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BRAID: a new Bayesian word Recognition model
with Attention, Interference and Dynamics

Julien DIARD, Thierry PHENIX and Sylviane VALDOIS

BRAID: Bayesian Word Recognition with Attention,

Interference and Dynamics

The structure of the BRAID model contains three classical levels of processing.

1. The letter sensory submodel implements low-level visual mechanisms involved in
letter identification and letter position coding. Feature extraction is parallel over
the input string, an acuity gradient is implemented symmetrically around fixation
and location is distributed over adjacent letter positions, implementing lateral
interference between adjacent letters.

2. The letter perceptual submodel implements how information extracted from the
sensory input accumulates gradually over time to create a percept, i.e. an internal

representation of input letters.

3. The lexical knowledge submodel implements knowledge about the spelling of
40.481 English words (British Lexicon Project). A prior probability distribution
represents word frequency. The lexical membership submodel implements a
mechanism to decide whether or not the input letter-string is a known word, by

observing how predicted spellings compare with perceived letters.

One major originality of BRAID is to assume the existence of a fourth level:

4. The visual attentional submodel implements a filtering mechanism between the
letter sensory submodel and the letter perceptual submodel. Transfer of
information is modulated by the amount of attention allocated to each letter

position.
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BRAID model definition
Simulating cognitive tasks by Bayesian inference

Lexical

BRAID is a probabilistic, hierarchical model.:

Lexical membership
submodel L .
Nodes represent probabilistic variables.

@) Arrows represent the dependency structure.
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BRAID contains:

 Dynamic variables (over perceived letters
P, over word identity W?, over lexical
membership D), with accumulation of
perceptual evidence over time and gradual
decay of information in the absence of
stimulation.

Coupled dynamical chains over P, W and D:
as in coupled Hidden Markov Models,
Bayesian inference yields recurrent transfer
of information: bottom-up perceptual
processing and top-down predictions and
feedback.

Submodels are linked by coherence
variables (A variables, in white). They
control information transfer throughout
the model, acting as informational filters.
The visual-attentional submodel spatially
controls where sensory processing is.

Letter
perceptual
submodel

attentional
submodel

Letter sensory
submodel

Cognitive tasks are modeled by questions asked to BRAID, and solved by Bayesian inference.

Given: stimulus s;:1, gaze position g!:7, visual attention position p}’, and spread o’

e Letter recognition (without lexical influence)
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* Letter recognition (with lexical influence): top-down feedback from lexical knowledge
Op, = PPy |siiy 8" " o [y = 11 [Apiy = 1)
* Lexical decision (LD)

Op' = PID"|siyg my' oy [Apyy = 111Appy = 1])
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Simulating behavioral effects
Some examples

 Word frequency effect in WR and LD: more frequent words are recognized faster
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Material and methods:
Replicates Norris (2006)

130 5-letter words from CELEX
Randomly attributed to 13
frequency classes (1, 2, 5, ...,
10,000)

Experiment repeated 13 times
with frequencies permuted in a
round-robin manner

Decision threshold set at .85

Results: The simulation of the dynamics of perceptual evidence accumulation shows that the effect holds for the chosen and other
decision threshold values. Effect also holds for lexical decision (simulations not shown here).

 Word superiority effect (WSE): letters are recognized faster in words than in nonwords
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Material and methods:
Replicates Johnston (1978)

72 4-letter word pairs differing
by a letter (e.g., LAST / LOST)
Isolated letters in the same
position: A/ O
Non-words built by scrambling
letters of the context (e.g., LAST
/ SATL) and switching contexts
(e.g., LAST / OASW)

Iteration found where the match is best between human data and simulation on the Word condition (arbitrarily chosen): The other

conditions are model predictions.

Results: The WSE is simulated. Note that, whatever the chosen iteration, the predicted effect is in the correct direction.

 The word superiority effect is modulated if letter position is pre-cued, differently for word
contexts (cueing slows down) and nonword contexts (cueing facilitates)
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Other simulated effects:
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Material and methods:
Replicates Johnston &
McClelland (1974)

Same 72 4-letter word pairs as
above

To simulate cueing, attention
mean u and gaze g are set to
the cued position

Reference iteration chosen as
above: best match between
human data and simulation on
the “whole string” condition.

Results:

Effect direction holds for other
iterations; but see the initial
predicted reversal in the word
condition

 Variants on letter perceptibility: consonant-strings, duration of context presentation,
length of context, context letter spacing (Phénix, 2018)

e Effects in LD: faster YES than NO responses, orthographic legality (Phénix, 2018)

* Transposition effects in primed-WR, primed-LD and same-different tasks (Ginestet, 2016)

 Optimal viewing position in normal and impaired readers (Psychonomics 2018 posters)

 Length effects in LD (Ginestet et al. submitted)

* Opposite neighborhood frequency effects in LD (Phénix et al., 2018)



