 and u 2 = -1 and

x(s) = 0, p x (s) = 8r + α 1 r -sr, φ 1 (s) = 9+α 1 -s 2 , y(s) = -r + α 1 r + sr, p y (s) = p y (0) = r, φ 2 (s) = 7+α 1 -s 2 . z(s) = 4r 2 ,
The fifth switching time s 5 corresponds to φ 1 (s 5 ) = 0 hence s 5 = 9 + α 1 .

The other extremals with λ z = 0 can be computed the same way and are very similar. Finally, extremals with λ z > 0 have projections in the (x, y)-plane which are squares and the z-coordinate after one turn of the square is equal to the area of the square. This implies that they are all optimal until the end of this turn that is until s = 8 or t = 8 pz . After they lose optimality, crossing one each other transversaly. As a consequence the cut time is s = 8 or t = 8r and the cut locus is the vertical axis (as in the Heisenberg case in sub-riemannian geometry).

Extremal with λ z = 0

What about the extremals with λ z = 0? For such an extremal, λ is constant and φ 1 = λx+λy 2

and φ 2 = λx-λy 2 are also constant. If both are not zero hence u 1 and u 2 are constants along the extremal, the corresponding curve is optimal and is an extremal. If φ 1 ≡ 0 and φ 2 ≡ 1 then the extremal is u 1 -singular and the control u 1 is not determined by the max condition of the PMP. In fact in this case, one proves easily that for any choice of u 1 (.) such that |u 1 (t)| ≤ 1, one gets for any T > 0, a minimizer from (0, 0, 0) to (

T 0 u 1 (t)dt+T 2 , T 0 u 1 (t)dt-T 2
, z) where

z = T 0 (u 1 (t) -1)( t 0 u 1 (τ )dτ + t) 4 dt.
The proof comes from the fact that the projection of this point on the (x, y)-plane is on the segment between the two points (T, 0) and (0, -T). The same kind of computation can be done for φ 1 ≡ 0 and φ 2 ≡ -1 or φ 1 ≡ ±1 and φ 2 ≡ 0. 

4 < s < 6 2 < s < 4 0 < s < 2 6 < s < 8

Exponential map

Let us concentrate again on the extremals with λ z = 0. One can consider the exponential map which to (r, α, s) where α ∈ [-1, 1[, r > 0, s ≥ 0 associates the end point of the extremal with initial condition λ x = α, λ y = 1 and λ z = 1 r for the time t = rs. This map is smooth at points with -1 < α < 1, s i (p x , r) < s < s i+1 (p x , r) for a certain i where s j (p x , r) is the j th switching time of the extremal with initial condition p x , p y = 1 and r. The same can be done for λ y = -1 or λ x = ±1 and λ y ∈ [-1, 1]. Since it is smooth for -r < p x < r and s = s i ∀i, we can compute its jacobian. It happens that it is null during the two first bangs, and that it has opposite sign to the one of r during the third and fourth bangs. It is again null during the fifth bang. As we will see later for r small in the generic cases, the jacobian will not be null during the third and fourth bangs also. In the nilpotent case, the first conjugate time is t 5 = rs 5 and for t ∈ ]rs 4 , rs 5 [, Jac(t) = 0.

Geometric objects

Since the conjugate time is t 5 , the first conjugate locus is the set of points where an extremal switches for the fifth time. The first conjugate locus is

{(2δr, 0, ±4r 2 )|r ∈ R, δ ∈] -1, 1[} ∪ {(0, 2δr, ±4r 2 )|r ∈ R, δ ∈] -1, 1[}.
The Maxwell set is exactly the same set. Figure 2 shows the conjugate locus and three points of view of the part of the sphere that is reached by non singular extremals.

Extremals with both controls switching

In this section, we present the computation of jets of extremals with large covector |λ| and of geometric objects attached to them: switching locus and conjugate locus. As in the nilpotent case, we can define a Hamiltonian flow which, to an initial condition (λ x , λ y , λ z ) (with max(|λ x |, λ y |) = 1) associates the end point at time t of the solution of the dynamics 

ẋ = u 1 + u 2 2 + u 1 -u 2 2 (a 200 x 2 + a 110 xy + θ x ), ẏ = u 1 -u 2 2 (1 + b 200 x 2 + b 110 xy + θ y ), ż = u 1 -u 2 2 (x + c 200 x 2 + c 110 xy + c 300 x 3 + c 210 x 2 y + c 120 y 2 x + θ z ), λx = - u 1 -u 2 2 (λ x (2a 200 x + a 110 y) + λ y (2b 200 x + b 110 y) +λ z (1 + 2c 200 x + 3c 300 x 2 + c 110 y + 2c 210 xy + c 120 y 2 )), λy = - u 1 -u 2 2 (a 110 xλ x + b 110 xλ y + λ z (c 110 x + c 210 x 2 + 2c 120 xy)), λz = u 1 -u 2 2 λ z x(c 201 x + c 111 y), u 1 (t) = sign(φ 1 (t)), u 2 (t) = sign(φ 2 (t)), φ 1 (t) = λ(t)F 1 (q(t)), φ 2 (t) = λ(t)F 2 (q(t)).
= u 1 + u 2 2 r + u 1 + u 2 2 r(a 200 x 2 + a 110 xy + θ x ), ẏ = u 1 -u 2 2 r(1 + b 200 x 2 + b 110 xy + θ y ), ż = 1 2 r(θ z (u 1 + u 2 ) + (u 1 -u 2 )(x + c 200 x 2 + c 300 x 3 + c 110 xy + c 210 x 2 y + c 120 xy 2 )), ṗx = - u 1 -u 2 2 r(1 + 2c 200 x + p x (2a 200 x + a 110 y) + p y (2b 200 x + b 110 y) + 3c 300 x 2 +c 110 y + 2c 210 xy + c 120 y 2 ), ṗy = - u 1 -u 2 2 r(c 110 x + a 110 p x x + b 110 p y x + c 210 x 2 + 2c 120 xy), ṙ = u 1 -u 2 2 r 2 x(c 201 x + c 111 y). φ 1 (t) = 1 r pF 1 (q(t)), φ 2 (t) = 1 r pF 2 (q(t)) u 1 (t) = sign(φ 1 (t)), u 2 (t) = sign(φ 2 (t)).
Since the set of initial condition is a square for (p x , p y ), we define in fact four Hamiltonian flows for each initial speed (G 1 , -G 1 , G 2 , -G 2 ). For example, for the extremals with initial speed equal to G 2 we have p y (0) = r and p x = αr with α ∈ ] -1, 1]. The new Hamiltonian flow as for variables (r 0 , α, s) where r 0 = r(0), p x (0) = αr and s = t r 0 . In order to compute jets of the Hamiltonian flow we write

x(r 0 , α, s) = x 1 (α, s)r 0 + x 2 (α, s)r 2 0 + x 3 (α, s)r 3 0 + X 4 (r 0 , α, s)r 4 0 , y(r 0 , α, s) = y 1 (α, s)r 0 + y 2 (α, s)r 2 0 + y 3 (α, s)r 3 0 + Y 4 (r 0 , α, s)r 4 0 , z(r 0 , α, s) = z 2 (α, s)r 2 0 + z 3 (α, s)r 3 0 + z 4 (α, s)r 4 0 + Z 5 (r 0 , α, s)r 5 0 , p x (r 0 , α, s) = p x1 (α, s)r 0 + p x2 (α, s)r 2 0 + p x3 (α, s)r 3 0 + P x4 (r 0 , α, s)r 4 0 , p y (r 0 , α, s) = p y1 (α, s)r 0 + p y2 (α, s)r 2 0 + p y3 (α, s)r 3 0 + P y4 (r 0 , α, s)r 4 0 , r(r 0 , α, s) = r 0 + r 2 (α, s)r 2 0 + r 3 (α, s)r 3 0 + R 4 (r 0 , α, s)r 4 0 .
where all the new functions are smooth functions of their variables. Using this dynamics we find the following. For the first order

ẋ1 = u 1 +u 2 2 , ṗx1 = -u 1 +u 2 2 , ẏ1 = u 1 -u 2 2 , ṗy1 = 0, ż2 = u 1 -u 2 2 x 1 .
For the second order

ẋ2 = 0, ṗx2 = -u 1 -u 2 2 (2c 200 x 1 + c 110 y 1 ), ẏ2 = 0, ṗy2 = -u 1 -u 2 2 c 110 x 1 , ż3 = u 1 -u 2 2 (x 2 + x 1 (c 200 x 1 + c 110 y 1 )), ṙ2 = 0.
For the third order

ẋ3 = u 1 -u 2 2 (a 200 x 2 1 + a 110 x 1 y 1 ), ẏ3 = u 1 -u 2 2 (b 200 x 2 1 + b 110 x 1 y 1 ), ż4 = u 1 -u 2 2 (c 300 x 3 1 + 2c 200 x 1 x 2 + x 3 + c 110 x 2 y 1 + c 110 x 1 y 2 + c 210 x 2 1 y 1 + c 120 x 1 y 2 1 ), ṗx3 = - u 1 -u 2 2 (2a 200 p x 1 x 1 + 2b 200 p y 1 x 1 + 2c 200 x 2 + 3c 300 x 2 1 +a 110 p x 1 y 1 + b 110 p y 1 y 1 + c 110 y 2 + 2c 210 x 1 y 1 + c 120 y 2 1 ), ṗy3 = u 1 -u 2 2 (-c 110 x 2 -x 1 (a 110 p x 1 + b 110 p y 1 + c 210 x 1 + 2c 120 y 1 )), ṙ3 = 0.
Recall that the extremals we are interested in have initial condition

x(r 0 , α, 0) = 0, p x (r 0 , α, 0) = r 0 p x1 (α, 0), y(r 0 , α, 0) = 0, p y (r 0 , α, 0) = r 0 p y1 (α, 0), z(r 0 , α, 0) = 0, r(r 0 , α, 0) = r 0 .

These equations are integrable hence we can compute jets of switching functions and hence jets of switching times. Finally, we are able to compute the jets of the different bangs of the extremals.

If we restrict the computation to x, y, z as functions of (r 0 , α, s) for the four Hamiltonian flows, we get four exponential maps that we denote Exp β where β = -1, 1, -2 or 2 depending on if the initial velocity is

-G 1 , G 1 , -G 2 , G 2 .
It happens that all the extremals computed that way are turning extremals like in 3D contact sub-riemannian geometry. For example, if r 0 > 0 and if the extremal starts with G 1 then after it switches to G 2 , then -G 1 , -G 2 , G 1 and so on.

In [START_REF] Sigalotti | Some computations for 2nd variations in sub-finsler geometry[END_REF], M. Sigalotti proves, studying second order optimality conditions, that this familly of extremals cannot be optimal after the fifth switch.

For these exponential maps, one can compute their jacobian for each bang arc. One finds

• Jac(Exp ±2 ) = 0 for 0 < s < s 2 , s = s 1 , • Jac(Exp ±2 ) = -8r 3 0 + o(r 3 0 ) for s 2 < s < s 3 , • Jac(Exp ±2 ) = -8r 3 0 + o(r 3 0 ) for s 3 < s < s 4 ,
• Jac(Exp ±2 ) = 32(2c 120 -c 2 110 )r 5 0 + o(r 5 0 ) for s 4 < s < s 5 ,

• Jac(Exp ±2 ) = 8r 3 0 + o(r 3 0 ) for s 5 < s < s 6 , and

• Jac(Exp ±1 ) = 0 if 0 < s < s 1 or s 1 < s < s 2 , • Jac(Exp ±1 ) = -4r 3 0 + o(r 3 0 ) if s 2 < s < s 3 , • Jac(Exp ±1 ) = -8r 3 0 + o(r 3 0 ) if s 3 < s < s 4 ,
• Jac(Exp ±1 ) = 64(3c 300 -2b 200 -2c 2 200 )r 5 0 + o(r 5 0 ) if s 4 < s < s 5 ,

• Jac(Exp ±1 ) = 8r 3 0 + o(r 3 0 ) if s 5 < s < s 6 .

We can now state the following proposition which shows that the sign of the Jacobian is an important invariant which determines the conjugate time.

Proposition 12. Let G 1 and G 2 as in the normal form given in section 2.

• If C 1 = 3c 300 -2b 200 -2c 2 200 > 0 then the fourth switching time t 4 is the first conjugate time for extremal with initial velocity ±G 1 . If C 1 < 0 then it is the fifth t 5 .

• If C 2 = 2c 120 -c 2 110 > 0 then the fourth switching time t 4 is the first conjugate time for extremals with initial velocity ±G 2 . If C 2 < 0 then it is the fifth t 5 .

Still using the expressions given in Appendix, we can give the expressions of the upper part of the first conjugate locus for the four exponential maps.

For Exp ±1 , if C 1 > 0

x conj = ±(α 2 -1)r 0 + (4c 110 -c 200 (α 2 -1) 2 )r 2 0 + o(r 2 0 ), y conj = -8c 200 r 2 0 ± 4(b 110 + 6c 110 c 200 -2c 210 +(4b 200 + 12c 2 200 -6c 300 )α 2 )r 3 0 + o(r 3 0 ), z conj = 4r 2 0 ∓ 8(c 110 + 2c 200 α 2 )r 3 0 + o(r 3 0 ),
and if C 1 < 0 

x conj = ±(1 + α 2 )r 0 + (4c 110 -c 200 (1 + α 2 ) 2 )r 2 0 + o(r 2 
y conj = ±(-1 + α 1 )r 0 - 1 2 (16c 200 + c 110 (α 1 -1) 2 )r 2 0 + o(r 2 0 ),
z conj = 4r 2 0 ± 4(4c 200 -c 110 (1 + α 1 ))r 3 0 + o(r 3 0 ),
and if C 2 < 0

x conj = 4c 110 r 2 0 ± 4(b 110 + 6c 110 c 200 -2c 210 +α 1 (2c 120 -3c 2 110 ))r 3 0 + o(r 3 0 ),
y conj = ±(1 + α 1 )r 0 - 1 2 (16c 200 + c 110 (1 + α 1 ) 2 )r 2 0 + o(r 2 0 ), z conj = 4r 2 0 ± 4(4c 200 + c 110 (1 -α 1 ))r 3 0 + o(r 3 0 ).
6 Local Cut Locus of extremals with λ z (0) >> 1

In the nilpotent case, the extremals with |α| < 1 reach the Maxwell set at the fourth switch when, for those with |α| = 1, it is at the third switch. When C 1 = 0 and C 2 = 0 we will see that the cut is reached during the fourth or fifth bang.

From section 4, we can conclude that the loss of optimality may come during the fourth bang or the fifth bang. Moreover, in [START_REF] Sigalotti | Some computations for 2nd variations in sub-finsler geometry[END_REF] the author proves that the extremals we are considering cannot be optimal after the fifth switch. Hence we can conclude that the cut locus comes from the intersection of two fourth bangs of different exp i , the intersection of two fifth bangs of different exp i , the intersection of a fourth bang and a fifth bang of two different exp i .

In the following we compute, for the jets of order 3, 3 and 4 of x, y and z in r 0 , the possible intersections listed previously, and finally describe the possible pictures of the cut locus depending on the values of invariants of the structure appearing in the normal form. Finally we discuss the stability of the pictures. As seen in the nilpotent case, an extremal starting with ±G 1 and |α 2 | < 1 meets the Maxwell set at s = s 4 and intersect at this time the extremal starting with ±G 2 and α 1 = 1. Hence, we compute the jets of Exp ±1 close to the fourth switch time that is at s = 7 + α 2 + T 2 r 0 + T 3 r 2 0 and the jets of Exp ±2 for r 0 = r 0 + R 2 r 2 0 + R 3 r 3 0 , α 1 = 1 -α 11 r 0 -α 12 r 2 0 and at time s = s r 0 r 0

Intersections of fourth bangs

. Asking that the corresponding points are the same, one gets 

R 2 = ∓2c 200 (1 + α 2 ) T 2 = ∓8c 110 -c 200 (1 + 14α 2 + α 2 2 ) α 11 = 0 and R 3 = (1 + α 2 ) 2 (3b 110 + 6c 110 c 200 + 4c 2 200 (1 + 3α 2 ) +4b 200 (-1 + α 2 ) + 6c 300 (1 -α 2 ) -6c 210 ) T 3 = 16 3 a 110 + 20c
α 12 = 4(1 + α 2 )(3c 300 -2b 200 -2c 2 200 ) = 4(1 + α 2 )C 1
We see here that in order the intersection exists, α 1 = 1 -α 11 r 0 -α 12 r 2 0 should be less or equal to 1 hence, since α 11 = 0, one should have α 12 > 0 which implies C 1 > 0.

When C 1 > 0, once computed the corresponding points (depending on r 0 and α 2 ) one can compute the suspension of this part of the cut locus by looking at its intersection with z = 4ρ 2 for ρ small. One gets The same computations can be done for extremals starting by ±G 2 and intersecting ∓G 1 and one gets that C 2 should be positive. Hence Such a self-intersection of the front can take place only at s = 8 + O(r 0 ) as in the nilpotent case. In order to compute such intersection close to s = 8, we proceed as follows. We compute the intersection of these parts of the front with z = 4ρ 2 for ρ 2 . In order to do this, we fix t = 8ρ + T 2 ρ 2 + T 3 ρ 3 , for each type of extremal fix α 2 = 1 -α 21 ρ -α 22 ρ 2 and find the r 0 such that the corresponding point Exp ±1 (r 0 , α, t/r 0 ) satisfies z = 4ρ 2 . For the extremals starting by ±G It is then easy to show that, in order to get a contact between these two fronts, T 2 should be equal to 0 and α 21+ = -α 21-. But, since both should be positive hence α 21+ = α 21-= 0 and this implies that T 3 should be equal to We proceed the same way. For the extremals starting by ±G 2 one finds It is then easy to show that, in order to get a contact between these two fronts, T 2 should be equal to 0 and α 11+ = -α 11-. But, since both should be positive hence α 11+ = α 11-= 0 and this implies that T 3 should be equal to 

x cut = ±(-1 + α 2 )ρ + (3c 110 -c 200 + c 110 α 2 + c 200 α 2 2 )ρ 2 ± 1 2 (
x cut = 4c 110 ρ 2 ± (4b 110 + 8c 110 c 200 -8c 210 + (6c 2 110 -4c 120 )(1 -α 1 ))ρ 3 y cut = ±(-1 + α 1 )ρ + (-c 110 -6c 200 + c 110 α 1 -2c 200 α 1 )ρ 2
T 3b = 4 
x sus = (4c 110 ± α 11 ± T 2 )ρ 2 ± (- 4 
T 3a = 4 

Cut locus when

C 1 > 0 and C 2 > 0
With the considerations given before, if C 1 > 0, C 2 > 0 and T 3a = T 3b , the intersection of the cut locus with {z = 4ρ 2 } is constituted of 5 branches as in the Figure 3.

The four external branches comes from the intersection of the fourth bangs of exp ±1 with exp ±2 and of the fourth bangs of exp ±1 with exp ∓2 , see Figure 3. The central branch is the intersection

When T 3a < T 3b When T 3a > T 3b
Figure 4: Closure of the cut locus at z fixed of the fourth bangs of exp 1 with exp -1 if T 3b < T 3a or of the fourth bangs of exp 2 with exp -2 if T 3a < T 3b , see Figure 4.

After min{T 3a , T 3b } all the extremals participating to the construction of this part of the cut locus have lost optimality.

Finally the picture of the cut depends on the sign of

T 3a -T 3b = -8(b 110 + 2c 110 c 200 -2c 210 ).
If T 3a > T 3b then the two points of the cut locus that connect three branches are with

x = 4c 110 ρ 2 ± Cρ 3 + o(ρ 3 ) y = -8c 200 ρ 2 ± Cρ 3 + o(ρ 3 ) z = 4ρ 2
with C = 4(b 110 + 2c 110 c 200 -2c 210 ), when if T 3a < T 3b then the two points of the cut locus that connect three branches satisfy

x = 4c 110 ρ 2 ± Cρ 3 + o(ρ 3 ) y = -8c 200 ρ 2 ∓ Cρ 3 + o(ρ 3 ) z = 4ρ 2
Finally we can present the upper part of the cut locus when C 1 > 0 and C 2 > 0 in Figure 5 6.3 Suspension of fifth bang front At 6 < s < 8, the part of the front corresponding to the fifth bang is close to (±(s -8)ρ, 0, 4ρ 2 ) for the front starting with ±G 1 and close to (0, ±(s -8)ρ, 4ρ 2 ) for the front starting with ±G 2 . Hence the intersections come at s close to 8.

In order to compute these intersections we fix a small ρ, consider a time t = 8ρ + T 2 ρ 2 + T 3 ρ 3 , and for each type of extremal find the r 0 such that the corresponding point Exp ±1 (r 0 , α, t/r 0 ) 

r 3 r r 2 r r r r 3 G 1 T 3a < T 3b T 3a > T 3b G 1
+4c 300 + T 3 -4C 1 α 2 2 )ρ 3 y ±1sus = -8c 200 ρ 2 ± (4b 110 + 8c 110 c 200 -8c 210 -8C 1 α 2 )ρ 3 z ±1sus = 4ρ 2
For the extremals starting by ±G 2 one finds exp ±2

x ±2sus = 4c 110 ρ 2 ± (4b 110 + 8c 110 c 200 -8c 210 + 4C 2 α 1 )ρ 3 y ±2sus = (-8c 200 ± T 2 )ρ 2 ± ( 4 3 c 120 - 4 3 a 110 -8b 200 -16c 2 200 -2c 2 110 +16c 300 + 4c 110 (-4c 200 ± T 2 ) + T 3 -2C 2 α 2 1 )ρ 3 z ±2sus = 4ρ 2
As one can see, the intersection of the fifth bang front at t with the plane z = 4ρ 2 is the union of arc of parabolas. If we consider all these curves for α i ∈ [0, 1] we can observe that the tangents at α = ±1 are line with equations of the x + y = c or x -y = c. Moreover, this tangent at α 2 = -1 of the fifth bang front of exp ±1 is tangent to the fourth bang at the corresponding α 1 of exp ±2 , and the tangent at α 1 = -1 of the fifth bang front of exp ±2 is tangent to the fourth bang at the corresponding α 2 of exp ±1 .

Moreover remark that, at T 2 = 0, the intersection of the front with z = 4ρ 2 still has a central symmetry at this order of jets, centred at (x, y) = (4c 110 ρ 2 , -8c 200 ρ 2 ).

Cut locus when

C 1 > 0 and C 2 < 0
If C 1 > 0 and C 2 < 0 then the picture of the front at t < 8ρ is as in the Figure 6. The fifth bang of exp ±1 do not participate to the optimal synthesis and the fourth bang front of exp ±1 intersect the fourth bang front of exp ±2 . The fifth bang front of exp ±2 is optimal.

Let consider the closure of the cut, that it when t = 8ρ + T 2 ρ 2 + T 3 ρ 3 . Wa can identify the following subcases when all the fifth bang of exp -2 satisfies x > 4c 110 ρ 2 . This implies that the sequel of the self intersections of the front is the following : first the fourth bang front of exp ±1 intersect the fourth bang front of exp ±2 ; then at time

T 2 = 0, T 3 = T 3c = T 3b + 4 3 C 2 -8 3 c 2 110
< T 3b the fourth bang of exp ±1 intersects the fifth bang of exp ±2 ; finally the fourth bang of exp 1 intersects the fourth bang of exp -1 at T 2 = 0 and T 3 = T 3b . See Figure 7. • When 4b 110 + 8c 110 c 200 -8c 210 > 0 and 4b 110 + 8c 110 c 200 -8c 210 + 4C 2 < 0 then the relative position of the two parabola of the fifth bang of exp 2 and exp -2 implies that the sequel of the self intersections of the front is the following : first the fourth bang front of exp ±1 intersect the fourth bang front of exp ±2 ; then at time T 2 = 0 and

T 3 = T 3d = T 3a + 2C 2 -2c 2 110 < T 3a
the fourth bang of exp ±2 intersects the fifth bang of exp ∓2 ; finally the fifth bang of exp 2 intersects the fifth bang of exp -2 . The picture is similar to the one of Figure 7.

• When 4b 110 + 8c 110 c 200 -8c 210 + 4C 2 > 0 then all the fifth bang of exp 2 satisfies x > 4c 110 ρ 2 when all the fifth bang of exp -2 satisfies x < 4c 110 ρ 2 . This implies that the sequel of the self intersections of the front is the following : first the fourth bang front of exp ±1 intersect the fourth bang front of exp ±2 ; then at time T 2 = 0 and T 3 = T 3d = T 3a + 2C 2 -2c 2 110 < T 3a the fourth bang of exp ±2 intersects the fifth bang of exp ∓2 ; finally the fourth bang of exp 2 intersects the fourth bang of exp -2 at T 2 = 0 and T 3 = T 3a . The picture is similar to the one of Figure 8.

In the four cases, the cut locus has only one branch, which is continuous and piecewise smooth. And the proportions are those given in the Figure 9. The same kind of computations can be done in this case as in the previous case. For the picture of the cut locus we refer to the same figure 8 where the x-axis should be replaced by the y-axis.

Intersections of fifth bangs

In the case C 1 < 0 and C 2 < 0, the fifth bang front self intersect before losing optimality. As before this happen for t ∼ 8ρ and we write t = 8ρ + T 2 ρ 2 + T 3 ρ 3 .

As seen before, each fifth bang front is a part of parabola. For T 2 < 0, or T 2 = 0 and T 3 small enough, the four parabolas are not intersecting, are positioned as in the figure 10 and they are linked by the part of the front constituted of fourth bangs, and the front do not self intersect.

One way to build the optimal part of the front is to consider the expressions of the fifth bangs and of the four bangs, to consider them for all the values of α i ∈ [-1, 1] and to keep only the part which constitutes the boundary of the "central" domain (see Figure 10). The dynamics with respect to T 3 of each of these expressions consist only on translations of ±T 3 along x or y. Hence to identify the optimal part of these expressions, we just have to understand what are the consecutive intersections when T 3 varies.

• The first intersection is of the fifth bang front of exp ±1 with the one of exp ±2 at T 2 = 0 and T 3 = T 3e or with the one of exp ∓2 at T 2 = 0 and T 3 = T 3f .

Figure 10: The front before t = 8ρ when C 1 < 0 and C 2 < 0

When writing the intersection of the fifth fronts, that is for example that x 1sus (α 2 = -1) = x 2sus (α 1 = 1) and y 1sus (α 2 = -1) = y 2sus (α 1 = 1), one finds After that time, the fifth bang fronts that connected self intersect, until a next event.

T 3e = 4 
Case 1 The next event can be that all the front corresponding to the fifth bang of exp ±1 (resp. exp ±2 ) is no more optimal. This comes from the fact that the entire arc of parabolas of the fifth bang front of exp ±1 crossed the parabolas of exp ±2 which occures if 2|C

1 | < |C 2 |.
the entire arc of parabolas of the fifth bang front of exp ±2 crossed the parabolas of exp ±1 which occures if 2|C

1 | > |C 2 |,
see figure 11. The corresponding time can be computed in the following way. Assume that T 3e < T 3f and hence that the first event was the contact of the fifth bang front of exp 1 with the one of exp 2 at one of their extremity. Then, the second event will happen at T 3 such that one of the other extremities, let call it q(T 3 ) crosses the other parabola at p(T 3 ), see Figure FIGURE. Thanks to the dynamics with respect to T 3 , p(T 3 ) and q(T 3 ) belongs for all T 3 at the line x + y = c + T 3 where c ∈ R. Together with the expressions of the parabolas one find that the corresponding time is T 3 = T 3e + τ 3 with

τ 3 = 8 2C 1 C 2 .
If T 3f < T 3e then it happens at T 3 = T 3f + τ 3 .

Case 2 An other event, that can occures after the first intersection, is the other contact between fifth bang fronts occures. If T 3e < T 3f then this event is at T 3 = T 3f and if T 3f < T 3e it is at T 3 = T 3f . See Figure 12 Case 1.1 In the case 1, the next event can be the closure of the synthesis by the contact of the four bangs. If T 3e < T 3f the fourth bang fronts of exp - -

-If T 3e < T 3f and |C 2 | < 2|C 1 | then T 3 = T 3g = -K 1 + 2C 1 (1 + α 2 g ) with α g = -1 + 1 C 1 (b 110 + 2c 110 c 200 - 2c 
If T 3e < T 3f and |C 2 | > 2|C 1 | then T 3 = T 3h = -K 2 + 2C 2 (1 + α 2 h ) with α h = 1 -
If T 3e > T 3f and |C 2 | < 2|C 1 | then T 3 = T 3i = -K 1 +2C 1 (1+α 2 i ) with α i = 1+ 1 C 1 (b 110 + 2c 110 c 200 -2c 210 ). -If T 3e > T 3f and |C 2 | > 2|C 1 | then T 3 = T 3j = -K 2 + 2C 2 (1 + α 2 j ) with α j = -1 - 2 C 2 (b 110 + 2c 110 c 200 -2c 210 ).
After the fourth bang front lost optimality the optimal synthesis finishes by the last self intersection of the fifth bang front.

Case 2.2 In case two, after max{T 3e , T 3f }, the optimal synthesis closes as follows. If |C 2 | < 2|C 1 |, then the next event is the loss of optimality of the entire fifth bang front of exp ±2 , and the optimal synthesis finishes by the intersection of the parabolas of exp ±1 . If |C 2 | > 2|C 1 |, then the next event is the loss of optimality of the entire fifth bang front of exp ±1 , and the optimal synthesis finishes by the intersection of the parabolas of exp ±2 6.7 Cut locus when C 1 < 0 and C 2 < 0

Thanks to the description of the different steps that can occure along the dynamics of the front, we can conclude by claming

• If |T 3e -T 3f | < τ 3 then the cut locus has 5 smooth branches as in Figure 12.

• If not it has only one branch which is continuous and smooth by arcs, see Figure 11.

Finally we can give the picture of the cut locus in this two cases in Figure 13. 

Singularities and stability, open question

All the computations we made in this section for the cut locus or conjugate locus are stable except for extremals with initial conditions |λ x | = |λ y | = 1. Effectively, under the codimension 1 assumption that both C 1 = 0 and C 2 = 0, except for these initial conditions, the cut points correspond to transversal self intersections of the wave front.

For the initial conditions |λ x | = |λ y | = 1, a further study should be done in order to find a good notion of stability, which is itself not clear, and to study it in this case. In the case C 1 > 0 and C 2 > 0, the corresponding singularity in the sub-Riemannian contact case, corresponding to the extremity of the cut locus, is a cusp A 3 (in the classification of Arnol'd) and it is stable as smooth or lagrangian singularity. We may propose the conjecture that a good theory of stability should find in our context that the singularity is stable. If this conjecture is valid then the pictures of the cut locus are stable and valid not only for the jet of the dynamics we have computed but also for the true dynamics.

Extremals with only one control switching several times

For |λ z | large enough the dynamics is described in the previous sections. We can now choose a constant Λ z > 0 large enough and considering only the extremal satisfying |λ z | < Λ z . As seen before, along an extremal 

φ3 = u 1 (f 41 φ 1 + f 42 φ 2 + f 43 φ 3 ) + u 2 (f 51 φ 1 + f 52 φ 2 + f 53 φ 3 ).
| φ3 | ≤ |f 41 | + |f 42 | + |f 51 | + |f 52 | + (|f 53 | + |f 43 |)|φ 3 | ≤ 4M + 2M Λ z
where M is a local bound of the f ij . This implies that, for the extremals we are considering, the possibility of switching in short time implies that the corresponding switching function starts close to 0. Which implies that in short time only one control switches. And if in short time a control switches twice hence φ 3 should change sign and hence starts close to 0 that is λ z should starts close to 0.

In the following, we will be interested only in finding extremals that switch at least twice (on the same control) since the ones that switch only once are yet obtained with initial conditions with large |λ z |.

We will consider only extremals with u 1 ≡ 1, the study of the other ones being equivalent. Along such an extremal φ2 = u 1 φ3 = φ3 and since

u 1 ≡ 1 one gets φ2 = (f 41 + u 2 f 51 )φ 1 + (f 42 + u 2 f 52 )φ 2 + (f 43 + u 2 f 53 )φ 3 . Since φ 3 (t) = O(t), φ 2 = O(t) and φ 1 (t) = 1 + O(t) we get that φ2 (t) = (f 41 + u 2 f 51 ) + O(t).
In the following we assume that we are considering a point where f 41 + f 51 = 0 and f 41 -f 51 = 0. We consider then the four following cases 1. If |f 51 | < f 41 then f 41 + u 2 f 51 > 0 for all u 2 ∈ [0, 1] and φ2 (t) > 0 for all t. As a consequence the only possible behaviours of the control u 2 are (see Figure 14) (c) u 2 is equal to 1 or -1 during a first intervalle of time, then φ 2 = 0 during a second intervalle where u 2 (t) = -f 41 (q(t)) f 51 (q(t)) + O(t), and finally u 2 switches to 1 or -1.

(a) u 2 ≡ 1, G 2 t φ 2 (t) G 1
4. If |f 41 | < -f 51 then f 41 + f 51 < 0 hence φ2 (t) < 0 when φ 2 (t) > 0 and f 41 -f 51 > 0 hence φ2 (t) > 0 when φ 2 (t) < 0. In that case the list of possible behaviours may be very large. In the following we analyse more deeply to prove that the possible behaviours are A more precise description of the optimal ones is given in the following analysis. In particular, in this case, appears a cut locus.

G 1 G 2 G 1 G 2 φ 2 (t) t

Extremals when |f 41 | < -f 51

In the following we prove that, in the case |f 41 | < -f 51 , an extremal with u 1 ≡ 1 with four bangs is not optimal.

An easy computation shows that hence s γ -s θ is strictly positive except maybe when γ 3 ∼ θ 3 and γ 2 ∼ x.

f 41 (0) = - 1 
But comparing with the curve we get that s γ -s > 0 except maybe when γ 2 ∼ 1 and γ 3 ∼ y. Finally we can conclude that such an extremal γ is not optimal. The same proof can be done for the extremals with four bangs following first G 1 , then G 2 , then G 1 and finally G 2 . And no extremal with three switches on the same control can be optimal.

Comparing the curves and θ one gets 

G 2 (

 2 x, y, z) = (a 200 x 2 + a 110 xy + xθ x (x, y, z))∂ x +(1 + b 200 x 2 + b 110 xy + xθ y (x, y, z))∂ y +(x + c 200 x 2 + c 110 xy + c 300 x 3 +c 210 x 2 y + c 120 xy 2 + xθ z (x, y, z))∂ z

Figure 1 :

 1 Figure 1: Evolution of the front at r = 0 fixed. In red dot lines and in black the extremals with initial speed G 1 , in full line the front at 4 different times, with four colors corresponding to the four possible initial speeds

Figure 2 :

 2 Figure 2: The conjugate locus and three points of view of the non singular part of the sphere in the nilpotent case

  0 ), y conj = -8c 200 r 2 0 ± 4(b 110 + 6c 110 c 200 -2c 210 +(4b 200 + 12c 2 200 -6c 300 )α 2 )r 3 0 + o(r 3 0 ), z conj = 4r 2 0 ∓ 8(c 110 + 2c 200 α 2 )r 3 0 + o(r 3 0 ), and for Exp ±2 , if C 2 > 0 x conj = 4c 110 r 2 0 ± 4(b 110 + 6c 110 c 200 -2c 210 +α 1 (2c 120 -3c 2 110 ))r 3 0 + o(r 3 0 ),

6. 1 . 1

 11 Intersection of an extremal starting with ±G 1 with one starting with ±G 2

1 +

 1 -24b 110 -21c 2 110 -312b 200 -144c 110 c 200 -336c 2 200 -4c 120 + 432c 300 + 24c 210 + (108b 110 + 51c 2 110 -72b 200 +264c 110 c 200 -48c 2 200 -36c 120 + 144c 300 -168c 210 )α 1 +12(b 110 -27c 2 110 + 72c 110 c 200 + 36c 120 -48c 210 )α 2 (4c 120 -4a 110 -3c 2 110 )α 3 1 )ρ 3 z cut = 4ρ 2 6.1.3 Intersection of the front starting with G 1 with the one starting with -G 1

1 3 c

 13 one finds x sus = (4c 110 ∓ α 21 )ρ 2 ∓ (+4b 110 + 4c 2 110 ± 4c 200 α 21 +2c 110 (4c 200 ± α 21 ) + α 22 -8c 120 -8c 210 )ρ 3 y sus = (-8c 200 ∓ α 21 ∓ T 2 )ρ 2 ± ( 4 3 a 110 -α 2 21 -α 22 + 8b 200 ± 2α 21 c 110 + 8 120 ∓ 4α 21 c 200 + 16c 110 c 200 + 16c 2 200 -16c 300 -α 21 T 2 ± 4c 110 T 2 -T 3 )ρ 3 z sus = 4ρ 2

3 (Figure 3 :

 33 Figure 3: Closure of the cut locus at z fixed.

3 a 110 -4c 2 110 + 8b 200 ∓ 4c 200 α 11 - 3 y 2 200 ∓2c 110 α 11 ±

 2113211 2c 110 (8c 200 ± α 11 ) + α 12 + 16 3 c 120 -8c 300 + T 3 )ρ sus = -(8c 200 ± α 11 )ρ 2 ± (4b 110 -16b 200 + 8c 110 c 200 -16c 4c 200 α 11 -α 12 + 24c 300 -8c 210 )ρ 3 z sus = 4ρ 2

Figure 5 :c 120 - 4 3 a

 53 Figure 5: The upper part of the cut locus
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 6 Figure 6: The front before t = 8ρ when C 1 > 0 and C 2 < 0

Figure 7 :Figure 8 :

 78 Figure 7: Picture of the front at times with T 2 = 0 and T 3 < T 3c , T 3 = T 3c and T 3 = T 3b

Figure 9 :

 9 Figure 9: Picture of the cut locus when C 1 > 0 and C 2 < 0

  3 (a 110 + 3b 110 -6b 200 + 18c 110 c 200 + 2c 120 + 6c 300 -6c 210 ) and T 3f = 4 3 (a 110 -3b 110 -6b 200 + 6c 110 c 200 + 2c 120 + 6c 300 + 6c 210 ).

  4c 2 110 -16c 110 c 200 -8c 2 200 + 4c 300 .

2 C 2

 22 (b 110 + 2c 110 c 200 -2c 210 ) and 2c 2 110 -16c 110 c 200 -16c 2 200 + 16c 300 -8b 200 .

Figure 11 :Figure 12 :

 1112 Figure 11: Evolution of the front when |T 3e -T 3f | > τ 3

Figure 13 :

 13 Figure 13: Possible cut loci when C 1 < 0 and C 2 < 0
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 1412 Figure 14: Extremals when |f 51 | < f 41

2 G 1 Figure 15 :

 2115 Figure 15: Extremals when |f 51 | < -f 41

Figure 16 :

 16 Figure 16: Extremals when |f 41 | < f 51

Figure 17 :

 17 Figure 17: Extremals when |f 41 | < -f 51

2 (a 200 + b 200 + a 110 + b 110 2 )+ b 200 - a 110 + b 110 2 ) 2 + 2 +

 22222 The hypothesis |f 41 | < -f 51 is equivalent to a 200 + b 200 > 0 and a 110 +b 110 2 < 0. Consider the three following extremals from (0, 0, 0) to (x, y, z). The first one, denoted , has u 2 = 1 during time 1 then u 2 = -1 during time 2 and finally u 2 = 1 during time 3 . The second one, denoted θ(t), has u 2 = -1 during time θ 1 then u 2 = 1 during time θ 2 and finally u 2 = -1 during time θ 3 . The last one, denoted γ(t), has u 2 = -1 during time γ 1 then u 2 = 1 during time since θ 1 + θ 3 = y + o(x + y) and γ 1 + γ 3 = y + o(x + y). Now, we should analyse the relation between γ 2 and γ 3 . One can prove that along the curve γ, during the second bang, φ2 = f 41 -f 51 + o(t) = -a 110 +b 110 o(t) and during the second bang φ2 = f 41 + f 51 + o(t) = -(a 200 + b 200 ) + o(t). One proves easily that, since φ 2 = 0 at the extremity of each of these intervalles, this implies that γ 3 γ 2 = -a 200 + b 200 a 110 +b 110 2 + o(x + y), hence exists λ > 0 such that γ 3 = λ(a 200 + b 200 ) + o((x + y) 2 ) and γ 2 = -λ a 110 +b 110 o((x + y) 2 ). As a consequence λ s γ -s θ z = γ 3 (θ 2 -γ 2 ) -γ 2 (θ 1 -γ 1 ) + o((x + y) 2 ) = γ 3 (x -γ 2 ) -γ 2 (γ 3 -θ 3 ) + o((x + y) 2 ) = γ 3 x + γ 2 z x -2γ 2 γ 3 + o((x + y)

s -s θ z( 1 2 <Figure 18 :

 1218 Figure 18: Part of the cut locus generated by the extremal with λ z (0) ∼ 0 when |f 41 | < -f 51 and |f 52 | < f 42

  a 110 -7c 2 110 -2a 200 + 2b 200 -8c 110 c 200 + 4c 2 200 + 12c 120 -4c 300 +(4a 200 -a 110 -5b 110 -c 2 110 -6c 110 c 200 -4c 2 200 + 4c 120 + 10c 210 )α 2 +(6c 210 -3b 110 -2a 200 -2c 110 c 200 )α 2 2 + (4c 300 -2b 200 )α 3 2 )ρ 3 y cut = -8c 200 ρ 2 ± (4b 110 + 8c 110 c 200 + (8b 200 -12c 300 + 8c 2 200 )(α 2 -1))ρ 3 z cut = 4ρ 2 6.1.2 Intersection of an extremal starting with ±G 2 with one starting with ∓G 1

  3 (a 110 -3b 110 + 6b 200 + 3c 2 110 -4c 120 + 6c 110 c 200 + 12c 2 200 + 6c 210 -12c 300 ).

  [START_REF] Agrachev | Sub-Riemannian sphere in Martinet flat case[END_REF] and exp -1 can intersect at time T 3b . If T 3f < T 3e the fourth bang fronts of exp 2 and exp -2 can intersect at time T 3a . This case occures only if the arc of parabolas of exp ±1 from one part, and the arc of parabolas of exp ±2 from the other part, do not intersect at any time T 3 . Case 1.2 In the case 1, another possibility is that the four bang front loses entirely its optimality. If 2|C 1 | < |C 2 | it correspond to the time at which an extremity of the fifth bang front of exp 2 touches the fifth bang front of exp -2 . If 2|C 1 | > |C 2 | it correspond to the time at which an extremity of the fifth bang front of exp 1 touches the fifth bang front of exp -1 . These times can be computed by translating in the calculus these intersection and we gat in the different cases

This research has been supported by ANR-15-CE40-0018.