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Context
Modeling lexical orthographic knowledge acquisition is one of the main current
challenges. While many computational models simulate reading, word recognition,
phonological transcoding or eye movement control in text reading, only one study
(Ziegler, Perry, & Zorzi, 2014) has attempted to model the acquisition of lexical
orthographic knowledge in children by proposing a dedicated model. This model
postulates a fundamental role of phonological processing in the acquisition of lexical
orthographic knowledge.
Our team has recently developed BRAID, a new Bayesian model of word recognition
(“Bayesian word Recognition with Attention, Interference and Dynamics”), to simulate
the performance of expert readers (Phenix, Valdois, & Diard, submitted; Ginestet,
Phenix, Diard, & Valdois, submitted). Here, we propose an extension of BRAID by
implementing a mechanism for the acquisition of new orthographic knowledge based
on predictive calculations of visual-attention parameters.

Extension of the BRAID model for orthographic learning
BRAID is a hierarchical probabilistic model of visual word recognition composed of 4
submodels. We introduce a top-down dependency, so that contents of the perceptual
letter submodel control attentional parameters during orthographic learning.

Simulation Results
Illustration of learning two new words (4 letters, BLAI; 6 letters, DARCOL), each
presented 4 times.

Summary and discussion
• Our experimental results suggest that the BRAID model successfully simulates

orthographic learning of new words.
• Our model of orthographic learning is based on a strategy to optimize the

accumulation of perceptual information. This strategy predicts that, for novel
words, a serial decoding is the most efficient strategy, as no lexical knowledge is yet
available. After few exposures, lexical knowledge complements sensory decoding so
that parallel decoding becomes more efficient.

• No phonological component is involved to obtain this prediction.
• However, in our preliminary simulations, Total Gain and the number of required

attentional fixations rapidly decrease. The strategy transition is fast, whatever the
word length.

• We are currently conducting a behavioral experiment, with adult participants
learning novel pseudo-words, in order to assess whether this transition speed is
realistic.
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To model orthographic learning, we assume that visual attention displacements are
chosen to optimize the accumulation of perceptual information ! !"

#,% | ' ( )* +*
about letters, so as to construct efficiently the new orthographic memory trace.

Acquiring lexical traces for new words
In the model, lexical knowledge is represented by probability distributions about
letters, ! ,"

#,% | -#,% = / . Their parameters are learned and updated after each
exposure, by integrating the current perceptual trace ! !"

#,%34 | ' ( )* +* .

Top-Down lexical influence
Lexical knowledge about letters influences perceptual traces ! !"

#,% | ' ( )* +* . This
influence is modulated by the probability that the stimulus presented is a known word
or not (i.e., our model of lexical decision). During orthographic learning, this influence
represents a novelty detection mechanism.

Attentional displacements
We assume that visual attention parameters are controlled in order to efficiently obtain
perceptual traces. This is modeled by selecting attentional parameters (µA ; sA) that
maximize a Total Gain (TG) measure. TG characterizes the information gain obtained
during an attentional fixation (measured as the expected entropy gain), modulated by
an estimate of the motor cost of the attentional displacement:

Total Gain = (1 – α) × Entropy Gain – α × Motor Cost
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