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Abstract

We consider specific sub-Finslerian structures in the neighborhood of 0 in R2, defined by fixing a
familly of vector fields (F1, F2) and considering the norm defined on the non constant rank distribution
∆ = vect{F1, F2} by

|G| = inf
u
{max{|u1|, |u2|} | G = u1F1 + u2F2}.

If F1 and F2 are not proportionnal at p then we obtain a Finslerian structure; if not, the structure

is sub-Finslerian on a distribution with non constant rank. We are interested in the study of the

local geometry of these Finslerian and sub-Finslerian structures: generic properties, normal form, short

geodesics, cut locus, switching locus and small spheres.

MSC classes: 53B40, 53C22, 49J15, 49K15.
Keywords: sub-Finlerian geometry, maximum norm, geodesics, small spheres, cut locus.

1 Introduction

From the 80’s, the interest for the sub-Riemannian geometry increases with a lot of contributions
in several domains as PDEs, analysis, probability, geometry and control. One of the question was
to understand the local geometry of sub-riemannian metrics, as the singularities of small spheres,
local cut locus, local conjugate locus and so on, motivated in particular by new results on the heat
kernel in the sub-Riemannian context, see [10, 22, 23, 9]. The contact and the Martinet cases were
deaply studied (see [1, 12, 11, 19, 2]). The quasi-contact case in dimension 4 also (see [15]). These
results allowed to give new results on the asymptotics of the heat kernel at cut and conjugate loci
in the 3D contact and 4D quasi-contact cases ([7, 6]).

In this article, we start the same work for Finslerian and sub-Finslerian metrics associated with
a maximum norm: let consider a manifold M , a vector bundle π : E → M with fibers of same
dimension as M endowed with a maximum norm, and a morphism of vector bundles f : E → TM

∗This research has been supported by ANR-15-CE40-0018.
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such that the map from Γ(E)→ V ec(M) defined by σ 7→ f ◦ σ is injective. An admissible curve is
a curve γ in M such that exists a lift σ in E with γ̇(t) = f(σ(t)) a.e. The length of such a curve is

the infimum of the
∫ T

0 |σ(t)|dt for all possible such σ and the distance between two points q0 and
q1 is the infimum of the lengths of the curves joining q0 and q1. Remark that the map f itself is
not assumed to be injective everywhere: at points where f is injective the structure is Finslerian
when at points where it is not it is sub-Finslerian.

Here we concentrate our attention on the local study of such structures in dimension 2, that is
when M and the fibers of E have dimension 2.

Equivalently, with a control point of view and since we are interested in local properties, we
consider control systems in a neighborhood of 0 in R2 of the type

q̇ = u1F1(q) + u2F2(q) (1)

where F1 and F2 are smooth vector fields and u1 and u2 are control functions satisfying

|u1| ≤ 1 and |u2| ≤ 1. (2)

Up to reparameterization, minimizing the distance in the geometric context is equivalent to mini-
mizing the time of transfer in the control context.

We are interested in the study of the time optimal synthesis of such systems. Of course,
the general situation cannot be completely described since singular cases may have very special
behaviour. For example, in the case F1 = ∂x and F2 = ∂y, any admissible trajectory with u1 ≡ 1

and
∫ 1

0 u2(t)dt = 0 joins optimaly (0, 0) to (1, 0). Hence in the following, we will consider only
”generic” situations as defined in section 2.1.

Few works exist concerning sub-Finsler geometry since it is a new subject. Let mention the
works [17, 18] for dimension 3, considering norms which are assumed to be smooth outside the zero
section. In [14], the sphere of a left invariant sub-Finsler structure associated to a maximum norm
in the Heisenberg group is describded. In the preprint [5], the authors describe the extremals (and
discuss in particular their number of switches before the loss of optimality) for the Heisenberg,
Grushin and Martinet distributions. In the preprint [4], we describe, in the 3D generic contact
case, the small sphere and the local cut locus.

The paper is organised as follows.
In section 2 we recall Thom’s transversality theorem and some of its corollaries, define what we

mean by generic, give generic properties of the couples of vector fields on 2 dimensional manifolds
and give a normal form for the generic couples.

In section 3, we give first general results about the optimal synthesis; recalling classical results
as Chow-Rashevski, Filippov and Pontryagin theorems; analysing the possibilities for extremals
to switch or to be singular depending on their initial condition; giving details on the weights of
coordinates in the normal form and on the associated nilpotent approximation.

In section 4, we present the local synthesis in all the generic cases presented in the normal form
of section 2.

2 Normal form

In this section, the goal is to give a list of properties of generic couples (F1, F2) and to construct a
normal form for the couple (G1, G2) defined by G1 = F1 + F2 and G2 = F1 − F2. As we will see,
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±G1 and ±G2 are the velocities of a large class of the minimizers of the optimal control system
defined by (1) and (2).

In order to do that we use the Thom’s transversality theorem and some of its corollaries.

2.1 Generic properties of couples of smooth vector fields on 2d-manifolds

2.1.1 Thom’s transversality theorem

Denote Jk(M,N) the set of k-jets of maps from M to N .

Theorem 1 (Thom Transversality Theorem, [21], Page 82). Let M,N be smooth manifolds and
k ≥ 1 an integer. If S1, · · · , Sr are smooth submanifolds of Jk(M,N) then the set

{f ∈ C∞(M,N) : Jkf t Si for i = 1, 2, · · · , r},

is residual in the C∞-Whitney topology.

Corollary 2. Assume that codim Si > dimM for i = 1, · · · , r and k ≥ 1. Then the set

{f ∈ C∞(M,N) : Jkf(M) ∩ Si = ∅ for i = 1, · · · , r},

is residual in the C∞-Whitney topology.

Corollary 3. For every f in the residual set defined in Theorem 1, the inverse images S̃i :=
(Jkf)−1(Si) is a smooth submanifold of M and codim Si = codim S̃i for i = 1, · · · , r.

Remark 4. Let ϕ be a diffeomorphism of M and φ be a diffeomorphism of N . The map

σϕ,φ :

{
C∞(M,N) −→ C∞(M,N)

f 7−→ ϕ ◦ f ◦ φ

induces a diffeomorphism σ∗ϕ,φ of Jk(M,N) which sends submanifolds of Jk(M,N) on submanifolds

of Jk(M,N). Moreover, f is in the residual set defined in theorem 1, if and only if σϕ,φ(f) is in
the residual set

{g ∈ C∞(M,N) : Jkg t σ∗ϕ,φ(Si) for i = 1, · · · , r}.

This remark is important to facilitate the presentation of the proofs of the generic properties
given in the next section.

Definition 5. In the following, we will say that a property of maps is generic if it is true on a
residual set defined as in Thom’s theorem.

2.1.2 First generic properties

We give a list of generic properties for couples of vector fields on 2d-manifolds. In order to use
Thom transversality theorem, we work locally in coordinates. Locally one can consider a couple of
vector fields as the data of a map

g :

{
U ⊂ R2 → R2 × R2

(x, y) 7→ ((g1(x, y), g2(x, y)), (g3(x, y), g4(x, y)))
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and the k-jet at q = (0, 0) ∈ U of g as the data of the map

Jkg :

{
R2 → Rk[x, y]4

(x, y) 7→ (P1(x, y), . . . , P4(x, y))

where Pi (1 ≤ i ≤ 4) is the Taylor series of order k of gi at q.
In order to describe submanifolds of Rk[x, y]4 in coordinates, we write:

P1(x, y) =
k∑
i=0

k−i∑
j=0

p1,i,jx
iyj , . . . , P4(x, y) =

k∑
i=0

k−i∑
j=0

p4,i,jx
iyj .

In the following (g1, g2) are the coordinates of G1 and (g3, g4) the coordinates of G2 in a local
coordinate system.

Generic property 1 (GP1): for generic couples of vector fields (F1, F2) on M , the set of points
where G1 = G2 = 0 is empty.

Indeed in coordinates such points correspond to jets with p1,0,0 = p2,0,0 = p3,0,0 = p4,0,0 = 0
which form a submanifold of Rk[x, y]4 of codimension 4. Hence, thanks to corollary 2, the property
is proven.

Let call JkN the set of k − jets such that P1 ≡ 1 and P2 ≡ 0. Once assumed that we choose a
coordinate system such that G1 = (1, 0) then Jkg is in JkN .

Assume that a set S of Jk(R2,R4) is defined has the zero level of a finite number of functions
hi, i = 1 . . . k, which differentials form a free familly when restricted to TJkN . Then locally the
differentials of the functions hi form a free familly and hence, close to JkN ∩ S, the set S is locally
a submanifold. In this context, the codimension of S in Jk(R2,R4) is equal to the codimension of
S′ = S ∩ JkN in JkN .

Thanks to remark 4, up to a permutation between ±F1 and ±F2 and a good choice of coor-
dinates, we will assume in all the following that G1 ≡ (1, 0) locally that is g1 ≡ 1 and g2 ≡ 0. It

corresponds to jets in JkN . As a consequence, if a set S is defined by a finite number of functions
hi, i = 1 . . . k, which differentials form a free familly when restricted to TJkN , then to apply Thom’s
theorem and its corollaries we are reduced to apply them to the map

g :

{
U ⊂ R2 → R2

(x, y) 7→ (g3(x, y), g4(x, y))

and the set S′ = S ∩ JkN seen as a submanifold of Jk(R2,R2).

Generic property 2 (GP2): for generic couples of vector fields (F1, F2) on M , the set of points
where G2 = 0 is a discret set. The same holds for the set where F1 = 0 or the set where F2 = 0.

Indeed such points correspond to jets with p3,0,0 = p4,0,0 = 0 which is a submanifold of Rk[x, y]2

of codimension 2. Hence, thanks to corollary 3, the set where G2 = 0 is generically a submanifold
of M of codimension 2 that is a discrete set. For F2 = 0 the equations are p3,0,0 = 1 and p4,0,0 = 0
and for F1 = 0 the equations are p3,0,0 = −1 and p4,0,0 = 0.

Generic property 3 (GP3): for generic couples of vector fields (F1, F2) on M , the set ∆A of points
where G2 is parallel to G1 is an imbedded submanifold of codimension 1.

Indeed ∆A is exactly the set of points where g4 = 0, corresponding to jets with p4,0,0 = 0.
This last set is an imbedded submanifold of Rk[x, y]2 of codimension 1. Thanks to (GP1) and to
corollary 3, we can conclude that generically ∆A is an imbedded submanifold of codimension 1.
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Generic property 4 (GP4): for generic couples of vector fields (F1, F2) on M , the set ∆1 of points
where F1 is parallel to [F1, F2] is an imbedded submanifold of codimension 1. The same holds for
∆2 where F2 is parallel to [F1, F2].

In order to prove (GP4), compute [F1, F2] and describe ∆1 in coordinates. [F1, F2] = −1
2 [G1, G2]

hence has coordinates −1
2p3,1,0 and −1

2p4,1,0 and F1 has coordinates 1
2(1+p3,0,0) and 1

2p4,0,0. Hence
∆1 corresponds to jets satisfying∣∣∣∣ −1

2p3,1,0
1
2(1 + p3,0,0)

−1
2p4,1,0

1
2p4,0,0

∣∣∣∣ = 0.

The differential of this determinant is not degenerate hence the set of Rk[x, y]2 satisfying this
equality is an imbedded submanifold of codimension 1. Hence, generically, ∆1 is the preimage of
an immersed submanifold of codimension 1 which, thanks to corollary 3, permits to conclude that
∆1 is an immersed submanifold of codimension 1.

Generic property 5 (GP5): for generic couples of vector fields (F1, F2) on M , the sets (∆A ∩∆1),
(∆A ∩∆2) and (∆1 ∩∆2) are discrete.

Since G1 = (1, 0), the set (∆1∩∆2)\∆A is the set of points where (F1, F2) is free and [F1, F2] = 0
that is

p4,0,0 6= 0,

p3,1,0 = 0

p4,1,0 = 0.

This set is an immersed submanifold of codimension 2 of Rk[x, y]2 hence, thanks to corollary 3, the
set (∆1 ∩∆2) \∆A is generically a discrete set.

The set (∆A∩∆2) \∆1 is a set of points where F2 = 0. By (GP2) it is a discrete set. The same
holds for (∆A ∩∆1) \∆2 which is a set of points where F1 = 0.

The set ∆A ∩ ∆1 ∩ ∆2 is the union of the subset where F1 6= 0 and F1 � F2 � [F1, F2] with a
subset where F1 = 0. The second is discrete. The first set is also defined by G1 �G2 � [G1, G2] that
is p4,0,0 = 0 and p4,1,0 = 0. Hence, thanks to corollary 3, the set where F1 6= 0 and F1 �F2 � [F1, F2]
is a submanifold of codimension 2 that is a discrete set.

Generic property 6 (GP6): for generic couples of vector fields (F1, F2) on M , the set of points
where G1 �G2 � [G1, G2] � [G1, [G1, G2]] is empty.

The set where G1 � G2 � [G1, G2] � [G1, G2] is such that p4,0,0 = p4,1,0 = p4,2,0 = 0. Hence,
thanks to corollary 3, it is a submanifold of codimension 3 that is an empty set.

Generic property 7 (GP7): for generic couples of vector fields (F1, F2) on M , at the points q where
G1(q) �G2(q) � [G1, G2](q) one gets G1(q) ∈ Tq∆A.

The property G1(q) � G2(q) � [G1, G2](q) implies that p4,0,0 = p4,1,0 = 0. If p4,0,1 6= 0 then
∆A can be written p4,0,1y = o(x) that is ∆A is tangent to the x axis and G1 ∈ Tq∆A. Hence
the set of points where G1(q) � G2(q) � [G1, G2](q) and G1(q) /∈ Tq∆A corresponds to jets with
p4,0,0 = p4,1,0 = p4,0,1 = 0 which is a submanifold of codimension 3. Hence generically, at the points
q where G1(q) �G2(q) � [G1, G2](q), one has G1(q) ∈ Tq∆A.

One can even detail more the generic properties: using Thom transversality theorem and its
corollaries, we can prove that generically
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Generic property 8 (GP8): along ∆1 \ (∆2 ∪∆A), the points where G1 or G2 is tangent to ∆1 are
isolated. The same holds true for ∆2 \ (∆1 ∪∆A).

Generic property 9 (GP9): at points of (∆1 ∩∆2) \∆A, neither G1 nor G2 are tangent to ∆1 or
∆2.

Generic property 10 (GP10): along ∆A \ (∆1 ∪∆2), the set of points where G2 = 0 or G2 = ±G1

is discrete.

2.2 Normal form

Thanks to the generic properties established in the previous section, we can prove :

Theorem 6 (Normal form). For generic couples of vector fields (F1, F2) on a 2d manifold M , up
to an exchange between ±F1 and ±F2, at each point q of the manifold G1 6= 0 and it exists a unique
coordinate system (x, y) centred at q such that one of the following normal form holds:

(NF1) G1(x, y) = ∂x,
G2(x, y) = ∂y + x(a10 + a20x+ a11y + o(x, y))∂x + x(b10 + b20x+ b11y + o(x, y))∂y,
and q /∈ ∆A.

(NF2) G1(x, y) = ∂x,
G2(x, y) = (a0 + a10x+ a01y + o(x, y))∂x + x(1 + x(b20 +O(x, y)))∂y,
with 0 ≤ a0 ≤ 1, and q ∈ ∆A \∆1.

(NF3) G1(x, y) = ∂x,
G2(x, y) = (a0 + o(1))∂x + (b01y + 1

2x
2 + b11xy + b02y

2 + o(x2, y2))∂y,
with b01 > 0 and 0 < a0 < 1, q ∈ ∆A ∩∆1 ∩∆2 and G1(q) ∈ Tq∆A.

For (NF1) and (NF2) one of the following subcases holds:

(NF1a) (NF1) holds with a10 − b10 6= 0 and a10 + b10 6= 0. It corresponds to q /∈ ∆A ∪∆1 ∪∆2.

(NF1b) (NF1) holds with a10 − b10 = 0 and a10 + b10 6= 0. It corresponds to q ∈ ∆1 \ (∆A ∪∆2).

(NF1c) (NF1) holds with a10 − b10 6= 0 and a10 + b10 = 0. It corresponds to q ∈ ∆2 \ (∆A ∪∆1).

(NF1d) (NF1) holds with a10 = b10 = 0. It corresponds to q ∈ (∆1 ∩∆2) \∆A.

(NF2a) (NF2) holds with 0 ≤ a0 < 1. It corresponds to q ∈ ∆A \ (∆1 ∪∆2).

(NF2b) (NF2) holds with a0 = 1. It corresponds to q ∈ (∆A ∩∆2) \∆1 that is to q ∈ ∆A \∆1 such
that F2(q) = 0.

Such coordinate system is called the normal coordinate system associated with F1 and F2.

Proof. We assume that all the generic properties given before are satisfied. Thanks to (GP1),
and thanks to the fact that we are working locally, we can assume that G1 is not zero.

Thanks to (GP3), we know that ∆A is a submanifold of dimension 1. Let start by considering
a point q outside ∆A. Let define the map ϕ which to (x, y) in a neighborhood U of (0, 0) in R2
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associates the point reached by starting at q and following G2 during time y and then G1 during
time x that is

ϕ :

{
U → M

(x, y) 7→ exG1eyG2q

Since ∂xϕ(0, 0) = G1(q) and ∂yϕ(0, 0) = G2(q), ϕ is a local diffeomorphism hence defines a local
coordinate system. One proves easily that at each point of coordinates (x, y) the vector G1(x, y) =
(1, 0). Moreover, along the y axis, since ϕ(0, y) = eyG2q then G2(0, y) = (0, 1). This implies the
normal form (NF1). With the normal form (NF1), one gets that

[F1, F2](0) = −1

2
[G1, G2](0) = −1

2
(a10, b10),

F1(0) =
1

2
(G1(0) +G2(0)) = (

1

2
,
1

2
),

F2(0) =
1

2
(G1(0)−G2(0)) = (

1

2
,−1

2
)

which implies that

[F1, F2](0) = −a10 + b10

2
F1(0)− a10 − b10

2
F2(0).

The subcases follow immediately.
Assume now that q ∈ ∆A \∆1. Hence G1(q) and G2(q) are parallel and since we assume that

G1(q) is not 0, we can assume up to a change of role that G2(q) = αG1(q) with α ∈ [0, 1]. Since
q /∈ ∆1, G1(q) and [G1, G2](q) are not parallel. This implies that G1 is not tangent to ∆A. As a
consequence, one can choose a local parameterization γ(t) of ∆A such that γ(0) = q and γ̇(t) has
second coordinate 1 in the basis (G1(γ(t)), [G1, G2](γ(t))). We can know define the map ϕ which
to (x, y) in a neighborhood U of (0, 0) in R2 associates the point reached by starting at γ(y) and
following G1 during time x that is

ϕ :

{
U → M

(x, y) 7→ exG1γ(y)

In this coordinate system, ∆A is the y axis, G1(x, y) = (1, 0) and the second coordinate of G2 is
null at x = 0 hence it is the product of the function (x 7→ x) with a smooth function g. Moreover,
thanks to the property of γ, g(0, y) = 1 which implies that g(x, y) = 1 + xh(x, y) with h a smooth
function. This is exactly (NF2). If 0 ≤ a0 < 1 then F1(q) and F2(q) are not null and since they
are parallel but not parallel to [F1, F2](q) then q ∈ ∆A \ (∆1 ∪∆2). If a0 = 1 then F2(q) = 0 and
q ∈ (∆A ∩∆2) \∆1.

The case where q ∈ (∆A ∩∆1) \∆2 can de treated by exchanging the roles of G1 and G2 since
in this case G2(q) 6= 0.

Let assume finally that q ∈ ∆A∩∆1∩∆2. Thanks to (GP6) and (GP7) at such a point G1 and
[G1, [G1, G2]] are not parallel. Hence we can define the map ϕ which to (x, y) in a neighborhood U
of (0, 0) in R2 associates the point reached by starting at q and following [G1, [G1, G2]] during time
y and then G1 during time x that is

ϕ :

{
U → M

(x, y) 7→ exG1ey[G1,[G1,G2]]q

The fact that G2 and [G1, G2] are parallel to G1 implies b0 = 0 and b10 = 0. The fact that, along
the y axis, [G1, [G1, G2]] = (0, 1) implies in particular that b20 = 1

2 which finishes the proof.
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3 General facts about the computation of the optimal synthesis

3.1 Local controllability and existence of minimizers

In the three cases of the normal form (NF1), (NF2) and (NF3) one checks that

span(F1, F2, [F1, F2], [F1, [F1, F2]], [F2, [F1, F2]]) = R2.

Hence, as a consequence of Chow-Rashevski theorem (see [3, 25, 16]), generically such a control
system is locally controllable that is locally, for any two points, always exists an admissible curve
joining the two points.

Moreover, since at each point the set of admissible velocities is convex and compact, thanks to
Filippov theorem (see [3, 20]), locally for any two points, always exists at least a minimizer.

3.2 Pontryagin Maximum Principle (PMP)

The Pontryagn Maximum Principle (PMP for short, see [3, 24]) gives necessary conditions for a
curve to be a minimizer of a control problem. For our problem it takes the following form.

Theorem 7 (PMP). Let define the Hamiltonian

H(q, λ, u, λ0) = u1λ.F1(q) + u2λ.F2(q) + λ0

where q ∈ R2, λ ∈ T ∗R2, u ∈ R2 and λ0 ∈ R. For any minimizer (q(t), u(t)), there exist a never
vanishing Lipschitz covector λ : t 7→ λ(t) ∈ T ∗q(t)R

2 and a constant λ0 ≤ 0 such that

• q̇(t) = ∂H
∂λ (q(t), λ(t), u(t), λ0),

• λ̇(t) = −∂H
∂q (q(t), λ(t), u(t), λ0),

• 0 = H(q(t), λ(t), u(t), λ0) = maxv{H(q, λ, v, λ0) | |vi| ≤ 1 for i = 1, 2}.

If λ0 = 0, q is said abnormal, if not q is said normal. It may be both. A solution of the PMP is
called an extremal.

Proposition 8. For a generic SF metric on a 2D manifold defined with a maximum norm, there
is no abnormal extremal. Hence we can fix λ0 = −1. This is our choice in the following.

Proof. It is a classical fact that an abnormal extremal should correspond to a covector λ 6= 0
orthogonal to F1, F2 and [F1, F2]. This implies that along the trajectory the three vectors are
parallel. But generically this happens only on a discrete set, which forbids to get a non trivial
curve. �

3.3 Switchings

In this section, we follow the ideas of [13].
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Definition 9. For an extremal triplet (q(.), λ(.), u(.)), define the switching functions

φi(t) =< λ(t), Fi(q(t)) >, i = 1, 2,

and the function φ3(t) =< λ(t), [F1, F2](q(t)) > .

Thanks to λ0 = −1, the φi functions satisfy

u1(t)φ1(t) + u2(t)φ2(t) = 1, for a.e. t.

A direct consequence of the maximality condition is

Proposition 10. If φi(t) > 0 (resp. φi(t) < 0) then ui(t) = 1 (resp. ui(t) = −1).
If φi(t) = 0 and φ̇i(t) > 0 (resp. φ̇i(t) < 0) then φi changes sign at time t and the control ui

switches from −1 to +1(resp. from +1 to −1).

Definition 11. We call bang an extremal trajectory corresponding to constant controls with value
1 or −1 and bang-bang an extremal which is a finite concatenation of bangs. We call ui-singular an
extremal corresponding to a null switching function φi. A time t is said to be a switching time if u
is not bang in any neighborhood of t.

Definition 12. Outside ∆A, let define the functions f1 and f2 by

[F1, F2](q) = f2(q)F1(q)− f1(q)F2(q).

It is clear that
∆1 \∆A = f−1

1 (0), ∆2 \∆A = f−1
2 (0).

Proposition 13 (Switching rules). Outside ∆A ∪∆1 ∪∆2 the possible switches of the controls are

• if f1 > 0 then u1 can only switch from -1 to +1 when φ1 goes to 0,

• if f1 < 0 then u1 can only switch from +1 to -1 when φ1 goes to 0,

• if f2 > 0 then u2 can only switch from -1 to +1 when φ2 goes to 0,

• if f2 < 0 then u2 can only switch from +1 to -1 when φ2 goes to 0.

Proof. The fact that φ̇1(t) = −u2.λ.[F1, F2] and φ̇2(t) = u1.λ.[F1, F2] implies that, outside ∆A ∪
∆1 ∪∆2,

φ̇1(t) = u2(t) (f1(q(t))φ2(t)− f2(q(t))φ1(t)) = −u2(t)φ3(t), (3)

φ̇2(t) = u1(t) (f2(q(t))φ1(t)− f1(q(t))φ2(t)) = u1(t)φ3(t). (4)

Now, if φ1(t) = 0 then |φ2(t)| = 1 which implies u2(t)φ2(t) = 1 and hence φ̇1(t) and f1(q(t)) have
same sign and the sign of f1(q(t)) determines the switch.

The same holds true for f2, φ2 and u2. �
As a consequence, on each connected component of the complement of ∆A ∪ ∆1 ∪ ∆2, each

control ui can take only values -1 and +1 and can switch only once from -1 to +1 if fi > 0 or from
+1 to -1 if fi < 0.
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Proposition 14. At any point q outside ∆A, exists a τ > 0 such that for any extremal issued from
q and of length less than τ , only one of the two controls may switch.

Proof. If φ1(t) = 0 then |φ2(t)| = 1. Hence, if φ1(t) = 0 and φ2(t′) = 0 then φ1 passes from
value 0 to ±1 in time t′ − t which implies that |φ̇1| takes values larger than 1

|t′−t| . But, since

φ̇1(t) = −u2(f2(q(t))φ1(q(t)) − f1(q(t))φ2(q(t))), we have |φ̇1(t)| ≤ |f1(q(t))| + |f2(q(t))|. As a
consequence, if locally |f1 + f2| < M then |t′ − t| cannot be smaller than 1/M .

Proposition 15. At any point q outside ∆A, consider the normal coordinate system centered at
q. Any local extremal stays in one of the following domains : R+ × R+, R+ × R−, R− × R+ or
R− × R−.

Proof. Thanks to previous proposition, only one control may switch in short time. Assume
that u1 ≡ 1. Then at each time u1F1 + u2F2 = F1 + u2F2 hence the dynamics takes the form
αG1 + (1 − α)G2 with α ∈ [0, 1]. This dynamics leaves invariant the set R+ × R+, hence the
extremal does not leave this set. By the same argument one proves that if u1 ≡ −1 then the
extremal stays in R−×R−, if u2 ≡ 1 then the extremal stays in R+×R− and that if u2 ≡ −1 then
the extremal stays in R− × R+.

3.4 Initial conditions and their parameterization

On proves easily that in the (NF1) case, max(|λx(0)|, |λy(0)|) = 1. Hence the set of initial conditions
λ is compact and extremals switching in short time or singular extremals should have a φi null or
close to zero. Moreover only one control can switch in short time (see Proposition 14).

In the (NF2) and (NF3) cases |λx(0)| = 1 and there is no condition on λy. Hence the set of
initial condition is not compact. This allows to consider initial conditions with |λy| >> 1 and hence
will appear optimal extremals along which the two controls switch. It is not in contradiction with
the Proposition 14 since in this case the base point belongs to ∆A.

In the (NF2a) and (NF3) cases, φ1(0) = ±1+a0
2 and φ2(0) = ±1−a0

2 . Hence, if one consider a
compact set of initial conditions, the corresponding extremals do not switch in short time. And
are not singular. As a consequence, to consider the extremal switching at least once, one should
consider initial conditions with |λy(0)| >> 1.

Let us give an idea of how to estimate the |λy(0)| corresponding to a u1-switch at small time t
and the consequence in terms of choice of change of coordinates.

In the (NF2) case, φ1(0) = 1+a0
2 ≥ 1

2 . Hence, if along an extremal the control u1 switches for t
small hence on gets, since x(t) = O(t) and y(t) = O(t2),

0 = λ(t).F1(x(t), y(t)) =
1 + a0

2
+ λy(0)

x(t)

2
+O(t)

and it implies that if an extremal sees its control u1 switching at t then λy(0) should be like 1
t .

Hence, in order to make estimations of the corresponding extremals, it is natural to choose as small
parameter r0 = 1

λy(0) , to make the change of coordinate r = 1
λy

, the change of time s = t
r and the

change of coordinate px = rλx. This is what we do in the subsections 4.2 and 4.3.
In the (NF3) case, φ1(0) = 1+a0

2 ≥ 1
2 . Hence, if along an extremal the control u1 switches for t

small hence on gets, since x(t) = O(t) and y(t) = O(t3),

0 = λ(t).F1(x(t), y(t)) =
1 + a0

2
+ λy(0)

x2(t)

4
+O(t)
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and it implies that if an extremal sees its control u1 switching at t then λy(0) should be like 1
t2

.
Hence, in order to make estimations of the corresponding extremals, it is natural to choose as small
parameter r0 such that λy(0) = ± 1

r2
0
, to make the change of coordinate r = ±1√

|λy |
and the change

of time s = t
r . This is what we do in the subsection 4.4.

3.5 Weights, orders and nilpotent approximation

The definitions of privileged coordinates and nilpotent approximation are too long to be given here.
We refer to [8]. The coordinates we constructed in the normal form are privileged coordinates.

In the (NF1) case, x and y have weight 1 and ∂x and ∂y have weight −1 as operators of
derivation. In the (NF2) case x has weight 1 and y has weight 2, ∂x has weight −1 and ∂y have
weight −2. In the (NF3) case, x has weight 1 and y has weight 3, ∂x has weight −1 and ∂y have
weight −3.

In privileged coordinates, one way to understand the weights of the variables naturally is to
estimate how they vary with time in small time along an admissible curve. As seen before, in the
(NF1) case x and y are O(t) (and may be not o(t)), in the (NF2) case x = O(t) and y = O(t2) and
in the (NF3) case x = O(t) and y = O(t3).

In the following, ok(x, y) will denote a function whose valuation at 0 has order larger than k
respectively to the weights of x and y. For example x7 has always weight 7 and y3 has weight 3 in
the (NF1) case but 9 in the (NF3) case.

With this notion of weights, we define the nilpotent approximation of our normal forms in the
three cases

(NF1) G1(x, y) = ∂x,

G2(x, y) = ∂y,

(NF2) G1(x, y) = ∂x,

G2(x, y) = a0∂x + x∂y,

(NF3) G1(x, y) = ∂x,

G2(x, y) = a0∂x +
1

2
x2∂y,

which corresponds to an approximation to order -1. In the following, when we will compute devel-
opments with respect to the parameter r0, that is for |λy(0)| >> 1, we will need the approximation
to order 0 for (NF2a) and (NF3), and the approximation to order 1 for (NF2b)

(NF2a) G1(x, y) = ∂x,

G2(x, y) = (a0 + a10x)∂x + x(1 + b20x)∂y,

(NF2b) G1(x, y) = ∂x,

G2(x, y) = (1 + a10x+ a01y + a20x
2)∂x + x(1 + b20x+ b30x

2)∂y,

(NF3) G1(x, y) = ∂x,

G2(x, y) = (a0 + a10x)∂x +

(
x2

2
+ b01y + b30x

3

)
∂y,

In the (NF1) case, we will need the approximation to order 2 in order to compute the cut locus,
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when present:

(NF1) G1(x, y) = ∂x,

G2(x, y) = x(a10 + a20x+ a11y + a30x
2 + a21xy + a12y

2)∂x +

+(1 + x(b10 + b20x+ b11y + b30x
2 + b21xy + b12y

2))∂y,

3.6 Symbols of extremals

As we will see in the following, the local extremals will be finite concatenations of bang arcs and
ui-singular arcs. In order to facilitate the presentation, a bang arc following ±Gi will be symbolized
by [[±Gi]], a u1-singular arc with control u2 ≡ 1 will be symbolized by [[S+

1 ]], a u1-singular arc
with control u2 ≡ −1 will be symbolized by [[S−1 ]], and we will combined these symbols in such a
way that [[−G1, G2, S

+
2 ]] symbolizes the concatenation of a bang arc following −G1 with a bang

arc following G2 and a u2-singular arc with control u1 ≡ 1.

3.7 Symmetries

One can change the roles of the vectors F1 and F2 and look at the effect on the functions fi or on
the invariants appearing in the normal form. For this last part, one should be careful that changing
the role of F1 and F2 implies changing G1 and G2 and hence changing the coordinates x and y.

Let first look at the effect on the functions fi on an example : F̄1 = −F1 and F̄2 = F2. If we
define the control system with (F̄1, F̄2), it defines the same SF structure. We compute easily that

[F̄1, F̄2] = [−F1, F2] = −[F1, F2] = −(f2F1 − f1F2) = f2F̄1 − (−f1)F̄2

hence f̄1 = −f1 and f̄2 = f2. With this choice Ḡ1 = −G2 and Ḡ2 = −G1. Of course, with such a
change on the vectors G1 and G2 the change on the invariants is not so trivial to compute.

In the following we consider changes that send G1 to ±G1 and G2 to ±G2. These changes
are interesting from a calculus point of view. Effectively, once computed the jet of a bang-bang
extremals with symbol [[G1, G2]] and of its switching times, we are able to get the expressions
for the bang-bang extremals with symbols [[±G1,±G2]]. No use to repeat the computations. For
example, if one gets the expression of an extremal with symbol [[G1, G2]] as function of the initial
conditions, one gets the expression of an extremal with symbol [[−G1, G2]] by respecting the effect
on the coordinates and the invariants a0, a10, etc. of the correponding change of role of F1 and F2.

3.7.1 Ḡ1 = −G1 and Ḡ2 = G2

Let consider the change F̄1 = −F2 and F̄2 = −F1. Then Ḡ1 = −G1 and Ḡ2 = G2. With this
choice,

[F̄1, F̄2] = [−F2,−F1] = −[F1, F2] = −(f2F1 − f1F2) = (−f1)F̄1 − (−f2)F̄2

hence f̄1 = −f2 and f̄2 = −f1. Moreover, [Ḡ1, Ḡ2] = −[G1, G2] and [Ḡ1, [Ḡ1, Ḡ2]] = [G1, [G1, G2]].
We can know consider the effect of this change of role on the coordinates and on the invariants

in the three cases of the normal form

(NF1) In this case, x̄ = −x and ȳ = y, hence ∂x̄ = −∂x and ∂ȳ = ∂y and

Ḡ1 = ∂x̄, Ḡ2 = (a10x̄− a20x̄
2 + a11x̄ȳ+ o2(x̄, ȳ))∂x̄ + (1− b10x̄+ b20x̄

2− b11x̄ȳ+ o2(x̄, ȳ))∂ȳ.
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(NF2) In this case, x̄ = −x and ȳ = −y, hence ∂x̄ = −∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄, Ḡ2 = (−a0 + a10x̄− a01ȳ − a20x̄
2 + o2(x̄, ȳ))∂x̄ + (x̄− b20x̄

2 + b30x̄
3 + o3(x̄, ȳ))∂ȳ.

(NF3) In this case, x̄ = −x and ȳ = y, hence ∂x̄ = −∂x and ∂ȳ = ∂y and

Ḡ1 = ∂x̄, Ḡ2 = (−a0 + a10x̄+ o1(x̄, ȳ))∂x̄ + (x̄2/2 + b01ȳ − b30x̄
3 + o3(x̄, ȳ))∂ȳ.

3.7.2 Ḡ1 = G1 and Ḡ2 = −G2

Let consider the change F̄1 = F2 and F̄2 = F1. Then Ḡ1 = G1 and Ḡ2 = −G2. With this choice,

[F̄1, F̄2] = [F2, F1] = −[F1, F2] = −(f2F1 − f1F2) = (f1)F̄1 − (f2)F̄2

hence f̄1 = f2 and f̄2 = f1. Moreover, [Ḡ1, Ḡ2] = −[G1, G2] and [Ḡ1, [Ḡ1, Ḡ2]] = −[G1, [G1, G2]].
We can know consider the effect of this change of role on the coordinates and on the invariants

in the three cases of the normal form

(NF1) In this case, x̄ = x and ȳ = −y, hence ∂x̄ = ∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄, Ḡ2 = (−a10x̄−a20x̄
2 +a11x̄ȳ+ x̄o(x̄, ȳ))∂x̄+(1+b10x̄+b20x̄

2−b11x̄ȳ+ x̄o(x̄, ȳ))∂ȳ.

(NF2) In this case, x̄ = x and ȳ = −y, hence ∂x̄ = ∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄, Ḡ2 = (−a0 − a10x̄+ a01ȳ − a20x̄
2 + o2(x̄, ȳ))∂x̄ + (x̄+ b20x̄

2 + b30x̄
3 + o3(x̄, ȳ))∂ȳ.

(NF3) In this case, x̄ = x and ȳ = −y, hence ∂x̄ = ∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄, Ḡ2 = (−a0 − a10x̄+ o1(x̄, ȳ))∂x̄ + (x̄2/2− b01ȳ + b30x̄
3 + o3(x̄, ȳ))∂ȳ.

3.7.3 Ḡ1 = −G1 and Ḡ2 = −G2

Let consider the change F̄1 = −F1 and F̄2 = −F2. Then Ḡ1 = −G1 and Ḡ2 = −G2. With this
choice,

[F̄1, F̄2] = [−F1,−F2] = [F1, F2] = (f2F1 − f1F2) = (−f2)F̄1 − (−f1)F̄2

hence f̄1 = −f1 and f̄2 = −f2. Moreover, [Ḡ1, Ḡ2] = [G1, G2] and [Ḡ1, [Ḡ1, Ḡ2]] = −[G1, [G1, G2]].
We can know consider the effect of this change of role on the coordinates and on the invariants

in the three cases of the normal form

(NF1) In this case, x̄ = −x and ȳ = −y, hence ∂x̄ = −∂x and ∂ȳ = −∂y. Moreover

Ḡ1 = ∂x̄, Ḡ2 = (−a10x̄+a20x̄
2 +a11x̄ȳ+ x̄o(x̄, ȳ))∂x̄+(1−b10x̄+b20x̄

2 +b11x̄ȳ+ x̄o(x̄, ȳ))∂ȳ.

(NF2) In this case, x̄ = −x and ȳ = y, hence ∂x̄ = −∂x and ∂ȳ = ∂y. Moreover

Ḡ1 = ∂x̄, Ḡ2 = (a0 − a10x̄+ a01ȳ + a20x̄
2 + o2(x̄, ȳ))∂x̄ + (x̄− b20x̄

2 + b30x̄
3 + o3(x̄, ȳ))∂ȳ.

(NF3) In this case, x̄ = −x and ȳ = −y, hence ∂x̄ = −∂x and ∂ȳ = −∂y. Moreover

Ḡ1 = ∂x̄, Ḡ2 = (a0 − a10x̄+ o1(x̄, ȳ))∂x̄ + (x̄2/2− b01ȳ − b30x̄
3 + o3(x̄, ȳ))∂ȳ.

13



4 The generic local optimal synthesis

We present for generic couples (F1, F2) the local synthesis issued from a point q. The coordinates
(x, y), centred at q, are those which have been constructed in the corresponding normal form in
section 2.

4.1 (NF1) case

At points q where (NF1) holds, one can compute that

f1(x, y) =
1

2
(a10 − b10)

+(2(a20 − b20)− b10(a10 − b10))
x

2
+ (a11 − b11)

y

2

+(3(a30 − b30)− b10(a20 − b20)− (2b20 − b210)(a10 − b10))
x2

2

+(2(a21 − b21)− b11(a10 − b10)− b10(a11 − b11))
xy

2
+ (a12 − b12)

y2

2
+ o2(x, y),

f2(x, y) = −1

2
(a10 + b10)

−(2(a20 + b20)− b10(a10 + b10))
x

2
− (a11 + b11)

y

2

−(3(a30 + b30)− b10(a20 + b20)− (2b20 − b210)(a10 + b10))
x2

2

−(2(a21 + b21)− b11(a10 + b10)− b10(a11 + b11))
xy

2
− (a12 + b12)

y2

2
+ o2(x, y).

Hence, thanks to Proposition 13, if a10 − b10 > 0 (resp. < 0) then u1 is bang-bang and the only
possible switch is −1→ +1 (resp +1→ −1) and if a10 + b10 < 0 (resp. > 0) then u2 is bang-bang
and the only possible switch is −1→ +1 (resp +1→ −1).

Remark 16 (Generic invariants). Let remark that generically, in the (NF1) case, one of the following
situation occurs

• |a10| 6= |b10| (NF1a),

• a10 = b10 6= 0 and a20 − b20 6= 0 and a11 − b11 6= 0,

• a10 = b10 6= 0 and a20 − b20 = 0 and a30 − b30 6= 0 and a11 − b11 6= 0,

• a10 = b10 6= 0 and a20 − b20 6= 0 and a11 − b11 = 0 and a12 − b12 6= 0,

• a10 = −b10 6= 0 and a20 + b20 6= 0 and a11 + b11 6= 0,

• a10 = −b10 6= 0 and a20 + b20 = 0 and a30 + b30 6= 0 and a11 + b11 6= 0,

• a10 = −b10 6= 0 and a20 + b20 6= 0 and a11 + b11 = 0 and a12 + b12 6= 0.

• a10 = b10 = 0 and a20 + b20 6= 0 and a11 + b11 6= 0.
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4.1.1 Singular extremals

We consider now the properties of singular extremals and their support.

Proposition 17. Under the generic assumption that ∆A, ∆1 and ∆2 are submanifolds transversal
by pair then

1. The support of a ui-singular is included in ∆i.

2. A u1-singular extremal can follow ∆1 being optimal only if, at each point q(t) of the singular,
G1(q(t)) and G2(q(t)) are pointing on the same side of ∆1 (or one is tangent to ∆1) where
f1 > 0.

3. A u2-singular extremal can follow ∆2 being optimal only if, at each point q(t) of the singular,
G1(q(t)) and −G2(q(t)) are pointing on the same side of ∆2 (or one is tangent to ∆2) where
f2 > 0.

4. Let consider a ui-singular q(.) satisfying 2 or 3. If it does not intersect ∆A and if at each
time G1(q(t)) and G2(q(t)) are not tangent to ∆i then q(.) is a local minimizer that is at each
time t exists ε such that q(.) realizes the SF-distance between q(t1) and q(t2) for any t1 and
t2 in ]t− ε, t+ ε[.

Proof.

1. Outside ∆A∪∆i, φi has isolated zero hence any ui-singular should live in ∆A∪∆i. Moreover,
since generically the set of points of ∆A where the dynamics is tangent to ∆A is isolated, a
ui-singular crosses ∆A only at isolated times, which are consequently also in ∆i.

2. Same proof as point 3.

3. If a u2-singular q(.) has u1 = 1 then its speed is F1(q(t)) + u2(t)F2(q(t)) which is tangent to
∆2. But u2 ∈ [−1, 1] hence either |u2(t)| = 1 and G1 or G2 are tangent to ∆2 or |u2(t)| < 1
and G2(q(t)) = F1(q(t))−F2(q(t)) and G1(q(t)) = F1(q(t)) +F2(q(t)) point on opposite side.

Now, assume that f2 < 0 in the domain where points G1(q(t)). With the expression given
before, this corresponds to (a10 +b10 = 0 and a20 +b20 > 0) or (a10 +b10 = 0 and a20 +b20 = 0
and a30 + b30 > 0). Thanks to the previous results, if the extremal leave ∆2 at time t0 it
starts by a bang. Assume for example that this bang follows G1. Then during this bang

φ̇2 = u1φ3 = u1(f2φ1 − f1φ2)

and hence
φ̈2 = u1(∂xf2φ1 + f2φ̇1 − ∂xf1φ2 − f1φ̇2)

which implies φ̈2(t0) = u1(t0)∂xf2(q(t0))φ1(t0) = ∂xf2(q(t0)) since u1(t0) = 1 and φ1(t0) = 1.
But if a20 + b20 > 0 then ∂xf2(q(t0)) = −(a20 + b20) + O(t0) < 0. Then, since φ2(t0) =
φ̇2(t0) = 0 and φ̈2(t0) < 0, for t just after t0 φ2(t) < 0 which is in contradiction with the fact
that the trajectory follows G1 just after t0.

The same proof can be done for the other cases: a u2-singular with u1 = 1 and switching to
G2, or u2- singulars with u1 = −1. Hence in this case, no extremal following ∆2 can leave
∆2.
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Now, assume that ∆2 is such that G1 and −G2 point in the same side where f2 < 0 at q and
that the u2-singular is optimal. Consider the normal coordinate system centered at q and the
domain R+×R+. One can show, with the previous analysis, that the only possible extremals
issued form q and entering the domain are the singular arc following ∆2 and the bang-bang
extremals starting with symbol [[G1, G2]] or [[G2, G1]].

Let us prove that these last ones do not switch again before crossing ∆2. If an extremal starts
with [[G2, G1]], switching for the first time at t = ε and hence at y = ε then along the second
bang x = t− ε, y = ε, λ ≡ (1, 1) and one computes easily that for t > ε

φ2(t) = −1

2
((a20 + b20)(t− ε)2 + (a11 + b11)(t− ε)ε+ o2(ε, (t− ε))).

If (a20 + b20)(a11 + b11) < 0 then the second time of switch satisfies t− ε = −a11+b11
a20+b20

ε+ o(ε)

and hence the second switching locus has the form (−a11+b11
a20+b20

ε, ε). But ∆2 satisfies that

x = −1
2
a11+b11
a20+b20

y + o(y) and hence the second bang crosses ∆2 before ending. In the case
a20 + b20 = 0 hence (a11 − b11)(a30 + b30) < 0 and one shows that the second switching locus

has the form (
√
−a11+b11
a30+b30

ε, ε) and ∆2 satisfies that x =
√
− a11+b11

3(a30+b30)y+ o(y) hence again the

second bang crosses ∆2 before ending. The same kind of computations show the same result
when a11 + b11 = 0 and (a20 + b20)(a12 + b12) < 0. The same holds for extremal starting by
[[G1, G2]].

Finally, the different extremals with symbol [[G1, G2]] do not intersect each other after their
first switch hence they cannot lose optimality by crossing each other. Idem for those with
symbol [[G2, G1]]. Hence they can lose optimality by crossing the singular extremal or ex-
tremals with the other symbol. Anyway, this implies that optimal extremals are coming back
to ∆2. But this is not possible since in this case an extremal with symbol [[G1, G2, S

+
2 ]] would

exist which is not the case since the switching is coming strictly after the crossing with ∆2.

Hence, the u2-singular is not optimal.

4. It is a consequence of the analysis coming further but we can give a quick idea: in this case,
if q is a point on ∆1 and if we construct normal coordinates centered at q, then the only local
extremals entering the domains {xy < 0} are the one starting by a u1-singular and switching
or not locally only once to u1 = ±1. Hence the u1-singular is locally optimal.

Remark 18. For what concerns the point 4, assume that q is a point where G1 or G2 is tangent to
∆1 and ∆1 ∩ {xy < 0} is such that at each point G1 and G2 are transverse to ∆1 and point in the
domain {f1 > 0}. Then, starting from q, a u1-singular can run on ∆1 ∩ {xy < 0} and is locally
optimal. The same arguments than those exposed at point 4 work.

Definition 19. If a connected part of ∆1 (resp. ∆2) is such that at each point G1 and G2 (resp.
G1 and −G2) point on the same side where f1 > 0 (resp. f2 > 0), it is called a turnpike. If it does
not at each point, it is called an anti-turnpike (see [13]).

Remark 20. Along a ui-singular extremal the control ui is completely determined by the fact that
the dynamics should be tangent to ∆i.
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4.1.2 Optimal synthesis in the domain R+ × R+

Let consider a point q and the normal coordinate system (x, y) centered at q. The dynamics entering
R∗+ × R∗+ is with u1 ≡ 1 since u2 switches (Propositions 14 and 15). Three different cases can be
identified.
1st. case. ∆2∩(R+×R+ \{0}) is empty locally. No u2-singular enters the domain. It corresponds
to the case (NF1a) where |a10| 6= |b10| and to the cases (NF1c) and (NF1d) where a10 + b10 = 0 and

• (a20 + b20)(a11 + b11) > 0,

• or a20 + b20 = 0 and (a30 + b30)(a11 + b11) > 0,

• or a11 + b11 = 0 and (a20 + b20)(a12 + b12) > 0.

Only one u2-switch can occur along the extremal. One has f2 > 0 in the domain if

• a10 + b10 < 0,

• or a10 + b10 = 0 and a20 + b20 < 0,

• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 < 0,

and in this case the possible extremals of the domain have symbol [[G1]] or [[G2]] or [[G2, G1]]. One
has f2 < 0 in the domain if

• a10 + b10 > 0,

• or a10 + b10 = 0 and a20 + b20 > 0,

• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 > 0.

and in this case the possible extremals of the domain have symbol [[G1]] or [[G2]] or [[G1, G2]].
In this case 1, the picture of the synthesis is given in the Figure 1.

G2

G1

G2

f2 > 0 f2 < 0

G1

Figure 1: The syntheses when f2 6= 0 in (R+ × R+) \ {0}

2nd. case. ∆2 ∩ (R∗+ × R∗+) is not empty locally and is a turnpike. It corresponds to the cases
where a10 + b10 = 0 and

• a20 + b20 < 0 and a11 + b11 > 0,

• or a20 + b20 = 0 and a11 + b11 > 0 and a30 + b30 < 0,
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• or a11 + b11 = 0 and a20 + b20 < 0 and a12 + b12 > 0.

Then f2 > 0 locally along {x > 0, y = 0} and f2 < 0 along {x = 0, y > 0}. Hence no bang-bang
extremal with symbol [[G1, G2]] or [[G2, G1]] exists and any extremal entering the domain starts
with a u2-singular arc. If it switches to G1 then it enters the domain (R∗+ × R∗+) ∩ {f2 > 0} which
is invariant by G1 hence it does not switch anymore. If it switches to G2 it enters the domain
(R∗+ × R∗+) ∩ {f2 < 0} which is invariant by G2 hence it does not switch anymore.

As a consequence, the only possible symbols for extremals are [[G1]], [[G2]], [[S+
2 , G1]] and

[[S+
2 , G2]].
In this case 2, the picture of the synthesis is given in the Figure 2.

∆2

G2 G2

a20 + b20 < 0 and a11 + b11 > 0

G1

G2

G1 G1

a11 + b11 = 0 and a20 + b20 < 0a20 + b20 = 0 and a11 + b11 > 0
and a12 + b12 > 0and a30 + b30 < 0

∆2

∆2

Figure 2: The syntheses when a10 + b10 = 0 and ∆2 is a turnpike

3rd. case. ∆2∩ (R∗+×R∗+) is not empty locally and is a anti-turnpike. It corresponds to the cases
where a10 + b10 = 0 and

• a20 + b20 > 0 and a11 + b11 < 0,

• or a20 + b20 = 0 and a11 + b11 < 0 and a30 + b30 > 0,

• or a11 + b11 = 0 and a20 + b20 > 0 and a12 + b12 < 0.

Then, as seen in Proposition 17, no u2-singular is extremal. hence the possible beginning of symbols
entering the domain are [[G1, G2]] and [[G2, G1]]. In order to complete the synthesis in this case,
we have to compute the cut time and cut locus. In fact the two kind of extremals intersect before
their second switching time. Let prove it.

Let fix an ε2 > 0 and consider at time t > ε2 the extremal with symbol [[G2, G1]] switching at
time ε2. One computes easily that x(t) = t − ε2 and y(t) = ε2. For an ε1 > 0 and the extremal
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with symbol [[G1, G2]] switching at time ε1, one gets by integrating the equations that

x(t) = ε1 + a10ε1(t− ε1) + a20ε
2
1(t− ε1) +

1

2
(a2

10 + a11)ε1(t− ε1)2

+a30ε
3
1(t− ε1) +

1

2
(3a10a20 + a21 + a11b10)ε21(t− ε1)2

+
1

3
(
1

2
a3

10 +
3

2
a10a11 + a12)ε1(t− ε1)3

y(t) = (t− ε1) + b10ε1(t− ε1) + b20ε
2
1(t− ε1) +

1

2
(a10b10 + b11)ε1(t− ε1)2

+b30ε
3
1(t− ε1) +

1

2
(a20b10 + b10b11 + 2a10b20 + b21)ε21(t− ε1)2

+
1

3
(
1

2
(a2

10 + a11)b10 + a10b11 + b12)ε1(t− ε1)3

Let assume first that a20 + b20 > 0 and a11 + b11 < 0. Along the first front (depending on ε2)
x+ y = t when along the second x+ y = t+ ε1(t− ε1)((a20 + b20)ε1 + 1

2(a11 + b11) hence they are
transverse at

ε1 =
t

1− 2(a20+b20)
a11+b11

and they intersect at a point such that y = −2a20−b20
a11−b11

x + o(x). As seen previously, the switching

locus for extremals with symbol [[G2, G1]] satisfies y = −a20−b20
a11−b11

x+o(x) hence it stops to be optimal
before switching. The same holds true for the extremals with symbol [[G1, G2]]. Finally the cut
locus satisfies

ycut = −2
a20 − b20

a11 − b11
xcut + o(xcut)

and is tangent to ∆2.
The same computations can be done when G1 or G2 is tangent to ∆2. Then one computes that

the extremals lose optimality by crossing the cut before the second switch and that

• if a20 + b20 = 0 then

ycut = −3
a30 + b30

a11 + b11
x2
cut + o(x2

cut),

• if a11 + b11 = 0 then

xcut = −1

2

a12 + b12

a20 + b20
y2
cut + o(y2

cut).

In all cases the cut is tangent to ∆2 and the contact is of order 2 when (a20 + b20)(a11 + b11) = 0.
In this case 3, the picture of the synthesis is given in the Figure 3.

Remark 21. Using the symmetries presented in section 3.7, one can obtain from the optimal syn-
thesis in the domain R+ × R+ the optimal synthesis in the three other domains.
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and a12 + b12 < 0

G2 G2

G1

G2

G1 G1

Cut locus

Cut locus
Cut locus

a20 + b20 > 0 and a11 + b11 < 0 a20 + b20 = 0 and a11 + b11 < 0
and a30 + b30 > 0

a11 + b11 = 0 and a20 + b20 > 0

Figure 3: The syntheses when a10 + b10 = 0 and ∆2 is not a turnpike

4.1.3 Optimal synthesis in the domain R− × R−

The dynamics entering R∗−×R∗− is with u1 ≡ −1 since u2 switches (Propositions 14 and 15). Three
different cases can be identified.
1st. case. ∆2∩(R−×R− \{0}) is empty locally. No u2-singular enters the domain. It corresponds
to the case (NF1a) where |a10| 6= |b10| and to the cases (NF1c) and (NF1d) where a10 + b10 = 0 and

• (a20 + b20)(a11 + b11) > 0,

• or a20 + b20 = 0 and (a30 + b30)(a11 + b11) < 0,

• or a11 + b11 = 0 and (a20 + b20)(a12 + b12) < 0.

Only one u2-switch can occur along the extremal. One has f2 > 0 in the domain if

• a10 + b10 < 0,

• or a10 + b10 = 0 and a20 + b20 > 0,

• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 > 0,

and in this case the possible extremals of the domain have symbol [[−G1]] or [[−G2]] or [[−G1,−G2]].
One has f2 < 0 in the domain if

• a10 + b10 > 0,

• or a10 + b10 = 0 and a20 + b20 < 0,

• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 < 0.

and in this case the possible extremals of the domain have symbol [[−G1]] or [[−G2]] or [[−G2,−G1]].

2nd. case. ∆2 ∩ (R∗− × R∗−) is not empty locally and is a turnpike. It corresponds to the cases
where a10 + b10 = 0 and

• a20 + b20 < 0 and a11 + b11 > 0,

• or a20 + b20 = 0 and a11 + b11 > 0 and a30 + b30 > 0,

• or a11 + b11 = 0 and a20 + b20 < 0 and a12 + b12 < 0.
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In this case, the possible symbols for extremals are [[−G1]], [[−G2]], [[S−2 ,−G1]] and [[S−2 ,−G2]].

3rd. case. ∆2∩ (R∗−×R∗−) is not empty locally and is a anti-turnpike. It corresponds to the cases
where a10 + b10 = 0 and

• a20 + b20 > 0 and a11 + b11 < 0,

• or a20 + b20 = 0 and a11 + b11 < 0 and a30 + b30 < 0,

• or a11 + b11 = 0 and a20 + b20 > 0 and a12 + b12 > 0.

Then the only optimal symbols are [[−G1]], [[−G2]], [[−G1,−G2]] and [[−G2,−G1]]. Moreover

• if a20 + b20 > 0 and a11 + b11 < 0, the cut locus satisfies

ycut = −2
a20 + b20

a11 + b11
xcut + o(xcut),

• if a20 + b20 = 0 then

ycut = −3
a30 + b30

a11 + b11
x2
cut + o(x2

cut),

• if a11 + b11 = 0 then

xcut = −1

2

a12 + b12

a20 + b20
y2
cut + o(y2

cut).

In all cases the cut is tangent to ∆2 and the contact is of order 2 when (a20 + b20)(a11 + b11) = 0.

4.1.4 Optimal synthesis in the domain R+ × R−

The dynamics entering R∗+ × R∗− is with u2 ≡ 1 since u1 switches (Propositions 14 and 15). Three
different cases can be identified.
1st. case. ∆1∩(R+×R− \{0}) is empty locally. No u1-singular enters the domain. It corresponds
to the case (NF1a) where |a10| 6= |b10| and to the cases (NF1b) and (NF1d) where a10− b10 = 0 and

• (a20 − b20)(a11 − b11) < 0,

• or a20 − b20 = 0 and (a30 − b30)(a11 − b11) < 0,

• or a11 − b11 = 0 and (a20 − b20)(a12 − b12) > 0.

Only one u1-switch can occur along the extremal. One has f1 > 0 in the domain if

• a10 − b10 > 0,

• or a10 − b10 = 0 and a20 − b20 > 0,

• or a10 − b10 = 0 and a20 − b20 = 0 and a11 + b11 < 0,

and in this case the possible extremals of the domain have symbol [[G1]] or [[−G2]] or [[−G2, G1]].
One has f1 < 0 in the domain if

• a10 − b10 < 0,
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• or a10 − b10 = 0 and a20 − b20 < 0,

• or a10 − b10 = 0 and a20 − b20 = 0 and a11 − b11 > 0.

and in this case the possible extremals of the domain have symbol [[G1]] or [[−G2]] or [[G1,−G2]].

2nd. case. ∆1 ∩ (R∗+ × R∗−) is not empty locally and is a turnpike. It corresponds to the cases
where a10 − b10 = 0 and

• a20 − b20 > 0 and a11 − b11 > 0,

• or a20 − b20 = 0 and a11 − b11 > 0 and a30 − b30 > 0,

• or a11 − b11 = 0 and a20 − b20 > 0 and a12 − b12 < 0.

In this case, the possible symbols for extremals are [[G1]], [[−G2]], [[S+
1 , G1]] and [[S+

1 ,−G2]].

3rd. case. ∆1∩ (R∗+×R∗−) is not empty locally and is a anti-turnpike. It corresponds to the cases
where a10 − b10 = 0 and

• a20 − b20 < 0 and a11 − b11 < 0,

• or a20 − b20 = 0 and a11 − b11 < 0 and a30 − b30 < 0,

• or a11 − b11 = 0 and a20 − b20 < 0 and a12 − b12 > 0.

Then the only optimal symbols are [[G1]], [[−G2]], [[G1,−G2]] and [[−G2, G1]]. Moreover

• if a20 − b20 < 0 and a11 + b11 < 0, the cut locus satisfies

ycut = −2
a20 − b20

a11 − b11
xcut + o(xcut),

• if a20 − b20 = 0 then

ycut = −3
a30 − b30

a11 − b11
x2
cut + o(x2

cut),

• if a11 − b11 = 0 then

xcut = −1

2

a12 − b12

a20 − b20
y2
cut + o(y2

cut).

In all cases the cut is tangent to ∆1 and the contact is of order 2 when (a20 − b20)(a11 − b11) = 0.

4.1.5 Optimal synthesis in the domain R− × R+

The dynamics entering R∗−×R∗+ is with u2 ≡ −1 since u1 switches (Propositions 14 and 15). Three
different cases can be identified.
1st. case. ∆1∩(R−×R+ \{0}) is empty locally. No u1-singular enters the domain. It corresponds
to the case (NF1a) where |a10| 6= |b10| and to the cases (NF1b) and (NF1d) where a10− b10 = 0 and

• (a20 − b20)(a11 − b11) < 0,

• or a20 − b20 = 0 and (a30 − b30)(a11 − b11) > 0,
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• or a11 − b11 = 0 and (a20 − b20)(a12 − b12) < 0.

Only one u1-switch can occur along the extremal. One has f1 > 0 in the domain if

• a10 − b10 > 0,

• or a10 − b10 = 0 and a20 − b20 < 0,

• or a10 − b10 = 0 and a20 − b20 = 0 and a11 + b11 > 0,

and in this case the possible extremals of the domain have symbol [[−G1]] or [[G2]] or [[−G1, G2]].
One has f1 < 0 in the domain if

• a10 − b10 < 0,

• or a10 − b10 = 0 and a20 − b20 > 0,

• or a10 − b10 = 0 and a20 − b20 = 0 and a11 − b11 < 0,

and in this case the possible extremals of the domain have symbol [[−G1]] or [[G2]] or [[G2,−G1]].

2nd. case. ∆1 ∩ (R∗− × R∗+) is not empty locally and is a turnpike. It corresponds to the cases
where a10 − b10 = 0 and

• a20 − b20 > 0 and a11 − b11 > 0,

• or a20 − b20 = 0 and a11 − b11 > 0 and a30 − b30 < 0,

• or a11 − b11 = 0 and a20 − b20 > 0 and a12 − b12 > 0.

In this case, the possible symbols for extremals are [[−G1]], [[G2]], [[S−1 ,−G1]] and [[S−1 , G2]].

3rd. case. ∆1∩ (R∗−×R∗+) is not empty locally and is a anti-turnpike. It corresponds to the cases
where a10 − b10 = 0 and

• a20 − b20 < 0 and a11 − b11 < 0,

• or a20 − b20 = 0 and a11 − b11 < 0 and a30 − b30 > 0,

• or a11 − b11 = 0 and a20 − b20 < 0 and a12 − b12 < 0.

Then the only optimal symbols are [[−G1]], [[G2]], [[−G1, G2]] and [[G2,−G1]]. Moreover

• if a20 − b20 < 0 and a11 + b11 < 0, the cut locus satisfies

ycut = −2
a20 − b20

a11 − b11
xcut + o(xcut),

• if a20 − b20 = 0 then

ycut = −3
a30 − b30

a11 − b11
x2
cut + o(x2

cut),

• if a11 − b11 = 0 then

xcut = −1

2

a12 − b12

a20 − b20
y2
cut + o(y2

cut).

In all cases the cut is tangent to ∆1 and the contact is of order 2 when (a20 − b20)(a11 − b11) = 0.
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4.2 (NF2a) case

Recall that the normal form (NF2a) gives

G1(x, y) = ∂x, G2(x, y) = (a0 + a10x+ o1(x, y))∂x + (x+ b20x
2 + o(x, y))∂y,

with 0 ≤ a0 < 1.
Such a point is neither in ∆1 nor ∆2. Hence no singular extremal will appear in the study of

the local synthesis.
One can compute easily that, for any extremal starting at 0, φ1(0) = 1

2λx(0)(1 + a0) and

φ2(0) = 1
2λx(0)(1− a0). With H = 0 it gives |λx(0)| = 1. Hence, since φ̇1 = −u2φ3 and φ̇2 = u1φ3,

if we want to study extremals that switch in short time, we need to consider φ3 large that is |λy|
large.

Moreover, since along an extremal issued from 0 |ẋ(t)| ≤ 1 for t small, one gets easily that
|x(t)| ≤ t and |y(t)| ≤ t2 for t small enough. Hence φ1(t) = 1+a0

2 λx(0) + x(t)λy(0) + o(t, x(t)λy(0))
and φ2(t) = 1−a0

2 λx(0) + x(t)λy(t) + o(t, x(t)λy(t)). This implies that if one wants to consider
an extremal switching at time τ small, he should consider initial conditions λy(0) ∼ 1

τ . Inversing
the point of view, if we consider an initial condition λy(0) = 1

r0
with r0 small, the switching time

should be of order 1 in r0. This motivates the following change of coordinates on the fibers of the
cotangent: r = 1

λy
, p = rλx and the change of time s = t/r.

4.2.1 equations of the dynamics

With the new variables (x, y, p, r) and the new time s, the Hamiltonian equations become

x′ = r
∂H

∂λx
(x, y, p,−1) ,

y′ = r
∂H

∂λy
(x, y, p,−1) ,

p′ = −r∂H
∂x

(x, y, p,−1) + rp
∂H

∂y
(x, y, p,−1) ,

r′ = r2∂H

∂y
(x, y, p,−1) .

Now, looking for the solutions as taylor series in r0, that is under the form

x(r0, s) = x1(s)r0 + x2(s)r2
0 + o(r2

0), p(r0, s) = p1(s)r0 + p2(s)r2
0 + o(r2

0),
y(r0, s) = y2(s)r2

0 + y3(s)r3
0 + o(r3

0), r(r0, s) = r0 + r2(s)r2
0 + o(r2

0),

one finds the equations

x′1 = u1+u2
2 + u1−u2

2 a0, x′2 = u1−u2
2 a10x1,

y′2 = u1−u2
4 x1, y′3 = u1−u2

2 (b20x
2
1 + x2),

p′1 = −u1−u2
2 x1, p′2 = −u1−u2

2 (a10p1 + 2b20x1),
r′2 = 0,
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4.2.2 Computation of the jets

Using these equations, we are able to compute the jets with respect to r0 of four types of extremals:
depending on the sign of p(0) = ±1 and of r0. For each of these types we can compute the functions
x1, x2, y2, y3, p1, p2 and r2 ≡ 0 of the variable s for the first bang. We can then compute the jets
of φ1 and φ2 for the first bang and look for the first switching time under the form s1 = s10 + s11r0

and then repeat the procedure for the second bang and so on. Finally, if we denote δp = sign(p(0))
and δr = sign(r0) then the controls during the first bang are u1 = u2 = δp. The first time of switch
is

s1 = δr(1− δra0)− δp(1− δra0)(δra10 + b20 − δra0b20)r0 + o(r0)

and corresponds to φ2(s1) = 0 if δr = 1 or φ1(s1) = 0 if δr = −1. The second bang corresponds to
u1 = δpδr and u2 = −δpδr and the second switch is at

s2 = δr(3− δra0)− δp((1− δra0)(δra10 + b20 − δra0b20) + 4b20)r0 + o(r0)

where φ1(s2) = 0 if δr = 1 and φ2(s2) = 0 if δr = −1. At this time

x(s2) = δp(δr + a0)r0 − δr(δr + a0)(−δra10 + b20 + δra0b20)r2
0 + o(r2

0),

y(s2) = 2δrr
2
0 − δp

4

3
(−a0a10 + 3b20 + a2

0b20)r3
0 + o(r3

0).

The third bang corresponds to u1 = u2 = −1 if δp = 1 and to u1 = u2 = 1 if δp = −1. The third
switching time satisfies s3 = δr(5− δra0) +O(r0) and the corresponding time t3 is larger than the
cut time as we will see later.

Let us analyze a little the situation in terms of cut locus for these extremals: if we consider
the extremals with δp = δr = 1, they all start following G1, without loosing optimality. Then they
switch to G2 at t = r0(1 − a0) + o(r0). During this second bang, they do not intersect one each
other since they are all following G2 with a different initial condition on {x > 0, y = 0}. Then they
switch to −G1 but at a different y hence again they cannot intersect. The loss of optimality cannot
come from an intersection with extremals with δr = −1 since these last one live in {y ≤ 0}. As
we will see in the following, the loss of optimality will come from the intersection with an extremal
with −δp = δr = 1 during the third bang. Of course, the same occurs for extremals with δr = −1.

Let fix a small parameter ρ > 0. Since the dynamics during the third bang of all the extremals
is given by ±G1 = ±∂x, y is constant during these third bangs. Hence, for the extremals with
δr = 1, we can look for the r0, as a jet in ρ, such that y = 2ρ2 during the third bang, and for the
extremals with δr = −1, we can look for the r0, as a jet in ρ, such that y = −2ρ2 during the third
bang. The result is

r0 = δrρ+ δrδp
1

3
(−a0a10 + 3b20 + a2

0b20)ρ2 + o(ρ2)

which allows to compute

t2 = (3− δra0)ρ− δrδp
3a10 − a2

0a10 + δr6b20 − 3a0b20 + a3
0b20

3
ρ2 + o(ρ2).

Hence we can compute x(t) = x(t2) + (t− t2) for this r0 that is

x(t) = −δpt+ δp4ρ−
2

3
(−a0a10 + 3b20 + a2

0b20)ρ2 + o(ρ2).
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We are now in situation to complete the computation of the jet of the cut locus: an extremal
intersects an extremal of same length at the time tcut = 4ρ+o(ρ2) which is less than t3 = (5−δra0)ρ
hence tcut is the cut time. When δr = 1 the cut point satisfies

xcut = −2

3
(−a0a10 + 3b20 + a2

0b20)ρ2 + o(ρ2), ycut = 2ρ2,

and when δr = −1 the cut point satisfies

xcut = −2

3
(−a0a10 + 3b20 + a2

0b20)ρ2 + o(ρ2), ycut = −2ρ2.

Finally, if one wants to describe the sphere at time t small, one have that the first switching
time is

t1 = δr(1− δra0)r0 − δp(1− δra0)(δra10 + b20 − δra0b20)r2
0 + o(r2

0)

and hence, at t small, the r0 corresponding to a first switching point is

r1 =
t

δr(1− δra0)
+ δrδp

δra10 + b20(1− δra0)

(1− a0)2
t2 + o(t2).

The second switching time is

t2 = δr(3− δra0)r0 − δp((1− δra0)(δra10 + b20 − δra0b20) + 4b20)r2
0 + o(r2

0)

which implies that, at t small, the r0 corresponding to a second switching point is

r2 =
t

δr(3− δra0)
+ δp

(1− δra0)(δra10 + b20 − δra0b20) + 4b20

δr(3− δra0)3
t2 + o(t2).

And the cut time is

tcut = 4δr(r0 − δrδp
1

3
(−a0a10 + 3b20 + a2

0b20)r2
0) + o(r2

0)

which implies that at t small the r0 corresponding to a cut point is

rcut =
δr
4

(t+
δp
12

(−a0a10 + 3b20 + a2
0b20)t2) + o(t2).

4.3 (NF2b) case

Recall that the normal form (NF2b) gives G1(x, y) = ∂x, and

G2(x, y) = (1 + a10x+ a01y + a20x
2 + o2(x, y))∂x + (x+ b20x

2 + b30x
3 + o3(x, y))∂y.

In this case, the extremals with initial condition |λy(0)| >> 1 are the limit when a0 goes to 1 of
the extremal presented in the case (NF2a). If λy(0) >> 1 then the symbol starts with [[G2,−G1]]
or with [[−G2, G1]] and if −λy(0) >> 1 then the symbol starts with [[G1,−G2]] or with [[−G1, G2]].

But F2(0) = 0 then for all extremals φ2(0) = 0. Hence, an extremal may also, depending on
the invariants, have symbol starting by [[G2, G1]], [[G1, G2]], [[S+

2 , G1]] or [[S+
2 , G2]] if λx(0) = 1,

and, [[−G2,−G1]], [[−G1,−G2]], [[S−2 ,−G1]] or [[S−2 ,−G2]] if λx(0) = −1.
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Second switching locus

Second switching locus

∆A

Cut locus

Cut locus

Figure 4: The optimal synthesis in the (NF2a) case

If λx(0) = 1 then at least for small time u1(t) = 1 and x(t) = t + o(t) and y(t) = o(t). Then,

computing φ2 one finds φ2(t) = −λx(t)a10
2 − λy(t)

x(t)
2 + o(t) = −(

a10+λy(0)
2 )t + o(t). Hence if

λy(0) > −a10 then, since φ2(0) < 0 for small time, the extremal starts by a bang following G2. If
λy(0) < −a10 then φ2(0) > 0 for small time and the extremal starts by a bang following G1.

If λx(0) = −1 then at least for small time u1(t) = −1 and x(t) = −t + o(t) and y(t) = o(t).

Then φ2(t) = (
a10−λy(0)

2 )t + o(t). Hence if λy(0) > a10 then, since φ2(0) < 0 for small time, the
extremal starts by a bang following −G1. If λy(0) < a10 then φ2(0) > 0 for small time and the
extremal starts by a bang following −G2.

In coordinates, one can compute that

det(F2, [F1, F2])(x, y) =
1

4
((a10b20 − a20)x2 + a01y) + o2(x, y)

where x has weight 1 and y has weight 2. Since generically at such points (which are isolated
points) a01 6= 0 then an equation for ∆2 is given by

y =
a20 − a10b20

a01
x2 + o(x2).

Remark that generically a20−a10b20
a01

is neither 0 nor 1
2 . Moreover

f2(x, y) =
det(F2, [F1, F2])(x, y)

det(F2, F1)(x, y)
=

((a10b20 − a20)x2 + a01y) + o2(x, y)

2x
.

Recall that an equation of the support of the integral curve of G1 passing by 0 is y = 0 and
that an equation for the support of the integral curve of G2 passing by 0 is y = x2

2 + o(x2).

If a20−a10b20
a01

< 0 or if a20−a10b20
a01

> 1
2 then ∆2 does not enter the domain D = {x > 0, 0 < y < x2

2 }
and along it G1 and G2 point on the same side of ∆2 hence ∆2 is not a turnpike. In these cases:
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• if a10b20 − a20 > 0 then f2 > 0 in D and the new extremals, that are not described as limit
of the case NF2a, have symbol [[G2, G1]].

• if a10b20 − a20 < 0 then f2 < 0 in D and the new extremals, that are not described as limit
of the case NF2a, have symbol [[G1, G2]].

If a20−a10b20
a01

> 0 and a20−a10b20
a01

< 1
2 then ∆2 enters D and along it G1 and G2 point on opposite

sides of ∆2. In this case:

• if a10b20 − a20 > 0 then, along ∆2 ∩D, G1 points in direction of f2 > 0 and ∆2 is a turnpike.
Then, the only extremals entering the domain D start with a singular arc and have symbols
[[S+

2 ]], [[S+
2 , G1]] or [[S+

2 , G2]].

• if a10b20 − a20 < 0 then, along ∆2 ∩ D, G1 points in direction of f2 < 0 and ∆2 is not a
turnpike. In this case the symbols start with [[G1, G2]] and [[G2, G1]]. One can compute,
with the same techniques that in section 4.2.2, the switching times and the second switching
locus for extremals that enter the domain D, that is for extremal with initial condition
λy(0) = −a10 +δε with ε > 0 small and δ = ±1. If δ < 0 then the symbol is [[G1, G2, G1]] and
the switching times are t1 = ε

a20−a10b20 and t2 = t1 + 2ε
a01−2a20+2a10b20 , the second switching

locus being

x(ε) =
a01ε

(a20 − a10b20)(a01 − 2a20 + 2a10b20)
, y(ε) =

2(a01 − a20 + a10b20)ε2

(a20 − a10b20)(a01 − 2a20 + 2a10b20)2
.

If δ > 0 then the symbol is [[G2, G1, G2]] and the switching times are t1 = 2ε
a01−2a20+2a10b20

and t2 = t1 + ε
a20−a10b20 , the second switching locus being

x(ε) =
a01ε

(a20 − a10b20)(a01 − 2a20 + 2a10b20)
, y(ε) =

2ε2

(a01 − 2a20 + 2a10b20)2
.

One prove easily that all these extremals cut ∆2 before the second switching. Moreover they
cannot be optimal after the second switching (by considerations on the jacobian). Hence the
only optimal symbols entering the domain D are [[G1, G2]] and [[G2, G1]].

Pictures for the (NF2b) case are in Figures 5 and 6.

4.4 (NF3) case

Recall that in the (NF3) case, x has weight 1 and y has weight 3. Hence we can write

G1(x, y) = ∂x G2(x, y) = (a0 + a10x+ o(x, y))∂x +

(
x2

2
+ b01y + b30x

3 + o3(x, y)

)
∂y

with b0,1 6= 0 and 0 < a0 < 1, where ok(x, y) has the meaning given in subsection 3.5. As in the
(NF2b) case, for any extremal starting at 0,

φ1(0) =
1

2
λx(0)(1 + a0) and φ2(0) =

1

2
λx(0)(1− a0).

And for the same reasons, if we want to study extremals that switch in short time, we need to
consider |λy| large.
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If a10b20 − a20 > 0

Cut locus
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∆2
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If a10b20 − a20 < 0
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∆A

Figure 5: (NF2b) case: when a20−a10b20
a01

> 0 and a20−a10b20
a01

< 1
2

If a10b20 − a20 > 0

Cut locus

G2

G1

Cut locus
∆A

If a10b20 − a20 < 0

Cut locus

G2

G1

Cut locus
∆A

Figure 6: (NF2b) case: when a20−a10b20
a01

< 0 or a20−a10b20
a01

> 1
2

The set of initial condition is {(λx(0), λy(0)) | λx(0) = ±1}. We parameterize the upper part of
this set by setting λy(0) = 1

r2
0

and the lower part by λy(0) = − 1
r2
0
.

As explained in subsection 3.4, in order to compute extremals with λy(0) >> 1 we make the
change of coordinates r = 1√

λy
, X = x

r , Y = y
r3 and the change of time s = t

r .

Now, looking for the solutions as taylor series in r0, that is under the form

X(r0, s) = X0(s) + r0X1(s) + o(r0), λx(r0, s) = λx0(s) + r0λx1(s) + o(r0),
Y (r0, s) = Y0(s) + r0Y1(s) + o(r0), r(r0, s) = r0 + r2

0 r2(s) + o2(r0)

one finds the equations

X ′0(s) = 1
2(u1 + u2) + a0

2 (u1 − u2), X ′1(s) = (u1−u2)
4 (2a10 − b01)X0(s),

Y ′0(s) = 1
4(u1 − u2)X2

0 (s), Y ′1(s) = (u1−u2)
4 (2b30X

3
0 (s) + 2X0(s)X1(s)− b01Y0(s)),

λ′x0(s) = −1
2(u1 − u2)X0(s), λ′x1(s) = − (u1−u2)

2 (a10λx0(s) + 3b30X
2
0 (s) +X1(s)),

r′2(s) = b01
4 (u1 − u2),
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For an initial condition λx(0) = 1, one find φ1(0) > 0 and φ2(0) > 0, hence u1(0) = u2(0) = 1.
One can integrate the equations and look for the first switching time as a Taylor series s1 =
s1

0 + r0s
1
1 + o(r0) and compute φ2(r0, s

1
0 + r0s

1
1 + o(r0)) in order to compute

s1
0 =
√

2
√

1− a0 and s1
1 = −a10 − 2b30(1− a0).

At the switching time

X(s1) =
√

2
√

1− a0− (a10 + 2b30)(1− a0)r0, λx(s1) = 1,
Y (s1) = 0, r(s1) = r0.

After this first switch φ1(0) > 0 and φ2(0) < 0, hence u1(0) = 1 and u2(0) = −1. We can compute
and look for the next switching time and one finds that φ1 goes to 0 at s2 = s2

0 + r0s
2
1 + o(r0) with

s2
0 = s1

0 +
√

2

√
1 + a0 −

√
1− a0

a0
, s2

1 = s1
1 +

b01((1− a0)
3
2 −
√

1 + a0(1− 2a0))− 12b30a
2
0

√
1 + a0

3a2
0

√
1 + a0

.

At the second switching time

X(s2) =
(√

2
√

1 + a0

)
+

(
3a10a0

√
1+a0+b01((1−a0)

3
2−(1+a0)

3
2 )−6b30a0(1+a0)

3
2

3a0
√

1+a0

)
r0,

Y (s2) =

(√
2((1+a0)

3
2−(1−a0)

3
2 )

3a0

)
−
(

2b01(1−a0+a2
0−(1−a0)

3
2
√

1+a0)+12a2
0b30

3a2
0

)
r0,

λx(s2) = −1,

r(s2) = r0 +
(

(
√

1+a0−
√

1−a0)b01√
2a0

)
r2

0.

After this second switch, φ1(0) < 0 and φ2(0) < 0, hence u1(0) = u2(0) = −1. One can compute
the third switch as being s3 = s3

0 + r0s
3
1 + o(r0) with

s3
0 = s2

0 + 2
√

2
√

1 + a0, s3
1 = s2

1 −
2((1 + a0)

3
2 − (1− a0)

3
2 )b01

3a0
√

1 + a0
.

At this time X(s3) = −
√

2
√

1 + a0 + O(r0) and we will see that this third switching time comes
after the cut time.

The same computations can be done for the extremals starting with λx(0) = −1. We use the
notation z̄ for variables z corresponding to these extremals. During the first bang the controls are
ū1 = ū2 = −1, during the second ū1 = 1 and ū2 = −1 and during the third one ū1 = ū2 = 1. The
switching times are s̄1 and s̄2 satisfying

s̄1
0 =

√
2
√

1 + a0, s̄1
1 = −a10 + 2b30(1 + a0),

s̄2
0 = s̄1

0 +
√

2
√

1+a0−
√

1−a0

a0
, s̄2

1 = s̄1
1 +

b01((1+a0)
3
2−
√

1−a0(1+2a0))+12b30a2
0

√
1−a0

3a2
0

√
1−a0

.

And at the second switching time

X̄(s̄2) = −
(√

2
√

1− a0

)
+

(
−3a10a0

√
1−a0+b01((1+a0)

3
2−(1−a0)

3
2 )−6b30a0(1−a0)

3
2

3a0
√

1−a0

)
r̄0 + o(r̄0),

Ȳ (s̄2) =

(√
2((1+a0)

3
2−(1−a0)

3
2 )

3a0

)
−
(

2b01(1+a0+a2
0−
√

1−a0(1+a0)
3
2 )−12a2

0b30

3a2
0

)
r̄0 + o(r̄0),

λ̄x(s̄2) = −1,

r̄(s̄2) = r̄0 +
(

(
√

1+a0−
√

1−a0)b01√
2a0

)
r̄2

0 + o(r̄2
0).
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One can compute that at the third switching time X̄(s̄3) =
√

2
√

1− a0 +O(r0).

We are now ready to compute the cut locus. As one can estimate easily, an extremal starting
with λx(0) > 0 intersects an extremal starting with λx(0) < 0, both during their third bang.
Moreover, since Y (s2) = Ȳ (s̄2) + o(r0) one have that r̄0 = r0 + o(r0).

Let fix a ρ and look for the extremals that intersect at y =
√

2((1+a0)
3
2−(1−a0)

3
2 )

3a0
ρ3. We write

r0 = ρ + Rcutρ
2 + o(ρ2) and look for Rcut such that r0Y (s2) =

√
2((1+a0)

3
2−(1−a0)

3
2 )

3a0
ρ3 + o(ρ4). We

find

Rcut =

√
2((−2a2

0 + (2 + a0)(−1 +
√

1− a2
0))b01 + 6a2

0b30)

3a0((1 + a0)
3
2 − (1− a0)

3
2 )

.

For r̄0 = ρ + R̄cutρ
2 + o(ρ2) one finds R̄cut =

√
2((−2a2

0+(2−a0)(−1+
√

1−a2
0))b01−6a2

0b30)

3a0((1+a0)
3
2−(1−a0)

3
2 )

. With these

values, we can compute the second switching times t2 = rs2 = t21ρ + t22ρ
2 + o(ρ3) and t̄2 = r̄s̄2 =

t̄21ρ+ t̄22ρ
2 + o(ρ3) with

t21 =
√

2

(√
1− a0 +

√
1 + a0 −

√
1− a0

a0

)
t22 = −a10 +

(−5 + 2a0 − 6a2
0 + a3

0)
√

1 + a0 − (−5− 3a0 + a2
0 + 3a3

0)
√

1− a0

3a2
0

√
1 + a0(2 +

√
1− a2

0)
b01

+
2(−4 + a0 − 2a2

0 + a3
0 + (−1 + a0)

√
1− a2

0)

3 + a2
0

b30

t̄21 =
√

2

(√
1 + a0 +

√
1 + a0 −

√
1− a0

a0

)
t̄22 = −a10 −

(−5 + 3a0 + a2
0 − 3a3

0)
√

1 + a0 + (5 + 2a0 + 6a2
0 + a3

0)
√

1− a0

3a2
0

√
1− a0(2 +

√
1− a2

0)
b01

+
2(4 + a0 + 2a2

0 + a3
0) + (1 + a0)

√
1− a2

0)

3 + a2
0

b30

and the x coordinates of the point of second switching under the form x = x1ρ+ x2ρ
2 + o(ρ3) and

x̄ = x̄1ρ+ x̄2ρ
2 + o(ρ3) with

x1 =
2
√

2(1 + 3a2
0 − (1− a2

0)
3
2 )

a0((1 + a0)
3
2 − (1− a0)

3
2 )
,

x2 = −5 + a0 + 5a2
0 − (5 + a0)

√
1− a2

0

3a2
0

b01 − 4b30,

x̄1 = −2
√

2(1 + 3a2
0 − (1− a2

0)
3
2 )

a0((1 + a0)
3
2 − (1− a0)

3
2 )
,

x̄2 =
5− a0 + 5a2

0 + (−5 + a0)
√

1− a2
0

3a2
0

b01 − 4b30.
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One find easily that the cut locus is at xc = x1+x̄1
2 ρ+ x2+x̄2

2 ρ2 + o(ρ2) that is

x+
cut = −

(
a0

3(1 +
√

1− a2
0)
b01 + 4b30

)
ρ2 + o(ρ2),

y+
cut =

√
2((1 + a0)

3
2 − (1− a0)

3
2 )

3a0
ρ3.

When −λy(0) >> 1, then we set r = 1√
−λy

. Equations are changed but the final result is very

similar

x−cut = −

(
a0

3(1 +
√

1− a2
0)
b01 + 4b30

)
ρ2 + o(ρ2),

y−cut = −
√

2((1 + a0)
3
2 − (1− a0)

3
2 )

3a0
ρ3.

Finally, the cut locus appears to be a cusp whose tangent at the singular point is the tangent
to ∆A, see Figure 7.

Second switching locus

Second switching locus

∆A

Cut locus

Cut locus

Figure 7: The synthesis in the (NF3) case
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[9] G. Ben Arous. Développement asymptotique du noyau de la chaleur hypoelliptique hors du
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