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We consider specific sub-Finslerian structures in the neighborhood of 0 in R 2 , defined by fixing a familly of vector fields (F1, F2) and considering the norm defined on the non constant rank distribution ∆ = vect{F1, F2} by

If F1 and F2 are not proportionnal at p then we obtain a Finslerian structure; if not, the structure is sub-Finslerian on a distribution with non constant rank. We are interested in the study of the local geometry of these Finslerian and sub-Finslerian structures: generic properties, normal form, short geodesics, cut locus, switching locus and small spheres.

Introduction

From the 80's, the interest for the sub-Riemannian geometry increases with a lot of contributions in several domains as PDEs, analysis, probability, geometry and control. One of the question was to understand the local geometry of sub-riemannian metrics, as the singularities of small spheres, local cut locus, local conjugate locus and so on, motivated in particular by new results on the heat kernel in the sub-Riemannian context, see [START_REF] Ben Arous | Décroissance exponentielle du noyau de la chaleur sur la diagonale[END_REF][START_REF] Léandre | Majoration en temps petit de la densité d'une diffusion dégénérée[END_REF][START_REF] Léandre | Minoration en temps petit de la densité d'une diffusion dégénérée[END_REF][START_REF] Arous | Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus[END_REF]. The contact and the Martinet cases were deaply studied (see [START_REF] Agrachev | Sub-Riemannian sphere in Martinet flat case[END_REF][START_REF] Bonnard | Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet[END_REF][START_REF] Bonnard | Sub-riemannian geometry, one-parameter deformation of the martinet flat case[END_REF][START_REF] El-Houcine | Small sub-riemannian balls on R 3[END_REF][START_REF] Agrachev | On the subanalyticity of Carnot-Caratheodory distances[END_REF]). The quasi-contact case in dimension 4 also (see [START_REF] Charlot | Quasi-contact s-r metrics : normal form in R 2n , wave front and caustic in R 4[END_REF]). These results allowed to give new results on the asymptotics of the heat kernel at cut and conjugate loci in the 3D contact and 4D quasi-contact cases ( [START_REF] Barilari | Small-time heat kernel asymptotics at the sub-Riemannian cut locus[END_REF][START_REF] Barilari | On the heat diffusion for generic riemannian and sub-riemannian structures[END_REF]).

In this article, we start the same work for Finslerian and sub-Finslerian metrics associated with a maximum norm: let consider a manifold M , a vector bundle π : E → M with fibers of same dimension as M endowed with a maximum norm, and a morphism of vector bundles f : E → T M such that the map from Γ(E) → V ec(M ) defined by σ → f • σ is injective. An admissible curve is a curve γ in M such that exists a lift σ in E with γ(t) = f (σ(t)) a.e. The length of such a curve is the infimum of the T 0 |σ(t)|dt for all possible such σ and the distance between two points q 0 and q 1 is the infimum of the lengths of the curves joining q 0 and q 1 . Remark that the map f itself is not assumed to be injective everywhere: at points where f is injective the structure is Finslerian when at points where it is not it is sub-Finslerian.

Here we concentrate our attention on the local study of such structures in dimension 2, that is when M and the fibers of E have dimension 2.

Equivalently, with a control point of view and since we are interested in local properties, we consider control systems in a neighborhood of 0 in R 2 of the type q = u 1 F 1 (q) + u 2 F 2 (q)

(1)

where F 1 and F 2 are smooth vector fields and u 1 and u 2 are control functions satisfying

|u 1 | ≤ 1 and |u 2 | ≤ 1. (2) 
Up to reparameterization, minimizing the distance in the geometric context is equivalent to minimizing the time of transfer in the control context. We are interested in the study of the time optimal synthesis of such systems. Of course, the general situation cannot be completely described since singular cases may have very special behaviour. For example, in the case F 1 = ∂ x and F 2 = ∂ y , any admissible trajectory with u 1 ≡ 1 and 1 0 u 2 (t)dt = 0 joins optimaly (0, 0) to [START_REF] Agrachev | Sub-Riemannian sphere in Martinet flat case[END_REF]0). Hence in the following, we will consider only "generic" situations as defined in section 2.1.

Few works exist concerning sub-Finsler geometry since it is a new subject. Let mention the works [START_REF] Clelland | Sub-finsler geometry in dimension three[END_REF][START_REF] Clelland | Geometry of sub-finsler engel manifolds[END_REF] for dimension 3, considering norms which are assumed to be smooth outside the zero section. In [START_REF] Breuillard | On the rate of convergence to the asymptotic cone for nilpotent groups and subfinsler geometry[END_REF], the sphere of a left invariant sub-Finsler structure associated to a maximum norm in the Heisenberg group is describded. In the preprint [START_REF] Barilari | Sub-finsler structures from the timeoptimal control viewpoint for some nilpotent distributions[END_REF], the authors describe the extremals (and discuss in particular their number of switches before the loss of optimality) for the Heisenberg, Grushin and Martinet distributions. In the preprint [START_REF] Ali | Local contact sub-finslerian geometry for maximum norms in dimension 3[END_REF], we describe, in the 3D generic contact case, the small sphere and the local cut locus.

The paper is organised as follows.

In section 2 we recall Thom's transversality theorem and some of its corollaries, define what we mean by generic, give generic properties of the couples of vector fields on 2 dimensional manifolds and give a normal form for the generic couples.

In section 3, we give first general results about the optimal synthesis; recalling classical results as Chow-Rashevski, Filippov and Pontryagin theorems; analysing the possibilities for extremals to switch or to be singular depending on their initial condition; giving details on the weights of coordinates in the normal form and on the associated nilpotent approximation.

In section 4, we present the local synthesis in all the generic cases presented in the normal form of section 2.

Normal form

In this section, the goal is to give a list of properties of generic couples (F 1 , F 2 ) and to construct a normal form for the couple (G 1 , G 2 ) defined by G 1 = F 1 + F 2 and G 2 = F 1 -F 2 . As we will see, ±G 1 and ±G 2 are the velocities of a large class of the minimizers of the optimal control system defined by [START_REF] Agrachev | Sub-Riemannian sphere in Martinet flat case[END_REF] and [START_REF] Agrachev | On the subanalyticity of Carnot-Caratheodory distances[END_REF].

In order to do that we use the Thom's transversality theorem and some of its corollaries.

2.1 Generic properties of couples of smooth vector fields on 2d-manifolds 2.1.1 Thom's transversality theorem Denote J k (M, N ) the set of k-jets of maps from M to N .

Theorem 1 (Thom Transversality Theorem, [START_REF] Hirsch | Differential topology[END_REF], Page 82). Let M, N be smooth manifolds and k ≥ 1 an integer. If S 1 , • • • , S r are smooth submanifolds of J k (M, N ) then the set

{f ∈ C ∞ (M, N ) : J k f S i for i = 1, 2, • • • , r},
is residual in the C ∞ -Whitney topology.

Corollary 2. Assume that codim S i > dim M for i = 1, • • • , r and k ≥ 1. Then the set {f ∈ C ∞ (M, N ) :

J k f (M ) ∩ S i = ∅ for i = 1, • • • , r},
is residual in the C ∞ -Whitney topology.

Corollary 3. For every f in the residual set defined in Theorem 1, the inverse images Si := (J k f ) -1 (S i ) is a smooth submanifold of M and codim S i = codim Si for i = 1, • • • , r.

Remark 4. Let ϕ be a diffeomorphism of M and φ be a diffeomorphism of N . The map

σ ϕ,φ : C ∞ (M, N ) -→ C ∞ (M, N ) f -→ ϕ • f • φ
induces a diffeomorphism σ * ϕ,φ of J k (M, N ) which sends submanifolds of J k (M, N ) on submanifolds of J k (M, N ). Moreover, f is in the residual set defined in theorem 1, if and only if

σ ϕ,φ (f ) is in the residual set {g ∈ C ∞ (M, N ) : J k g σ * ϕ,φ (S i ) for i = 1, • • • , r}.
This remark is important to facilitate the presentation of the proofs of the generic properties given in the next section. Definition 5. In the following, we will say that a property of maps is generic if it is true on a residual set defined as in Thom's theorem.

First generic properties

We give a list of generic properties for couples of vector fields on 2d-manifolds. In order to use Thom transversality theorem, we work locally in coordinates. Locally one can consider a couple of vector fields as the data of a map

g : U ⊂ R 2 → R 2 × R 2 (x, y) → ((g 1 (x, y), g 2 (x, y)), (g 3 (x, y), g 4 (x, y)))
and the k-jet at q = (0, 0) ∈ U of g as the data of the map

J k g : R 2 → R k [x,
y] 4 (x, y) → (P 1 (x, y), . . . , P 4 (x, y))

where P i (1 ≤ i ≤ 4) is the Taylor series of order k of g i at q.

In order to describe submanifolds of R k [x, y] 4 in coordinates, we write:

P 1 (x, y) = k i=0 k-i j=0 p 1,i,j x i y j , . . . , P 4 (x, y) = k i=0 k-i j=0 p 4,i,j x i y j .
In the following (g 1 , g 2 ) are the coordinates of G 1 and (g 3 , g 4 ) the coordinates of G 2 in a local coordinate system.

Generic property 1 (GP1): for generic couples of vector fields (F 1 , F 2 ) on M , the set of points where G 1 = G 2 = 0 is empty.

Indeed in coordinates such points correspond to jets with p 1,0,0 = p 2,0,0 = p 3,0,0 = p 4,0,0 = 0 which form a submanifold of R k [x, y] 4 of codimension 4. Hence, thanks to corollary 2, the property is proven.

Let call J k

N the set of k -jets such that P 1 ≡ 1 and P 2 ≡ 0. Once assumed that we choose a coordinate system such that

G 1 = (1, 0) then J k g is in J k N . Assume that a set S of J k (R 2 , R 4
) is defined has the zero level of a finite number of functions h i , i = 1 . . . k, which differentials form a free familly when restricted to T J k N . Then locally the differentials of the functions h i form a free familly and hence, close to J k N ∩ S, the set S is locally a submanifold. In this context, the codimension of S in J k (R 2 , R 4 ) is equal to the codimension of S = S ∩ J k N in J k N . Thanks to remark 4, up to a permutation between ±F 1 and ±F 2 and a good choice of coordinates, we will assume in all the following that G 1 ≡ (1, 0) locally that is g 1 ≡ 1 and g 2 ≡ 0. It corresponds to jets in J k N . As a consequence, if a set S is defined by a finite number of functions h i , i = 1 . . . k, which differentials form a free familly when restricted to T J k N , then to apply Thom's theorem and its corollaries we are reduced to apply them to the map

g : U ⊂ R 2 → R 2 (x, y) → (g 3 (x, y), g 4 (x, y))
and the set S = S ∩ J k N seen as a submanifold of J k (R 2 , R 2 ). Generic property 2 (GP2): for generic couples of vector fields (F 1 , F 2 ) on M , the set of points where G 2 = 0 is a discret set. The same holds for the set where F 1 = 0 or the set where F 2 = 0.

Indeed such points correspond to jets with p 3,0,0 = p 4,0,0 = 0 which is a submanifold of R k [x, y] 2 of codimension 2. Hence, thanks to corollary 3, the set where G 2 = 0 is generically a submanifold of M of codimension 2 that is a discrete set. For F 2 = 0 the equations are p 3,0,0 = 1 and p 4,0,0 = 0 and for F 1 = 0 the equations are p 3,0,0 = -1 and p 4,0,0 = 0. Generic property 3 (GP3): for generic couples of vector fields (F 1 , F 2 ) on M , the set ∆ A of points where G 2 is parallel to G 1 is an imbedded submanifold of codimension 1.

Indeed ∆ A is exactly the set of points where g 4 = 0, corresponding to jets with p 4,0,0 = 0. This last set is an imbedded submanifold of R k [x, y] 2 of codimension 1. Thanks to (GP1) and to corollary 3, we can conclude that generically ∆ A is an imbedded submanifold of codimension 1.

Generic property 4 (GP4): for generic couples of vector fields

(F 1 , F 2 ) on M , the set ∆ 1 of points where F 1 is parallel to [F 1 , F 2 ] is an imbedded submanifold of codimension 1. The same holds for ∆ 2 where F 2 is parallel to [F 1 , F 2 ].
In order to prove (GP4), compute [F 1 , F 2 ] and describe ∆

1 in coordinates. [F 1 , F 2 ] = -1 2 [G 1 , G 2 ] hence has coordinates -1
2 p 3,1,0 and -1 2 p 4,1,0 and F 1 has coordinates 1 2 (1 + p 3,0,0 ) and 1 2 p 4,0,0 . Hence ∆ 1 corresponds to jets satisfying

-1 2 p 3,1,0 1 2 (1 + p 3,0,0 ) -1 2 p 4,1,0 1 2 p 4,0,0 = 0.
The differential of this determinant is not degenerate hence the set of R k [x, y] 2 satisfying this equality is an imbedded submanifold of codimension 1. Hence, generically, ∆ 1 is the preimage of an immersed submanifold of codimension 1 which, thanks to corollary 3, permits to conclude that ∆ 1 is an immersed submanifold of codimension 1.

Generic property 5 (GP5): for generic couples of vector fields (F 1 , F 2 ) on M , the sets

(∆ A ∩ ∆ 1 ), (∆ A ∩ ∆ 2 ) and (∆ 1 ∩ ∆ 2 ) are discrete. Since G 1 = (1, 0), the set (∆ 1 ∩∆ 2 )\∆ A is the set of points where (F 1 , F 2 ) is free and [F 1 , F 2 ] = 0 that is p 4,0,0 = 0, p 3,1,0 = 0 p 4,1,0 = 0. This set is an immersed submanifold of codimension 2 of R k [x, y] 2 hence, thanks to corollary 3, the set (∆ 1 ∩ ∆ 2 ) \ ∆ A is generically a discrete set.
The set (∆ A ∩ ∆ 2 ) \ ∆ 1 is a set of points where F 2 = 0. By (GP2) it is a discrete set. The same holds for (∆ A ∩ ∆ 1 ) \ ∆ 2 which is a set of points where F 1 = 0.

The set ∆ A ∩ ∆ 1 ∩ ∆ 2 is the union of the subset where F 1 = 0 and

F 1 F 2 [F 1 , F 2 ]
with a subset where F 1 = 0. The second is discrete. The first set is also defined by G 1 G 2 [G 1 , G 2 ] that is p 4,0,0 = 0 and p 4,1,0 = 0. Hence, thanks to corollary 3, the set where F 1 = 0 and

F 1 F 2 [F 1 , F 2 ]
is a submanifold of codimension 2 that is a discrete set.

Generic property 6 (GP6): for generic couples of vector fields (F 1 , F 2 ) on M , the set of points where

G 1 G 2 [G 1 , G 2 ] [G1, [G 1 , G 2 ]] is empty.
The set where

G 1 G 2 [G 1 , G 2 ] [G 1 , G 2 ]
is such that p 4,0,0 = p 4,1,0 = p 4,2,0 = 0. Hence, thanks to corollary 3, it is a submanifold of codimension 3 that is an empty set. Generic property 7 (GP7): for generic couples of vector fields (F 1 , F 2 ) on M , at the points q where

G 1 (q) G 2 (q) [G 1 , G 2 ](q) one gets G 1 (q) ∈ T q ∆ A .
The property G 1 (q) G 2 (q) [G 1 , G 2 ](q) implies that p 4,0,0 = p 4,1,0 = 0. If p 4,0,1 = 0 then ∆ A can be written p 4,0,1 y = o(x) that is ∆ A is tangent to the x axis and G 1 ∈ T q ∆ A . Hence the set of points where G 1 (q) G 2 (q) [G 1 , G 2 ](q) and G 1 (q) / ∈ T q ∆ A corresponds to jets with p 4,0,0 = p 4,1,0 = p 4,0,1 = 0 which is a submanifold of codimension 3. Hence generically, at the points q where G 1 (q) G 2 (q) [G 1 , G 2 ](q), one has G 1 (q) ∈ T q ∆ A .

One can even detail more the generic properties: using Thom transversality theorem and its corollaries, we can prove that generically Generic property 8 (GP8): along ∆ 1 \ (∆ 2 ∪ ∆ A ), the points where G 1 or G 2 is tangent to ∆ 1 are isolated. The same holds true for ∆ 2 \ (∆ 1 ∪ ∆ A ).

Generic property 9 (GP9): at points of

(∆ 1 ∩ ∆ 2 ) \ ∆ A , neither G 1 nor G 2 are tangent to ∆ 1 or ∆ 2 .
Generic property 10 (GP10): along ∆ A \ (∆ 1 ∪ ∆ 2 ), the set of points where G 2 = 0 or G 2 = ±G 1 is discrete.

Normal form

Thanks to the generic properties established in the previous section, we can prove : Theorem 6 (Normal form). For generic couples of vector fields (F 1 , F 2 ) on a 2d manifold M , up to an exchange between ±F 1 and ±F 2 , at each point q of the manifold G 1 = 0 and it exists a unique coordinate system (x, y) centred at q such that one of the following normal form holds:

(N F 1 ) G 1 (x, y) = ∂ x , G 2 (x, y) = ∂ y + x(a 10 + a 20 x + a 11 y + o(x, y))∂ x + x(b 10 + b 20 x + b 11 y + o(x, y))∂ y , and q / ∈ ∆ A . (N F 2 ) G 1 (x, y) = ∂ x , G 2 (x, y) = (a 0 + a 10 x + a 01 y + o(x, y))∂ x + x(1 + x(b 20 + O(x, y)))∂ y , with 0 ≤ a 0 ≤ 1, and q ∈ ∆ A \ ∆ 1 . (N F 3 ) G 1 (x, y) = ∂ x , G 2 (x, y) = (a 0 + o(1))∂ x + (b 01 y + 1 2 x 2 + b 11 xy + b 02 y 2 + o(x 2 , y 2 ))∂ y , with b 01 > 0 and 0 < a 0 < 1, q ∈ ∆ A ∩ ∆ 1 ∩ ∆ 2 and G 1 (q) ∈ T q ∆ A .
For (N F 1) and (N F 2) one of the following subcases holds:

(N F 1a ) (N F 1 ) holds with a 10 -b 10 = 0 and a 10 + b 10 = 0.

It corresponds to q / ∈ ∆ A ∪ ∆ 1 ∪ ∆ 2 .
(N F 1b ) (N F 1 ) holds with a 10 -b 10 = 0 and a 10 + b 10 = 0. It corresponds to q ∈ ∆ 1 \ (∆ A ∪ ∆ 2 ).

(N F 1c ) (N F 1 ) holds with a 10 -b 10 = 0 and a 10 + b 10 = 0.

It corresponds to q ∈ ∆ 2 \ (∆ A ∪ ∆ 1 ). (N F 1d ) (N F 1 ) holds with a 10 = b 10 = 0. It corresponds to q ∈ (∆ 1 ∩ ∆ 2 ) \ ∆ A . (N F 2a ) (N F 2 ) holds with 0 ≤ a 0 < 1. It corresponds to q ∈ ∆ A \ (∆ 1 ∪ ∆ 2 ). (N F 2b ) (N F 2 ) holds with a 0 = 1. It corresponds to q ∈ (∆ A ∩ ∆ 2 ) \ ∆ 1 that is to q ∈ ∆ A \ ∆ 1 such that F 2 (q) = 0.
Such coordinate system is called the normal coordinate system associated with F 1 and F 2 .

Proof. We assume that all the generic properties given before are satisfied. Thanks to (GP1), and thanks to the fact that we are working locally, we can assume that G 1 is not zero.

Thanks to (GP3), we know that ∆ A is a submanifold of dimension 1. Let start by considering a point q outside ∆ A . Let define the map ϕ which to (x, y) in a neighborhood U of (0, 0) in R 2 associates the point reached by starting at q and following G 2 during time y and then G 1 during time x that is

ϕ : U → M (x, y) → e xG 1 e yG 2 q
Since ∂ x ϕ(0, 0) = G 1 (q) and ∂ y ϕ(0, 0) = G 2 (q), ϕ is a local diffeomorphism hence defines a local coordinate system. One proves easily that at each point of coordinates (x, y) the vector G 1 (x, y) = (1, 0). Moreover, along the y axis, since ϕ(0, y) = e yG 2 q then G 2 (0, y) = (0, 1). This implies the normal form (N F 1 ). With the normal form (N F 1 ), one gets that

[F 1 , F 2 ](0) = - 1 2 [G 1 , G 2 ](0) = - 1 2 (a 10 , b 10 ), F 1 (0) = 1 2 (G 1 (0) + G 2 (0)) = ( 1 2 , 1 2 
),

F 2 (0) = 1 2 (G 1 (0) -G 2 (0)) = ( 1 2 , - 1 2 ) 
which implies that

[F 1 , F 2 ](0) = - a 10 + b 10 2 F 1 (0) - a 10 -b 10 2 F 2 (0).
The subcases follow immediately. Assume now that q ∈ ∆ A \ ∆ 1 . Hence G 1 (q) and G 2 (q) are parallel and since we assume that G 1 (q) is not 0, we can assume up to a change of role that G 2 (q) = αG 1 (q) with α ∈ [0, 1]. Since q / ∈ ∆ 1 , G 1 (q) and [G 1 , G 2 ](q) are not parallel. This implies that G 1 is not tangent to ∆ A . As a consequence, one can choose a local parameterization γ(t) of ∆ A such that γ(0) = q and γ(t) has second coordinate 1 in the basis (G 1 (γ(t)), [G 1 , G 2 ](γ(t))). We can know define the map ϕ which to (x, y) in a neighborhood U of (0, 0) in R 2 associates the point reached by starting at γ(y) and following G 1 during time x that is

ϕ : U → M (x, y) → e xG 1 γ(y)
In this coordinate system, ∆ A is the y axis, G 1 (x, y) = (1, 0) and the second coordinate of G 2 is null at x = 0 hence it is the product of the function (x → x) with a smooth function g. Moreover, thanks to the property of γ, g(0, y) = 1 which implies that g(x, y) = 1 + xh(x, y) with h a smooth function. This is exactly (N F 2 ). If 0 ≤ a 0 < 1 then F 1 (q) and F 2 (q) are not null and since they are parallel but not parallel to

[F 1 , F 2 ](q) then q ∈ ∆ A \ (∆ 1 ∪ ∆ 2 ). If a 0 = 1 then F 2 (q) = 0 and q ∈ (∆ A ∩ ∆ 2 ) \ ∆ 1 .
The case where q ∈ (∆ A ∩ ∆ 1 ) \ ∆ 2 can de treated by exchanging the roles of G 1 and G 2 since in this case G 2 (q) = 0.

Let assume finally that q

∈ ∆ A ∩ ∆ 1 ∩ ∆ 2 . Thanks to (GP6) and (GP7) at such a point G 1 and [G 1 , [G 1 , G 2 ]
] are not parallel. Hence we can define the map ϕ which to (x, y) in a neighborhood U of (0, 0) in R 2 associates the point reached by starting at q and following [G

1 , [G 1 , G 2 ]] during time y and then G 1 during time x that is ϕ : U → M (x, y) → e xG 1 e y[G 1 ,[G 1 ,G 2 ]] q
The fact that G 2 and [G 1 , G 2 ] are parallel to G 1 implies b 0 = 0 and b 10 = 0. The fact that, along the y axis, [G 1 , [G 1 , G 2 ]] = (0, 1) implies in particular that b 20 = 1 2 which finishes the proof.

3 General facts about the computation of the optimal synthesis

Local controllability and existence of minimizers

In the three cases of the normal form (N F 1 ), (N F 2 ) and (N F 3 ) one checks that

span(F 1 , F 2 , [F 1 , F 2 ], [F 1 , [F 1 , F 2 ]], [F 2 , [F 1 , F 2 ]]) = R 2 .
Hence, as a consequence of Chow-Rashevski theorem (see [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF][START_REF] Rashevsky | About connecting two points of complete nonholonomic space by admissible curve[END_REF][START_REF] Chow | ber systeme von linearen partiellen differentialgleichungen erster ordnung[END_REF]), generically such a control system is locally controllable that is locally, for any two points, always exists an admissible curve joining the two points.

Moreover, since at each point the set of admissible velocities is convex and compact, thanks to Filippov theorem (see [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF][START_REF] Filippov | On some questions in the theory of optimal regulation: existence of a solution of the problem of optimal regulation in the class of bounded measurable functions[END_REF]), locally for any two points, always exists at least a minimizer.

Pontryagin Maximum Principle (PMP)

The Pontryagn Maximum Principle (PMP for short, see [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF][START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]) gives necessary conditions for a curve to be a minimizer of a control problem. For our problem it takes the following form.

Theorem 7 (PMP). Let define the Hamiltonian

H(q, λ, u, λ 0 ) = u 1 λ.F 1 (q) + u 2 λ.F 2 (q) + λ 0 where q ∈ R 2 , λ ∈ T * R 2 , u ∈ R 2 and λ 0 ∈ R.
For any minimizer (q(t), u(t)), there exist a never vanishing Lipschitz covector λ : t → λ(t) ∈ T * q(t) R 2 and a constant λ 0 ≤ 0 such that • q(t) = ∂H ∂λ (q(t), λ(t), u(t), λ 0 ),

• λ(t) = -∂H ∂q (q(t), λ(t), u(t), λ 0 ),

• 0 = H(q(t), λ(t), u(t), λ 0 ) = max v {H(q, λ, v, λ 0 ) | |v i | ≤ 1 for i = 1, 2}.
If λ 0 = 0, q is said abnormal, if not q is said normal. It may be both. A solution of the PMP is called an extremal.

Proposition 8. For a generic SF metric on a 2D manifold defined with a maximum norm, there is no abnormal extremal. Hence we can fix λ 0 = -1. This is our choice in the following.

Proof. It is a classical fact that an abnormal extremal should correspond to a covector λ = 0 orthogonal to

F 1 , F 2 and [F 1 , F 2 ]
. This implies that along the trajectory the three vectors are parallel. But generically this happens only on a discrete set, which forbids to get a non trivial curve.

Switchings

In this section, we follow the ideas of [START_REF] Boscain | Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy[END_REF].

Definition 9. For an extremal triplet (q(.), λ(.), u(.)), define the switching functions

φ i (t) =< λ(t), F i (q(t)) >, i = 1, 2,
and the function φ

3 (t) =< λ(t), [F 1 , F 2 ](q(t)) > .
Thanks to λ 0 = -1, the φ i functions satisfy

u 1 (t)φ 1 (t) + u 2 (t)φ 2 (t) = 1, for a.e. t.
A direct consequence of the maximality condition is

Proposition 10. If φ i (t) > 0 (resp. φ i (t) < 0) then u i (t) = 1 (resp. u i (t) = -1).
If φ i (t) = 0 and φi (t) > 0 (resp. φi (t) < 0) then φ i changes sign at time t and the control u i switches from -1 to +1(resp. from +1 to -1).

Definition 11. We call bang an extremal trajectory corresponding to constant controls with value 1 or -1 and bang-bang an extremal which is a finite concatenation of bangs. We call u i -singular an extremal corresponding to a null switching function φ i . A time t is said to be a switching time if u is not bang in any neighborhood of t.

Definition 12. Outside ∆ A , let define the functions f 1 and f 2 by [F 1 , F 2 ](q) = f 2 (q)F 1 (q) -f 1 (q)F 2 (q). It is clear that ∆ 1 \ ∆ A = f -1 1 (0), ∆ 2 \ ∆ A = f -1 2 (0).
Proposition 13 (Switching rules). Outside ∆ A ∪ ∆ 1 ∪ ∆ 2 the possible switches of the controls are

• if f 1 > 0 then u 1 can only switch from -1 to +1 when φ 1 goes to 0,

• if f 1 < 0 then u 1 can only switch from +1 to -1 when φ 1 goes to 0,

• if f 2 > 0 then u 2 can only switch from -1 to +1 when φ 2 goes to 0,

• if f 2 < 0 then u 2 can only switch from +1 to -1 when φ 2 goes to 0.

Proof. The fact that φ1

(t) = -u 2 .λ.[F 1 , F 2 ] and φ2 (t) = u 1 .λ.[F 1 , F 2 ] implies that, outside ∆ A ∪ ∆ 1 ∪ ∆ 2 , φ1 (t) = u 2 (t) (f 1 (q(t))φ 2 (t) -f 2 (q(t))φ 1 (t)) = -u 2 (t)φ 3 (t), (3) φ2 
(t) = u 1 (t) (f 2 (q(t))φ 1 (t) -f 1 (q(t))φ 2 (t)) = u 1 (t)φ 3 (t). (4) 
Now, if φ 1 (t) = 0 then |φ 2 (t)| = 1 which implies u 2 (t)φ 2 (t) = 1 and hence φ1 (t) and f 1 (q(t)) have same sign and the sign of f 1 (q(t)) determines the switch. The same holds true for f 2 , φ 2 and u 2 . As a consequence, on each connected component of the complement of ∆ A ∪ ∆ 1 ∪ ∆ 2 , each control u i can take only values -1 and +1 and can switch only once from -1 to +1 if f i > 0 or from +1 to -1 if f i < 0. Proposition 14. At any point q outside ∆ A , exists a τ > 0 such that for any extremal issued from q and of length less than τ , only one of the two controls may switch.

Proof. If φ 1 (t) = 0 then |φ 2 (t)| = 1. Hence, if φ 1 (t) = 0 and φ 2 (t ) = 0 then φ 1 passes from value 0 to ±1 in time t -t which implies that | φ1 | takes values larger than 1 |t -t| . But, since φ1 (t) = -u 2 (f 2 (q(t))φ 1 (q(t)) -f 1 (q(t))φ 2 (q(t))), we have | φ1 (t)| ≤ |f 1 (q(t))| + |f 2 (q(t))|. As a consequence, if locally |f 1 + f 2 | < M then |t -t| cannot be smaller than 1/M .
Proposition 15. At any point q outside ∆ A , consider the normal coordinate system centered at q. Any local extremal stays in one of the following domains :

R + × R + , R + × R -, R -× R + or R -× R -.
Proof. Thanks to previous proposition, only one control may switch in short time. Assume that u 1 ≡ 1. Then at each time

u 1 F 1 + u 2 F 2 = F 1 + u 2 F 2 hence the dynamics takes the form αG 1 + (1 -α)G 2 with α ∈ [0, 1]
. This dynamics leaves invariant the set R + × R + , hence the extremal does not leave this set. By the same argument one proves that if

u 1 ≡ -1 then the extremal stays in R -× R -, if u 2 ≡ 1 then the extremal stays in R + × R -and that if u 2 ≡ -1 then the extremal stays in R -× R + .

Initial conditions and their parameterization

On proves easily that in the (N F 1 ) case, max(|λ x (0)|, |λ y (0)|) = 1. Hence the set of initial conditions λ is compact and extremals switching in short time or singular extremals should have a φ i null or close to zero. Moreover only one control can switch in short time (see Proposition 14).

In the (N F 2 ) and (N F 3 ) cases |λ x (0)| = 1 and there is no condition on λ y . Hence the set of initial condition is not compact. This allows to consider initial conditions with |λ y | >> 1 and hence will appear optimal extremals along which the two controls switch. It is not in contradiction with the Proposition 14 since in this case the base point belongs to ∆ A .

In the (N F 2a ) and (N F 3 ) cases, φ 1 (0) = ± 1+a 0 2 and φ 2 (0) = ± 1-a 0 2 . Hence, if one consider a compact set of initial conditions, the corresponding extremals do not switch in short time. And are not singular. As a consequence, to consider the extremal switching at least once, one should consider initial conditions with |λ y (0)| >> 1.

Let us give an idea of how to estimate the |λ y (0)| corresponding to a u 1 -switch at small time t and the consequence in terms of choice of change of coordinates.

In the (N F 2 ) case, φ 1 (0) = 1+a 0 2 ≥ 1 2 . Hence, if along an extremal the control u 1 switches for t small hence on gets, since

x(t) = O(t) and y(t) = O(t 2 ), 0 = λ(t).F 1 (x(t), y(t)) = 1 + a 0 2 + λ y (0) x(t) 2 + O(t)
and it implies that if an extremal sees its control u 1 switching at t then λ y (0) should be like 1 t . Hence, in order to make estimations of the corresponding extremals, it is natural to choose as small parameter r 0 = 1 λy(0) , to make the change of coordinate r = 1 λy , the change of time s = t r and the change of coordinate p x = rλ x . This is what we do in the subsections 4.2 and 4.3.

In the (N F 3 ) case, φ 1 (0) = 1+a 0 2 ≥ 1 2 . Hence, if along an extremal the control u 1 switches for t small hence on gets, since

x(t) = O(t) and y(t) = O(t 3 ), 0 = λ(t).F 1 (x(t), y(t)) = 1 + a 0 2 + λ y (0) x 2 (t) 4 + O(t)
and it implies that if an extremal sees its control u 1 switching at t then λ y (0) should be like 1 t 2 . Hence, in order to make estimations of the corresponding extremals, it is natural to choose as small parameter r 0 such that λ y (0) = ± 1 

Weights, orders and nilpotent approximation

The definitions of privileged coordinates and nilpotent approximation are too long to be given here. We refer to [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry[END_REF]. The coordinates we constructed in the normal form are privileged coordinates.

In the (N F 1 ) case, x and y have weight 1 and ∂ x and ∂ y have weight -1 as operators of derivation. In the (N F 2 ) case x has weight 1 and y has weight 2, ∂ x has weight -1 and ∂ y have weight -2. In the (N F 3) case, x has weight 1 and y has weight 3, ∂ x has weight -1 and ∂ y have weight -3.

In privileged coordinates, one way to understand the weights of the variables naturally is to estimate how they vary with time in small time along an admissible curve. As seen before, in the (N F 1 ) case x and y are O(t) (and may be not o(t)), in the (N F 2 ) case x = O(t) and y = O(t 2 ) and in the (N F 3 ) case x = O(t) and y = O(t 3 ).

In the following, o k (x, y) will denote a function whose valuation at 0 has order larger than k respectively to the weights of x and y. For example x 7 has always weight 7 and y 3 has weight 3 in the (N F 1 ) case but 9 in the (N F 3 ) case.

With this notion of weights, we define the nilpotent approximation of our normal forms in the three cases

(N F 1 ) G 1 (x, y) = ∂ x , G 2 (x, y) = ∂ y , (N F 2 ) G 1 (x, y) = ∂ x , G 2 (x, y) = a 0 ∂ x + x∂ y , (N F 3 ) G 1 (x, y) = ∂ x , G 2 (x, y) = a 0 ∂ x + 1 2 x 2 ∂ y ,
which corresponds to an approximation to order -1. In the following, when we will compute developments with respect to the parameter r 0 , that is for |λ y (0)| >> 1, we will need the approximation to order 0 for (N F 2a ) and (N F 3 ), and the approximation to order 1 for (N F 2b )

(N F 2a ) G 1 (x, y) = ∂ x , G 2 (x, y) = (a 0 + a 10 x)∂ x + x(1 + b 20 x)∂ y , (N F 2b ) G 1 (x, y) = ∂ x , G 2 (x, y) = (1 + a 10 x + a 01 y + a 20 x 2 )∂ x + x(1 + b 20 x + b 30 x 2 )∂ y , (N F 3 ) G 1 (x, y) = ∂ x , G 2 (x, y) = (a 0 + a 10 x)∂ x + x 2 2 + b 01 y + b 30 x 3 ∂ y ,
In the (N F 1 ) case, we will need the approximation to order 2 in order to compute the cut locus, when present: 

(N F 1 ) G 1 (x, y) = ∂ x , G 2 (x, y) = x(

Symbols of extremals

As we will see in the following, the local extremals will be finite concatenations of bang arcs and u i -singular arcs. In order to facilitate the presentation, a bang arc following ±G i will be symbolized by [[±G i ]], a u 1 -singular arc with control u 2 ≡ 1 will be symbolized by [[S + 1 ]], a u 1 -singular arc with control u 2 ≡ -1 will be symbolized by [[S - 1 ]], and we will combined these symbols in such a way that [[-G 1 , G 2 , S + 2 ]] symbolizes the concatenation of a bang arc following -G 1 with a bang arc following G 2 and a u 2 -singular arc with control u 1 ≡ 1.

Symmetries

One can change the roles of the vectors F 1 and F 2 and look at the effect on the functions f i or on the invariants appearing in the normal form. For this last part, one should be careful that changing the role of F 1 and F 2 implies changing G 1 and G 2 and hence changing the coordinates x and y.

Let first look at the effect on the functions f i on an example : F1 = -F 1 and F2 = F 2 . If we define the control system with ( F1 , F2 ), it defines the same SF structure. We compute easily that

[ F1 , F2 ] = [-F 1 , F 2 ] = -[F 1 , F 2 ] = -(f 2 F 1 -f 1 F 2 ) = f 2 F1 -(-f 1 ) F2
hence f1 = -f 1 and f2 = f 2 . With this choice Ḡ1 = -G 2 and Ḡ2 = -G 1 . Of course, with such a change on the vectors G 1 and G 2 the change on the invariants is not so trivial to compute.

In the following we consider changes that send G 1 to ±G 1 and G 2 to ±G 2 . These changes are interesting from a calculus point of view. Effectively, once computed the jet of a bang-bang extremals with symbol [[G 1 , G 2 ]] and of its switching times, we are able to get the expressions for the bang-bang extremals with symbols [[±G 1 , ±G 2 ]]. No use to repeat the computations. For example, if one gets the expression of an extremal with symbol [[G 1 , G 2 ]] as function of the initial conditions, one gets the expression of an extremal with symbol [[-G 1 , G 2 ]] by respecting the effect on the coordinates and the invariants a 0 , a 10 , etc. of the correponding change of role of F 1 and F 2 .

3.7.1 Ḡ1 = -G 1 and Ḡ2 = G 2 Let consider the change F1 = -F 2 and F2 = -F 1 . Then Ḡ1 = -G 1 and Ḡ2 = G 2 . With this choice, [ F1 , F2 ] = [-F 2 , -F 1 ] = -[F 1 , F 2 ] = -(f 2 F 1 -f 1 F 2 ) = (-f 1 ) F1 -(-f 2 ) F2 hence f1 = -f 2 and f2 = -f 1 . Moreover, [ Ḡ1 , Ḡ2 ] = -[G 1 , G 2 ] and [ Ḡ1 , [ Ḡ1 , Ḡ2 ]] = [G 1 , [G 1 , G 2 ]].
We can know consider the effect of this change of role on the coordinates and on the invariants in the three cases of the normal form 

[ F1 , F2 ] = [F 2 , F 1 ] = -[F 1 , F 2 ] = -(f 2 F 1 -f 1 F 2 ) = (f 1 ) F1 -(f 2 ) F2 hence f1 = f 2 and f2 = f 1 . Moreover, [ Ḡ1 , Ḡ2 ] = -[G 1 , G 2 ] and [ Ḡ1 , [ Ḡ1 , Ḡ2 ]] = -[G 1 , [G 1 , G 2 ]].
We can know consider the effect of this change of role on the coordinates and on the invariants in the three cases of the normal form 

= -G 2 . With this choice, [ F1 , F2 ] = [-F 1 , -F 2 ] = [F 1 , F 2 ] = (f 2 F 1 -f 1 F 2 ) = (-f 2 ) F1 -(-f 1 ) F2 hence f1 = -f 1 and f2 = -f 2 . Moreover, [ Ḡ1 , Ḡ2 ] = [G 1 , G 2 ] and [ Ḡ1 , [ Ḡ1 , Ḡ2 ]] = -[G 1 , [G 1 , G 2 ]].
We can know consider the effect of this change of role on the coordinates and on the invariants in the three cases of the normal form (N F 2 ) In this case, x = -x and ȳ = y, hence

∂ x = -∂ x and ∂ ȳ = ∂ y . Moreover Ḡ1 = ∂ x, Ḡ2 = (a 0 -a 10 x + a 01 ȳ + a 20 x2 + o 2 (x, ȳ))∂ x + (x -b 20 x2 + b 30 x3 + o 3 (x, ȳ))∂ ȳ.
(N F 3 ) In this case, x = -x and ȳ = -y, hence

∂ x = -∂ x and ∂ ȳ = -∂ y . Moreover Ḡ1 = ∂ x, Ḡ2 = (a 0 -a 10 x + o 1 (x, ȳ))∂ x + (x 2 /2 -b 01 ȳ -b 30 x3 + o 3 (x, ȳ))∂ ȳ.

The generic local optimal synthesis

We present for generic couples (F 1 , F 2 ) the local synthesis issued from a point q. The coordinates (x, y), centred at q, are those which have been constructed in the corresponding normal form in section 2.

(N F 1 ) case

At points q where (N F 1 ) holds, one can compute that Hence, thanks to Proposition 13, if a 10 -b 10 > 0 (resp. < 0) then u 1 is bang-bang and the only possible switch is -1 → +1 (resp +1 → -1) and if a 10 + b 10 < 0 (resp. > 0) then u 2 is bang-bang and the only possible switch is -1 → +1 (resp +1 → -1).

f 1 (x, y) = 1 
Remark 16 (Generic invariants). Let remark that generically, in the (N F 1 ) case, one of the following situation occurs

• |a 10 | = |b 10 | (N F 1a ),
• 

Singular extremals

We consider now the properties of singular extremals and their support.

Proposition 17. Under the generic assumption that ∆ A , ∆ 1 and ∆ 2 are submanifolds transversal by pair then 1. The support of a u i -singular is included in ∆ i .

2. A u 1 -singular extremal can follow ∆ 1 being optimal only if, at each point q(t) of the singular, G 1 (q(t)) and G 2 (q(t)) are pointing on the same side of ∆ 1 (or one is tangent to ∆ 1 ) where f 1 > 0.

3. A u 2 -singular extremal can follow ∆ 2 being optimal only if, at each point q(t) of the singular, G 1 (q(t)) and -G 2 (q(t)) are pointing on the same side of ∆ 2 (or one is tangent to ∆ 2 ) where f 2 > 0.

4. Let consider a u i -singular q(.) satisfying 2 or 3. If it does not intersect ∆ A and if at each time G 1 (q(t)) and G 2 (q(t)) are not tangent to ∆ i then q(.) is a local minimizer that is at each time t exists such that q(.) realizes the SF-distance between q(t 1 ) and q(t 2 ) for any t 1 and t 2 in ]t -, t + [.

Proof.

1. Outside ∆ A ∪ ∆ i , φ i has isolated zero hence any u i -singular should live in ∆ A ∪ ∆ i . Moreover, since generically the set of points of ∆ A where the dynamics is tangent to ∆ A is isolated, a u i -singular crosses ∆ A only at isolated times, which are consequently also in ∆ i .

2. Same proof as point 3.

3. If a u 2 -singular q(.) has u 1 = 1 then its speed is F 1 (q(t)) + u 2 (t)F 2 (q(t)) which is tangent to ∆ 2 . But u 2 ∈ [-1, 1] hence either |u 2 (t)| = 1 and G 1 or G 2 are tangent to ∆ 2 or |u 2 (t)| < 1 and G 2 (q(t)) = F 1 (q(t)) -F 2 (q(t)) and G 1 (q(t)) = F 1 (q(t)) + F 2 (q(t)) point on opposite side. Now, assume that f 2 < 0 in the domain where points G 1 (q(t)). With the expression given before, this corresponds to (a 10 + b 10 = 0 and a 20 + b 20 > 0) or (a 10 + b 10 = 0 and a 20 + b 20 = 0 and a 30 + b 30 > 0). Thanks to the previous results, if the extremal leave ∆ 2 at time t 0 it starts by a bang. Assume for example that this bang follows G 1 . Then during this bang

φ2 = u 1 φ 3 = u 1 (f 2 φ 1 -f 1 φ 2 ) and hence φ2 = u 1 (∂ x f 2 φ 1 + f 2 φ1 -∂ x f 1 φ 2 -f 1 φ2 ) which implies φ2 (t 0 ) = u 1 (t 0 )∂ x f 2 (q(t 0 ))φ 1 (t 0 ) = ∂ x f 2 (q(t 0 )) since u 1 (t 0 ) = 1 and φ 1 (t 0 ) = 1. But if a 20 + b 20 > 0 then ∂ x f 2 (q(t 0 )) = -(a 20 + b 20 ) + O(t 0 ) < 0.
Then, since φ 2 (t 0 ) = φ2 (t 0 ) = 0 and φ2 (t 0 ) < 0, for t just after t 0 φ 2 (t) < 0 which is in contradiction with the fact that the trajectory follows G 1 just after t 0 .

The same proof can be done for the other cases: a u 2 -singular with u 1 = 1 and switching to G 2 , or u 2 -singulars with u 1 = -1. Hence in this case, no extremal following ∆ 2 can leave ∆ 2 . Now, assume that ∆ 2 is such that G 1 and -G 2 point in the same side where f 2 < 0 at q and that the u 2 -singular is optimal. Consider the normal coordinate system centered at q and the domain R + × R + . One can show, with the previous analysis, that the only possible extremals issued form q and entering the domain are the singular arc following ∆ 2 and the bang-bang extremals starting with symbol

[[G 1 , G 2 ]] or [[G 2 , G 1 ]].
Let us prove that these last ones do not switch again before crossing ∆ 2 . If an extremal starts with [[G 2 , G 1 ]], switching for the first time at t = and hence at y = then along the second bang x = t -, y = , λ ≡ (1, 1) and one computes easily that for t > Hence they can lose optimality by crossing the singular extremal or extremals with the other symbol. Anyway, this implies that optimal extremals are coming back to ∆ 2 . But this is not possible since in this case an extremal with symbol [[G 1 , G 2 , S + 2 ]] would exist which is not the case since the switching is coming strictly after the crossing with ∆ 2 .

φ 2 (t) = - 1 2 ((a 20 + b 20 )(t -) 2 + (a 11 + b 11 )(t -) + o 2 ( , (t -))).
Hence, the u 2 -singular is not optimal.

4. It is a consequence of the analysis coming further but we can give a quick idea: in this case, if q is a point on ∆ 1 and if we construct normal coordinates centered at q, then the only local extremals entering the domains {xy < 0} are the one starting by a u 1 -singular and switching or not locally only once to u 1 = ±1. Hence the u 1 -singular is locally optimal.

Remark 18. For what concerns the point 4, assume that q is a point where G 1 or G 2 is tangent to ∆ 1 and ∆ 1 ∩ {xy < 0} is such that at each point G 1 and G 2 are transverse to ∆ 1 and point in the domain {f 1 > 0}. Then, starting from q, a u 1 -singular can run on ∆ 1 ∩ {xy < 0} and is locally optimal. The same arguments than those exposed at point 4 work.

Definition 19. If a connected part of ∆ 1 (resp. ∆ 2 ) is such that at each point G 1 and G 2 (resp. G 1 and -G 2 ) point on the same side where f 1 > 0 (resp. f 2 > 0), it is called a turnpike. If it does not at each point, it is called an anti-turnpike (see [START_REF] Boscain | Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy[END_REF]).

Remark 20. Along a u i -singular extremal the control u i is completely determined by the fact that the dynamics should be tangent to ∆ i .

Optimal synthesis in the domain

R + × R +
Let consider a point q and the normal coordinate system (x, y) centered at q. The dynamics entering R * + × R * + is with u 1 ≡ 1 since u 2 switches (Propositions 14 and 15). Three different cases can be identified. 1st. case. 

∆ 2 ∩ (R + × R + \ {0})
[[G 1 ]] or [[G 2 ]] or [[G 1 , G 2 ]].
In this case 1, the picture of the synthesis is given in the Figure 1. 

G 2 G 1 G 2 f 2 > 0 f 2 < 0 G 1 Figure 1: The syntheses when f 2 = 0 in (R + × R + ) \ {0} 2nd. case. ∆ 2 ∩ (R * + × R * + ) is
[G 1 ]], [[G 2 ]], [[S + 2 , G 1 ]] and [[S + 2 , G 2 ]].
In this case 2, the picture of the synthesis is given in the Figure 2. 

[G 1 , G 2 ]] and [[G 2 , G 1 ]].
In order to complete the synthesis in this case, we have to compute the cut time and cut locus. In fact the two kind of extremals intersect before their second switching time. Let prove it.

Let fix an 2 > 0 and consider at time t > 2 the extremal with symbol [[G 2 , G 1 ]] switching at time 2 . One computes easily that x(t) = t -2 and y(t) = 2 . For an 1 > 0 and the extremal with symbol [[G 1 , G 2 ]] switching at time 1 , one gets by integrating the equations that

x(t) = 1 + a 10 1 (t -1 ) + a 20 2 1 (t -1 ) + 1 2 (a 2 10 + a 11 ) 1 (t -1 ) 2 +a 30 3 1 (t -1 ) + 1 2 (3a 10 a 20 + a 21 + a 11 b 10 ) 2 1 (t -1 ) 2 + 1 3 ( 1 2 a 3 10 + 3 2 a 10 a 11 + a 12 ) 1 (t -1 ) 3 y(t) = (t -1 ) + b 10 1 (t -1 ) + b 20 2 1 (t -1 ) + 1 2 (a 10 b 10 + b 11 ) 1 (t -1 ) 2 +b 30 3 1 (t -1 ) + 1 2 (a 20 b 10 + b 10 b 11 + 2a 10 b 20 + b 21 ) 2 1 (t -1 ) 2 + 1 3 ( 1 2 (a 2 10 + a 11 )b 10 + a 10 b 11 + b 12 ) 1 (t -1 ) 3
Let assume first that a 20 + b 20 > 0 and a 11 + b 11 < 0. Along the first front (depending on 2 ) x + y = t when along the second x + y = t + 1 (t -1 )((a 20 + b 20 ) 1 + 1 2 (a 11 + b 11 ) hence they are transverse at 

1 = t 1 -2(a 20
y cut = -2 a 20 -b 20 a 11 -b 11 x cut + o(x cut )
and is tangent to ∆ 2 .

The same computations can be done when G 1 or G 2 is tangent to ∆ 2 . Then one computes that the extremals lose optimality by crossing the cut before the second switch and that

• if a 20 + b 20 = 0 then y cut = -3 a 30 + b 30 a 11 + b 11 x 2 cut + o(x 2 cut ),
• if a 11 + b 11 = 0 then

x cut = - 1 2 a 12 + b 12 a 20 + b 20 y 2 cut + o(y 2 cut ).
In all cases the cut is tangent to ∆ 2 and the contact is of order 2 when (a 20 + b 20 )(a 11 + b 11 ) = 0. In this case 3, the picture of the synthesis is given in the Figure 3.

Remark 21. Using the symmetries presented in section 3.7, one can obtain from the optimal synthesis in the domain R + × R + the optimal synthesis in the three other domains.

and a 12 + b 12 < 0 G 2 G 2 G 1 G 2 G 1 G 1

Cut locus

Cut locus

Cut locus Then the only optimal symbols are [

a
[-G 1 ]] or [[-G 2 ]] or [[-G 2 , -G 1 ]]. 2nd. case. ∆ 2 ∩ (R * -× R * -) is
[-G 1 ]], [[-G 2 ]], [[S - 2 , -G 1 ]] and [[S - 2 , -G 2 ]]. 3rd. case. ∆ 2 ∩ (R * -× R * -) is
[-G 1 ]], [[-G 2 ]], [[-G 1 , -G 2 ]] and [[-G 2 , -G 1 ]]. Moreover
• if a 20 + b 20 > 0 and a 11 + b 11 < 0, the cut locus satisfies

y cut = -2 a 20 + b 20 a 11 + b 11 x cut + o(x cut ),
• if a 20 + b 20 = 0 then

y cut = -3 a 30 + b 30 a 11 + b 11 x 2 cut + o(x 2 cut ),
• if a 11 + b 11 = 0 then

x cut = - 1 2 a 12 + b 12 a 20 + b 20 y 2 cut + o(y 2 cut ).
In all cases the cut is tangent to ∆ 2 and the contact is of order 2 when (a 20 + b 20 )(a 11 + b 11 ) = 0. 

[[G 1 ]] or [[-G 2 ]] or [[-G 2 , G 1 ]]. One has f 1 < 0 in the domain if • a 10 -b 10 < 0,
• or a 10 -b 10 = 0 and a 20 -b 20 < 0,

• or a 10 -b 10 = 0 and a 20 -b 20 = 0 and a 11 -b 11 > 0. and in this case the possible extremals of the domain have symbol Then the only optimal symbols are [

[[G 1 ]] or [[-G 2 ]] or [[G 1 , -G 2 ]]. 2nd. case. ∆ 1 ∩ (R * + × R * -) is
[G 1 ]], [[-G 2 ]], [[S + 1 , G 1 ]] and [[S + 1 , -G 2 ]]. 3rd. case. ∆ 1 ∩ (R * + × R * -) is
[G 1 ]], [[-G 2 ]], [[G 1 , -G 2 ]] and [[-G 2 , G 1 ]]. Moreover
• if a 20 -b 20 < 0 and a 11 + b 11 < 0, the cut locus satisfies

y cut = -2 a 20 -b 20 a 11 -b 11 x cut + o(x cut ),
• if a 20 -b 20 = 0 then

y cut = -3 a 30 -b 30 a 11 -b 11 x 2 cut + o(x 2 cut ),
• if a 11 -b 11 = 0 then

x cut = - 1 2 a 12 -b 12 a 20 -b 20 y 2 cut + o(y 2 cut ).
In all cases the cut is tangent to ∆ 1 and the contact is of order 2 when (a 20 -b 20 )(a 11 -b 11 ) = 0. 

[-G 1 ]] or [[G 2 ]] or [[G 2 , -G 1 ]]. 2nd. case. ∆ 1 ∩ (R * -× R * + ) is
[-G 1 ]], [[G 2 ]], [[-G 1 , G 2 ]] and [[G 2 , -G 1 ]]. Moreover
• if a 20 -b 20 < 0 and a 11 + b 11 < 0, the cut locus satisfies

y cut = -2 a 20 -b 20 a 11 -b 11 x cut + o(x cut ),
• if a 20 -b 20 = 0 then

y cut = -3 a 30 -b 30 a 11 -b 11 x 2 cut + o(x 2 cut ),
• if a 11 -b 11 = 0 then

x cut = - 1 2 a 12 -b 12 a 20 -b 20 y 2 cut + o(y 2 cut ).
In all cases the cut is tangent to ∆ 1 and the contact is of order 2 when (a 20 -b 20 )(a 11 -b 11 ) = 0.

(N F 2a ) case

Recall that the normal form (N F 2a ) gives

G 1 (x, y) = ∂ x , G 2 (x, y) = (a 0 + a 10 x + o 1 (x, y))∂ x + (x + b 20 x 2 + o(x, y))∂ y ,
with 0 ≤ a 0 < 1. Such a point is neither in ∆ 1 nor ∆ 2 . Hence no singular extremal will appear in the study of the local synthesis.

One can compute easily that, for any extremal starting at 0, φ 1 (0) = 1 2 λ x (0)(1 + a 0 ) and φ 2 (0) = 1 2 λ x (0)(1 -a 0 ). With H = 0 it gives |λ x (0)| = 1. Hence, since φ1 = -u 2 φ 3 and φ2 = u 1 φ 3 , if we want to study extremals that switch in short time, we need to consider φ 3 large that is |λ y | large.

Moreover, since along an extremal issued from 0 | ẋ(t)| ≤ 1 for t small, one gets easily that |x(t)| ≤ t and |y(t)| ≤ t2 for t small enough. Hence φ 1 (t) = 1+a 0 2 λ x (0) + x(t)λ y (0) + o(t, x(t)λ y (0)) and φ 2 (t) = 1-a 0 2 λ x (0) + x(t)λ y (t) + o(t, x(t)λ y (t)). This implies that if one wants to consider an extremal switching at time τ small, he should consider initial conditions λ y (0) ∼ 1 τ . Inversing the point of view, if we consider an initial condition λ y (0) = 1 r 0 with r 0 small, the switching time should be of order 1 in r 0 . This motivates the following change of coordinates on the fibers of the cotangent: r = 1 λy , p = rλ x and the change of time s = t/r.

equations of the dynamics

With the new variables (x, y, p, r) and the new time s, the Hamiltonian equations become Now, looking for the solutions as taylor series in r 0 , that is under the form

x(r 0 , s) = x 1 (s)r 0 + x 2 (s)r 2 0 + o(r 2 0 ), p(r 0 , s) = p 1 (s)r 0 + p 2 (s)r 2 0 + o(r 2 0 ), y(r 0 , s) = y 2 (s)r 2 0 + y 3 (s)r 3 0 + o(r 3 0 ), r(r 0 , s) = r 0 + r 2 (s)r 2 0 + o(r 2 0 ),
one finds the equations

x 1 = u 1 +u 2

Computation of the jets

Using these equations, we are able to compute the jets with respect to r 0 of four types of extremals: depending on the sign of p(0) = ±1 and of r 0 . For each of these types we can compute the functions x 1 , x 2 , y 2 , y 3 , p 1 , p 2 and r 2 ≡ 0 of the variable s for the first bang. We can then compute the jets of φ 1 and φ 2 for the first bang and look for the first switching time under the form s 1 = s 10 + s 11 r 0 and then repeat the procedure for the second bang and so on. Finally, if we denote δ p = sign(p(0)) and δ r = sign(r 0 ) then the controls during the first bang are u 1 = u 2 = δ p . The first time of switch is

s 1 = δ r (1 -δ r a 0 ) -δ p (1 -δ r a 0 )(δ r a 10 + b 20 -δ r a 0 b 20 )r 0 + o(r 0 )
and corresponds to φ 2 (s 1 ) = 0 if δ r = 1 or φ 1 (s 1 ) = 0 if δ r = -1. The second bang corresponds to u 1 = δ p δ r and u 2 = -δ p δ r and the second switch is at

s 2 = δ r (3 -δ r a 0 ) -δ p ((1 -δ r a 0 )(δ r a 10 + b 20 -δ r a 0 b 20 ) + 4b 20 )r 0 + o(r 0 )
where

φ 1 (s 2 ) = 0 if δ r = 1 and φ 2 (s 2 ) = 0 if δ r = -1. At this time x(s 2 ) = δ p (δ r + a 0 )r 0 -δ r (δ r + a 0 )(-δ r a 10 + b 20 + δ r a 0 b 20 )r 2 0 + o(r 2 0 ), y(s 2 ) = 2δ r r 2 0 -δ p 4 3 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )r 3 0 + o(r 3 0 ).
The third bang corresponds to

u 1 = u 2 = -1 if δ p = 1 and to u 1 = u 2 = 1 if δ p = -1.
The third switching time satisfies s 3 = δ r (5 -δ r a 0 ) + O(r 0 ) and the corresponding time t 3 is larger than the cut time as we will see later.

Let us analyze a little the situation in terms of cut locus for these extremals: if we consider the extremals with δ p = δ r = 1, they all start following G 1 , without loosing optimality. Then they switch to G 2 at t = r 0 (1 -a 0 ) + o(r 0 ). During this second bang, they do not intersect one each other since they are all following G 2 with a different initial condition on {x > 0, y = 0}. Then they switch to -G 1 but at a different y hence again they cannot intersect. The loss of optimality cannot come from an intersection with extremals with δ r = -1 since these last one live in {y ≤ 0}. As we will see in the following, the loss of optimality will come from the intersection with an extremal with -δ p = δ r = 1 during the third bang. Of course, the same occurs for extremals with δ r = -1.

Let fix a small parameter ρ > 0. Since the dynamics during the third bang of all the extremals is given by ±G 1 = ±∂ x , y is constant during these third bangs. Hence, for the extremals with δ r = 1, we can look for the r 0 , as a jet in ρ, such that y = 2ρ 2 during the third bang, and for the extremals with δ r = -1, we can look for the r 0 , as a jet in ρ, such that y = -2ρ 2 during the third bang. The result is

r 0 = δ r ρ + δ r δ p 1 3 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )ρ 2 + o(ρ 2 )
which allows to compute

t 2 = (3 -δ r a 0 )ρ -δ r δ p 3a 10 -a 2 0 a 10 + δ r 6b 20 -3a 0 b 20 + a 3 0 b 20 3 ρ 2 + o(ρ 2 ).
Hence we can compute x(t) = x(t 2 ) + (t -t 2 ) for this r 0 that is

x(t) = -δ p t + δ p 4ρ - 2 3 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )ρ 2 + o(ρ 2 ).
We are now in situation to complete the computation of the jet of the cut locus: an extremal intersects an extremal of same length at the time t cut = 4ρ+o(ρ 2 ) which is less than t 3 = (5-δ r a 0 )ρ hence t cut is the cut time. When δ r = 1 the cut point satisfies

x cut = - 2 3 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )ρ 2 + o(ρ 2 ), y cut = 2ρ 2 ,
and when δ r = -1 the cut point satisfies

x cut = - 2 3 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )ρ 2 + o(ρ 2 ), y cut = -2ρ 2 .
Finally, if one wants to describe the sphere at time t small, one have that the first switching time is

t 1 = δ r (1 -δ r a 0 )r 0 -δ p (1 -δ r a 0 )(δ r a 10 + b 20 -δ r a 0 b 20 )r 2 0 + o(r 2 
0 ) and hence, at t small, the r 0 corresponding to a first switching point is

r 1 = t δ r (1 -δ r a 0 ) + δ r δ p δ r a 10 + b 20 (1 -δ r a 0 ) (1 -a 0 ) 2 t 2 + o(t 2 ).
The second switching time is

t 2 = δ r (3 -δ r a 0 )r 0 -δ p ((1 -δ r a 0 )(δ r a 10 + b 20 -δ r a 0 b 20 ) + 4b 20 )r 2 0 + o(r 2 0 )
which implies that, at t small, the r 0 corresponding to a second switching point is

r 2 = t δ r (3 -δ r a 0 ) + δ p (1 -δ r a 0 )(δ r a 10 + b 20 -δ r a 0 b 20 ) + 4b 20 δ r (3 -δ r a 0 ) 3 t 2 + o(t 2 ).
And the cut time is

t cut = 4δ r (r 0 -δ r δ p 1 3 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )r 2 0 ) + o(r 2 0 )
which implies that at t small the r 0 corresponding to a cut point is

r cut = δ r 4 (t + δ p 12 (-a 0 a 10 + 3b 20 + a 2 0 b 20 )t 2 ) + o(t 2 ). 4.3 (N F 2b ) case Recall that the normal form (N F 2b ) gives G 1 (x, y) = ∂ x , and 
G 2 (x, y) = (1 + a 10 x + a 01 y + a 20 x 2 + o 2 (x, y))∂ x + (x + b 20 x 2 + b 30 x 3 + o 3 (x, y))∂ y .
In this case, the extremals with initial condition |λ y (0)| >> 1 are the limit when a 0 goes to 1 of the extremal presented in the case (N F 2a ). If λ y (0) >> 1 then the symbol starts with

[[G 2 , -G 1 ]] or with [[-G 2 , G 1 ]] and if -λ y (0) >> 1 then the symbol starts with [[G 1 , -G 2 ]] or with [[-G 1 , G 2 ]].
But F 2 (0) = 0 then for all extremals φ 2 (0) = 0. Hence, an extremal may also, depending on the invariants, have symbol starting by

[[G 2 , G 1 ]], [[G 1 , G 2 ]], [[S + 2 , G 1 ]] or [[S + 2 , G 2 ]] if λ x (0) = 1, and, [[-G 2 , -G 1 ]], [[-G 1 , -G 2 ]], [[S - 2 , -G 1 ]] or [[S - 2 , -G 2 ]] if λ x (0) = -1.

Second switching locus

Second switching locus )t + o(t). Hence if λ y (0) > -a 10 then, since φ 2 (0) < 0 for small time, the extremal starts by a bang following G 2 . If λ y (0) < -a 10 then φ 2 (0) > 0 for small time and the extremal starts by a bang following G 1 .

If λ x (0) = -1 then at least for small time u 1 (t) = -1 and x(t) = -t + o(t) and y(t) = o(t). Then φ 2 (t) = ( a 10 -λy(0) 2

)t + o(t). Hence if λ y (0) > a 10 then, since φ 2 (0) < 0 for small time, the extremal starts by a bang following -G 1 . If λ y (0) < a 10 then φ 2 (0) > 0 for small time and the extremal starts by a bang following -G 2 .

In coordinates, one can compute that Recall that an equation of the support of the integral curve of G 1 passing by 0 is y = 0 and that an equation for the support of the integral curve of G 2 passing by 0 is y = 2 then ∆ 2 does not enter the domain D = {x > 0, 0 < y < x 2 2 } and along it G 1 and G 2 point on the same side of ∆ 2 hence ∆ 2 is not a turnpike. In these cases:

• if a 10 b 20 -a 20 > 0 then f 2 > 0 in D and the new extremals, that are not described as limit of the case N F 2a , have symbol [[G 2 , G 1 ]].

• if a 10 b 20 -a 20 < 0 then f 2 < 0 in D and the new extremals, that are not described as limit of the case N F One prove easily that all these extremals cut ∆ 2 before the second switching. Moreover they cannot be optimal after the second switching (by considerations on the jacobian). Hence the only optimal symbols entering the domain

D are [[G 1 , G 2 ]] and [[G 2 , G 1 ]].
Pictures for the (N F 2b ) case are in Figures 5 and6 The set of initial condition is {(λ x (0), λ y (0)) | λ x (0) = ±1}. We parameterize the upper part of this set by setting λ y (0) = 1 r 2 0 and the lower part by λ y (0) = -1 r 2 0 . As explained in subsection 3.4, in order to compute extremals with λ y (0) >> 1 we make the change of coordinates r = 1 √ λy , X = x r , Y = y r 3 and the change of time s = t r . Now, looking for the solutions as taylor series in r 0 , that is under the form X(r 0 , s) = X 0 (s) + r 0 X 1 (s) + o(r 0 ), λ x (r 0 , s) = λ x0 (s) + r 0 λ x1 (s) + o(r 0 ), Y (r 0 , s) = Y 0 (s) + r 0 Y 1 (s) + o(r 0 ), r(r 0 , s) = r 0 + r 2 0 r 2 (s) + o 2 (r 0 ) one finds the equations X 0 (s) = 1 2 (u 1 + u 2 ) + a 0 2 (u 1 -u 2 ), X 1 (s) = (u 1 -u 2 ) 4 (2a 10 -b 01 )X 0 (s), Y 0 (s) = 1 4 (u 1 -u 2 )X 2 0 (s), Y 1 (s) = (u 1 -u 2 ) 4 (2b 30 X 3 0 (s) + 2X 0 (s)X 1 (s) -b 01 Y 0 (s)), λ x0 (s) = -1 2 (u 1 -u 2 )X 0 (s), λ x1 (s) = -(u 1 -u 2 ) 2 (a 10 λ x0 (s) + 3b 30 X 2 0 (s) + X 1 (s)), r 2 (s) = b 01 4 (u 1 -u 2 ),

r 2 0

 2 , to make the change of coordinate r = ±1 √ |λy| and the change of time s = t r . This is what we do in the subsection 4.4.

  a 10 + a 20 x + a 11 y + a 30 x 2 + a 21 xy + a 12 y 2 )∂ x + +(1 + x(b 10 + b 20 x + b 11 y + b 30 x 2 + b 21 xy + b 12 y 2 ))∂ y ,

(N F 1 )

 1 In this case, x = -x and ȳ = y, hence ∂ x = -∂ x and ∂ ȳ = ∂ y and Ḡ1 = ∂ x, Ḡ2 = (a 10 x -a 20 x2 + a 11 xȳ + o 2 (x, ȳ))∂ x + (1 -b 10 x + b 20 x2 -b 11 xȳ + o 2 (x, ȳ))∂ ȳ. (N F 2 ) In this case, x = -x and ȳ = -y, hence ∂ x = -∂ x and ∂ ȳ = -∂ y and Ḡ1 = ∂ x, Ḡ2 = (-a 0 + a 10 x -a 01 ȳ -a 20 x2 + o 2 (x, ȳ))∂ x + (x -b 20 x2 + b 30 x3 + o 3 (x, ȳ))∂ ȳ. (N F 3 ) In this case, x = -x and ȳ = y, hence ∂ x = -∂ x and ∂ ȳ = ∂ y and Ḡ1 = ∂ x, Ḡ2 = (-a 0 + a 10 x + o 1 (x, ȳ))∂ x + (x 2 /2 + b 01 ȳ -b 30 x3 + o 3 (x, ȳ))∂ ȳ.3.7.2 Ḡ1 = G 1 and Ḡ2 = -G 2 Let consider the change F1 = F 2 and F2 = F 1 . Then Ḡ1 = G 1 and Ḡ2 = -G 2 . With this choice,

(N F 1 )

 1 In this case, x = x and ȳ = -y, hence ∂ x = ∂ x and ∂ ȳ = -∂ y and Ḡ1 = ∂ x, Ḡ2 = (-a 10 x-a 20 x2 +a 11 xȳ + xo(x, ȳ))∂ x + (1+ b 10 x+b 20 x2 -b 11 xȳ + xo(x, ȳ))∂ ȳ. (N F 2 ) In this case, x = x and ȳ = -y, hence ∂ x = ∂ x and ∂ ȳ = -∂ y and Ḡ1 = ∂ x, Ḡ2 = (-a 0 -a 10 x + a 01 ȳ -a 20 x2 + o 2 (x, ȳ))∂ x + (x + b 20 x2 + b 30 x3 + o 3 (x, ȳ))∂ ȳ. (N F 3 ) In this case, x = x and ȳ = -y, hence ∂ x = ∂ x and ∂ ȳ = -∂ y and Ḡ1 = ∂ x, Ḡ2 = (-a 0 -a 10 x + o 1 (x, ȳ))∂ x + (x 2 /2 -b 01 ȳ + b 30 x3 + o 3 (x, ȳ))∂ ȳ.3.7.3 Ḡ1 = -G 1 and Ḡ2 = -G 2 Let consider the change F1 = -F 1 and F2 = -F 2 . Then Ḡ1 = -G 1 and Ḡ2

(N F 1 )

 1 In this case, x = -x and ȳ = -y, hence ∂ x = -∂ x and ∂ ȳ = -∂ y . Moreover Ḡ1 = ∂ x, Ḡ2 = (-a 10 x+a 20 x2 +a 11 xȳ + xo(x, ȳ))∂ x + (1-b 10 x+b 20 x2 +b 11 xȳ + xo(x, ȳ))∂ ȳ.

2 (a 10 - 2 + (a 11 -b 11 ) y 2 +( 3 ( 2 + 2 -(a 11 + b 11 ) y 2 -( 3 ( 2 -( 2 (a 21 + 2 -(a 12 + b 12 ) y 2 2 + o 2

 21021123221123222121222 b 10 ) +(2(a 20 -b 20 ) -b 10 (a 10 -b 10 )) x a 30 -b 30 ) -b 10 (a 20 -b 20 ) -(2b 20 -b 2 10 )(a 10 -b 10 )) x 2 (2(a 21 -b 21 ) -b 11 (a 10 -b 10 ) -b 10 (a 11 -b 11 )) xy 2 + (a 12 -b 12 ) y 2 2 + o 2 (x, y), f 2 (x, y) = -1 2 (a 10 + b 10 ) -(2(a 20 + b 20 ) -b 10 (a 10 + b 10 )) x a 30 + b 30 ) -b 10 (a 20 + b 20 ) -(2b 20 -b 2 10 )(a 10 + b 10 )) x 2 b 21 ) -b 11 (a 10 + b 10 ) -b 10 (a 11 + b 11 )) xy (x, y).

  a 10 = b 10 = 0 and a 20 -b 20 = 0 and a 11 -b 11 = 0, • a 10 = b 10 = 0 and a 20 -b 20 = 0 and a 30 -b 30 = 0 and a 11 -b 11 = 0, • a 10 = b 10 = 0 and a 20 -b 20 = 0 and a 11 -b 11 = 0 and a 12 -b 12 = 0, • a 10 = -b 10 = 0 and a 20 + b 20 = 0 and a 11 + b 11 = 0, • a 10 = -b 10 = 0 and a 20 + b 20 = 0 and a 30 + b 30 = 0 and a 11 + b 11 = 0, • a 10 = -b 10 = 0 and a 20 + b 20 = 0 and a 11 + b 11 = 0 and a 12 + b 12 = 0. • a 10 = b 10 = 0 and a 20 + b 20 = 0 and a 11 + b 11 = 0.

If (a 20 + 2 a 11 +b 11 a

 20211 b 20 )(a 11 + b 11 ) < 0 then the second time of switch satisfies t -= -a 11 +b 11 a 20 +b 20 + o( ) and hence the second switching locus has the form (-a 11 +b 11 a 20 +b 20 , ). But ∆ 2 satisfies that x = -1 20 +b 20 y + o(y) and hence the second bang crosses ∆ 2 before ending. In the case a 20 + b 20 = 0 hence (a 11 -b 11 )(a 30 + b 30 ) < 0 and one shows that the second switching locus has the form ( -a 11 +b 11 a 30 +b 30 , ) and ∆ 2 satisfies that x = -a 11 +b 11 3(a 30 +b 30 ) y + o(y) hence again the second bang crosses ∆ 2 before ending. The same kind of computations show the same result when a 11 + b 11 = 0 and (a 20 + b 20 )(a 12 + b 12 ) < 0. The same holds for extremal starting by [[G 1 , G 2 ]]. Finally, the different extremals with symbol [[G 1 , G 2 ]] do not intersect each other after their first switch hence they cannot lose optimality by crossing each other. Idem for those with symbol [[G 2 , G 1 ]].

  is empty locally. No u 2 -singular enters the domain. It corresponds to the case (N F 1a ) where |a 10 | = |b 10 | and to the cases (N F 1c ) and (N F 1d ) where a 10 + b 10 = 0 and • (a 20 + b 20 )(a 11 + b 11 ) > 0, • or a 20 + b 20 = 0 and (a 30 + b 30 )(a 11 + b 11 ) > 0, • or a 11 + b 11 = 0 and (a 20 + b 20 )(a 12 + b 12 ) > 0. Only one u 2 -switch can occur along the extremal. One has f 2 > 0 in the domain if • a 10 + b 10 < 0, • or a 10 + b 10 = 0 and a 20 + b 20 < 0, • or a 10 + b 10 = 0 and a 20 + b 20 = 0 and a 11 + b 11 < 0, and in this case the possible extremals of the domain have symbol [[G 1 ]] or [[G 2 ]] or [[G 2 , G 1 ]]. One has f 2 < 0 in the domain if • a 10 + b 10 > 0, • or a 10 + b 10 = 0 and a 20 + b 20 > 0, • or a 10 + b 10 = 0 and a 20 + b 20 = 0 and a 11 + b 11 > 0. and in this case the possible extremals of the domain have symbol

  not empty locally and is a turnpike. It corresponds to the cases where a 10 + b 10 = 0 and • a 20 + b 20 < 0 and a 11 + b 11 > 0, • or a 20 + b 20 = 0 and a 11 + b 11 > 0 and a 30 + b 30 < 0, • or a 11 + b 11 = 0 and a 20 + b 20 < 0 and a 12 + b 12 > 0. Then f 2 > 0 locally along {x > 0, y = 0} and f 2 < 0 along {x = 0, y > 0}. Hence no bang-bang extremal with symbol [[G 1 , G 2 ]] or [[G 2 , G 1 ]] exists and any extremal entering the domain starts with a u 2 -singular arc. If it switches to G 1 then it enters the domain (R * + × R * + ) ∩ {f 2 > 0} which is invariant by G 1 hence it does not switch anymore. If it switches to G 2 it enters the domain (R * + × R * + ) ∩ {f 2 < 0} which is invariant by G 2 hence it does not switch anymore. As a consequence, the only possible symbols for extremals are [

∆ 2 G 2 G 2 a 1 G 2 G 1 G 1 a 2 ∆ 2 Figure 2 :

 2221211222 Figure 2: The syntheses when a 10 + b 10 = 0 and ∆ 2 is a turnpike

  +b 20 ) a 11 +b 11 and they intersect at a point such that y = -2 a 20 -b 20 a 11 -b 11 x + o(x). As seen previously, the switching locus for extremals with symbol [[G 2 , G 1 ]] satisfies y = -a 20 -b 20 a 11 -b 11 x+o(x) hence it stops to be optimal before switching. The same holds true for the extremals with symbol [[G 1 , G 2 ]]. Finally the cut locus satisfies

Figure 3 :

 3 Figure 3: The syntheses when a 10 + b 10 = 0 and ∆ 2 is not a turnpike

  not empty locally and is a turnpike. It corresponds to the cases where a 10 + b 10 = 0 and • a 20 + b 20 < 0 and a 11 + b 11 > 0, • or a 20 + b 20 = 0 and a 11 + b 11 > 0 and a 30 + b 30 > 0, • or a 11 + b 11 = 0 and a 20 + b 20 < 0 and a 12 + b 12 < 0. In this case, the possible symbols for extremals are [

  not empty locally and is a anti-turnpike. It corresponds to the cases where a 10 + b 10 = 0 and • a 20 + b 20 > 0 and a 11 + b 11 < 0, • or a 20 + b 20 = 0 and a 11 + b 11 < 0 and a 30 + b 30 < 0, • or a 11 + b 11 = 0 and a 20 + b 20 > 0 and a 12 + b 12 > 0.
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 14 Optimal synthesis in the domain R + × R - The dynamics entering R * + × R * -is with u 2 ≡ 1 since u 1 switches (Propositions 14 and 15). Three different cases can be identified. 1st. case. ∆ 1 ∩ (R + × R -\ {0}) is empty locally. No u 1 -singular enters the domain. It corresponds to the case (N F 1a ) where |a 10 | = |b 10 | and to the cases (N F 1b ) and (N F 1d ) where a 10 -b 10 = 0 and • (a 20 -b 20 )(a 11 -b 11 ) < 0, • or a 20 -b 20 = 0 and (a 30 -b 30 )(a 11 -b 11 ) < 0, • or a 11 -b 11 = 0 and (a 20 -b 20 )(a 12 -b 12 ) > 0. Only one u 1 -switch can occur along the extremal. One has f 1 > 0 in the domain if • a 10 -b 10 > 0, • or a 10 -b 10 = 0 and a 20 -b 20 > 0, • or a 10 -b 10 = 0 and a 20 -b 20 = 0 and a 11 + b 11 < 0, and in this case the possible extremals of the domain have symbol

  not empty locally and is a turnpike. It corresponds to the cases where a 10 -b 10 = 0 and • a 20 -b 20 > 0 and a 11 -b 11 > 0, • or a 20 -b 20 = 0 and a 11 -b 11 > 0 and a 30 -b 30 > 0, • or a 11 -b 11 = 0 and a 20 -b 20 > 0 and a 12 -b 12 < 0. In this case, the possible symbols for extremals are [

  not empty locally and is a anti-turnpike. It corresponds to the cases where a 10 -b 10 = 0 and • a 20 -b 20 < 0 and a 11 -b 11 < 0, • or a 20 -b 20 = 0 and a 11 -b 11 < 0 and a 30 -b 30 < 0, • or a 11 -b 11 = 0 and a 20 -b 20 < 0 and a 12 -b 12 > 0.
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 15 Optimal synthesis in the domain R -× R + The dynamics entering R * -× R * + is with u 2 ≡ -1 since u 1 switches (Propositions 14 and 15). Three different cases can be identified. 1st. case. ∆ 1 ∩ (R -× R + \ {0}) is empty locally. No u 1 -singular enters the domain. It corresponds to the case (N F 1a ) where |a 10 | = |b 10 | and to the cases (N F 1b ) and (N F 1d ) where a 10 -b 10 = 0 and • (a 20 -b 20 )(a 11 -b 11 ) < 0, • or a 20 -b 20 = 0 and (a 30 -b 30 )(a 11 -b 11 ) > 0, • or a 11 -b 11 = 0 and (a 20 -b 20 )(a 12 -b 12 ) < 0. Only one u 1 -switch can occur along the extremal. One has f 1 > 0 in the domain if • a 10 -b 10 > 0, • or a 10 -b 10 = 0 and a 20 -b 20 < 0, • or a 10 -b 10 = 0 and a 20 -b 20 = 0 and a 11 + b 11 > 0, and in this case the possible extremals of the domain have symbol [[-G 1 ]] or [[G 2 ]] or [[-G 1 , G 2 ]]. One has f 1 < 0 in the domain if • a 10 -b 10 < 0, • or a 10 -b 10 = 0 and a 20 -b 20 > 0, • or a 10 -b 10 = 0 and a 20 -b 20 = 0 and a 11 -b 11 < 0, and in this case the possible extremals of the domain have symbol [

  not empty locally and is a turnpike. It corresponds to the cases where a 10 -b 10 = 0 and • a 20 -b 20 > 0 and a 11 -b 11 > 0, • or a 20 -b 20 = 0 and a 11 -b 11 > 0 and a 30 -b 30 < 0, • or a 11 -b 11 = 0 and a 20 -b 20 > 0 and a 12 -b 12 > 0. In this case, the possible symbols for extremals are [[-G 1 ]], [[G 2 ]], [[S - 1 , -G 1 ]] and [[S - 1 , G 2 ]]. 3rd. case. ∆ 1 ∩ (R * -× R * + ) isnot empty locally and is a anti-turnpike. It corresponds to the cases where a 10 -b 10 = 0 and • a 20 -b 20 < 0 and a 11 -b 11 < 0, • or a 20 -b 20 = 0 and a 11 -b 11 < 0 and a 30 -b 30 > 0, • or a 11 -b 11 = 0 and a 20 -b 20 < 0 and a 12 -b 12 < 0. Then the only optimal symbols are [

  y, p, -1) + rp ∂H ∂y (x, y, p, -1) , r = r 2 ∂H ∂y (x, y, p, -1) .

det(F 2 ,= a 20 -a 10 b 20 a 01 x 2 +Remark that generically a 20 -a 10 b 20 a 01 is neither 0 nor 1 2 . Moreover f 2

 220220012 [F 1 , F 2 ])(x, y) = 1 4 ((a 10 b 20 -a 20 )x 2 + a 01 y) + o 2 (x, y)where x has weight 1 and y has weight 2. Since generically at such points (which are isolated points) a 01 = 0 then an equation for ∆ 2 is given byy o(x 2 ). (x, y) = det(F 2 , [F 1 , F 2 ])(x, y) det(F 2 , F 1 )(x, y) = ((a 10 b 20 -a 20 )x 2 + a 01 y) + o 2 (x, y) 2x .

  x 

2 2 +

 2 o(x 2 ). If a 20 -a 10 b 20 a 01 < 0 or if a 20 -a 10 b 20 a 01 > 1

If a 20 -a 10 b 20 a 01 > 0 and a 20 -a 10 b 20 a 01 < 1 2

 200120011 2a , have symbol [[G 1 , G 2 ]]. then ∆ 2 enters D and along it G 1 and G 2 point on opposite sides of ∆ 2 . In this case:• if a 10 b 20 -a 20 > 0 then, along ∆ 2 ∩ D, G 1 points in direction of f 2 > 0 and ∆ 2 is a turnpike.Then, the only extremals entering the domain D start with a singular arc and have symbols[[S + 2 ]], [[S + 2 , G 1 ]] or [[S + 2 , G 2 ]]. • if a 10 b 20 -a 20 < 0 then, along ∆ 2 ∩ D, G 1 points in direction of f 2 < 0 and ∆ 2 is not a turnpike. In this case the symbols start with [[G 1 , G 2 ]] and [[G 2 , G 1 ]].One can compute, with the same techniques that in section 4.2.2, the switching times and the second switching locus for extremals that enter the domain D, that is for extremal with initial condition λ y (0) = -a 10 + δ with > 0 small and δ = ±1.If δ < 0 then the symbol is [[G 1 , G 2 , G 1 ]] and the switching times are t 1 = a20-a10b20 and t 2 = t 1 + 2 a01-2a20+2a10b20 , the second switching locus beingx( ) = a 01 (a 20 -a 10 b 20 )(a 01 -2a 20 + 2a 10 b 20 ) , y( ) = 2(a 01 -a 20 + a 10 b 20 ) 2 (a 20 -a 10 b 20 )(a 01 -2a 20 + 2a 10 b 20 ) 2 . If δ > 0 then the symbol is [[G 2 , G 1 , G 2 ]]and the switching times are t 1 = 2 a01-2a20+2a10b20 and t 2 = t 1 + a20-a10b20 , the second switching locus being x( ) = a 01 (a 20 -a 10 b 20 )(a 01 -2a 20 + 2a 10 b 20 ) , y( ) = 2 2 (a 01 -2a 20 + 2a 10 b 20 ) 2 .
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4. 4 2 + 1 -If a 10 b 20 -a 20 Figure 5 : 01 > 0 and a 20 -a 10 b 20 a 01 < 1 2If a 10 b 20 -a 20 If a 10 b 20 -a 20 Figure 6 : 01 < 0 or a 20 -a 10 b 20
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  Then, computing φ 2 one finds φ 2 (t) = -λ x (t) a 10
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For an initial condition λ x (0) = 1, one find φ 1 (0) > 0 and φ 2 (0) > 0, hence u 1 (0) = u 2 (0) = 1. One can integrate the equations and look for the first switching time as a Taylor series s 1 = s 1 0 + r 0 s 1 1 + o(r 0 ) and compute φ 2 (r 0 , s 1 0 + r 0 s 1 1 + o(r 0 )) in order to compute

1 -a 0 and s 1 1 = -a 10 -2b 30 (1 -a 0 ).

At the switching time

After this first switch φ 1 (0) > 0 and φ 2 (0) < 0, hence u 1 (0) = 1 and u 2 (0) = -1. We can compute and look for the next switching time and one finds that φ 1 goes to 0 at s 2 = s 2 0 + r 0 s 2 1 + o(r 0 ) with

At the second switching time

2 )-6b 30 a 0 (1+a 0 )

After this second switch, φ 1 (0) < 0 and φ 2 (0) < 0, hence u 1 (0) = u 2 (0) = -1. One can compute the third switch as being s 3 = s 3 0 + r 0 s 3 1 + o(r 0 ) with

At this time X(s 3 ) = -√ 2 √ 1 + a 0 + O(r 0 ) and we will see that this third switching time comes after the cut time.

The same computations can be done for the extremals starting with λ x (0) = -1. We use the notation z for variables z corresponding to these extremals. During the first bang the controls are ū1 = ū2 = -1, during the second ū1 = 1 and ū2 = -1 and during the third one ū1 = ū2 = 1. The switching times are s1 and s2 satisfying

And at the second switching time

2 )-6b 30 a 0 (1-a 0 )

One can compute that at the third switching time X(s

We are now ready to compute the cut locus. As one can estimate easily, an extremal starting with λ x (0) > 0 intersects an extremal starting with λ x (0) < 0, both during their third bang. Moreover, since Y (s 2 ) = Ȳ (s 2 ) + o(r 0 ) one have that r0 = r 0 + o(r 0 ).

Let fix a ρ and look for the extremals that intersect at y = √ 2((1+a 0 )

2 ) 3a 0 ρ 3 . We write

2 ) 3a 0 ρ 3 + o(ρ 4 ). We find

.

. With these values, we can compute the second switching times

and the x coordinates of the point of second switching under the form x = x 1 ρ + x 2 ρ 2 + o(ρ 3 ) and x = x1 ρ + x2 ρ 2 + o(ρ 3 ) with

One find easily that the cut locus is at

2 ) 3a 0 ρ 3 .

When -λ y (0) >> 1, then we set r = 1 √ -λy

. Equations are changed but the final result is very similar

b 01 + 4b 30 ρ 2 + o(ρ 2 ),

2 ) 3a 0 ρ 3 .

Finally, the cut locus appears to be a cusp whose tangent at the singular point is the tangent to ∆ A , see Figure 7. 

Second switching locus

Second switching locus