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Abstract

Bubbles are present in a large variety of emerging applications, from

advanced materials to biology and medicine, either as laser-generated or

acoustically driven bubbles. In these applications, the bubbles undergo

oscillatory dynamics and collapse inside — or near — soft and biolog-

ical materials. The presence of a soft, viscoelastic medium strongly

affects the bubble dynamics, both its linear resonance properties and

its nonlinear behavior. Surfactant molecules or solid particles adsorbed

on a bubble surface can also modify the bubble dynamics through the

rheological properties of the interfacial layer. Furthermore, the inter-

action of bubbles with biological cells and tissues is highly dependent

on the mechanical properties of these soft deformable media. This

review covers recent developments in bubble dynamics in soft and bi-

ological matter, and for different confinement conditions: bubbles in a

viscoelastic medium, coated by a viscoelastic layer, or in the vicinity

of soft confinement or objects. The review surveys current work in the

field and illustrates open questions for future research.
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1. INTRODUCTION

Bubbles are present inside a variety of soft materials and biological media. From the

bubbles created upon decompression of magma in a volcanic eruption (Ichihara 2008), to

those generated in the synovial fluid when we crack our joints (Kawchuk et al. 2015), these

fascinating objects challenge scientists to understand and control their behavior.

The ability to control bubble dynamics underpins a number of industrial processes in

which bubbles grow or undergo collapse within complex fluids. For instance, the expansion

of gas bubbles in a polymeric liquid is central to the production of polymer foams (Everitt

et al. 2003), and the dispersion of carbon nanotubes by ultrasonication is affected by cavi-

tation and bubble collapse, which cause nanotube scission (Pagani et al. 2012). Microscopic

bubbles injected in the human body can be manipulated with ultrasound to deliver drugs

at otherwise inaccessible locations, for instance across the blood-brain barrier (Choi et al.

2011). In this case, and for many other medical applications of ultrasound (Coussios & Roy

2008), a deep understanding of bubble dynamics near or within soft tissue is vital to the

outcome of a procedure. Cavitation is also involved in biological processes that we have only

recently begun to understand. The cell membrane can absorb mechanical energy from an

ultrasound wave, leading to bubble formation in the intramembrane space between the two

lipid leaflets that make up the membrane (Krasovitski et al. 2011). On a larger length scale,

cavitation bubbles can occur in trees and plants under strong hydric evaporative stress and

can cause an embolism in the water circulation (Tyree & Sperry 1989).

Soft and biological materials, including cells, tissues, colloidal suspensions, polymer

solutions and gels, exhibit a behavior intermediate between that of a fluid and that of a

solid, and is therefore characterized by an elasticity as well as a viscosity. The mechanical

properties of such viscoelastic materials typically also depend on the amplitude and the

rate of the applied deformation. Rheology is the study of the complex response to flow

and deformation of these materials, and of the microscopic origin of this response (Chen

et al. 2010). The rheological behavior of a viscoelastic material can be nonlinear, and cause

dramatic changes in bubble dynamics, which is in itself highly nonlinear even in simple
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fluids (Plesset & Prosperetti 1977). In addition, the interaction of bubbles with soft and

biological matter occurs in a variety of geometries and configurations (Figure 1), as in some

of the examples mentioned above: bubbles can be embedded in a viscoelastic medium, can

be coated by an interfacial viscoelastic layer, or can be in proximity of a soft viscoelastic

boundary.

The review covers recent developments on the effect of the medium rheology and of soft

confinement on bubble dynamics, focusing in particular on the resonant behavior of bubbles

as an exquisitely sensitive probe of their surroundings.

(a)(a) (b)

(c)

(e)

(i)(h)

(f) (g)

(d)

Figure 1

Bubble dynamics in soft confinement. (a) Bubble embedded in a viscoelastic medium in
which the bubble radius can evolve. (b) Bubble coated with a viscoelastic interfacial layer.

Examples include (c) lipid monolayers and (d) particle monolayers. Different geometrical

examples of confinements: (e) Bubble near a viscoelastic boundary; (f) bubble between parallel
plates; (g) bubble in a compliant tube; (h) bubble near a suspended, deformable object; and (i)

bubble in a cavity within a viscoelastic material.

2. BUBBLE DYNAMICS IN A VISCOELASTIC MEDIUM

Here we introduce the governing equation of spherical bubble dynamics in an incompressible

medium. For a Newtonian fluid, it reduces to the famous Rayleigh-Plesset equation (Plesset

& Prosperetti 1977), a remarkable example of a solution of the Navier-Stokes equation in

spherical coordinates. In this formulation, it is easy to specify the material properties of

the surrounding medium and of an interfacial layer through the stress tensor, τ , and the

interfacial stress tensor, τ s, respectively (Section 2.1). We discuss some examples of linear

and non-linear constitutive models for τ , and highlight the effects of viscoelastic properties

of the medium on bubble dynamics (Section 2.2). The role of the interfacial stress τ s will

be discussed in Section 3.2. Measurements of bubble dynamics in viscoelastic media are

presented with a particular focus on experiments in which the rheological properties of the

medium are obtained from the bubble response (Section 2.3).

2.1. Governing equation of bubble dynamics in a viscoelastic medium

We consider a spherical bubble in an incompressible, homogeneous, viscoelastic medium.

We define a spherical coordinate system with origin at the center of the bubble, with r, θ,

and φ the radial, azimuthal, and polar coordinates respectively. The position of the bubble

is fixed and only its radius, R, changes in time, generating a purely radial velocity field

www.annualreviews.org • Bubble dynamics in soft matter 3



u = (u, 0, 0). From the continuity equation, 1
r2

∂
∂r

(
r2u
)

= 0, with the boundary condition

u(r = R) = Ṙ, where the dot denotes derivative with respect to time, it follows that

the velocity is u(r, t) = R2Ṙ/r2. Substituting u(r, t) into the radial component of the

momentum equation,

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
+ (∇ · τ )r , (1)

where (∇ · τ )r is the radial component of ∇ · τ , the divergence of the deviatoric stress

tensor, and is given by (∇ · τ )r = 1
r2

∂
∂r

(
r2τrr

)
− τθθ+τφφ

r
, and integrating with respect to

r gives

ρ

(
R2R̈+

3

2
Ṙ2

)
= p(R) − p∞ +

∫ ∞
R

(∇ · τ )r dr, (2)

valid for any rheology of the surrounding medium. Here p∞ is the pressure in the medium far

from the bubble, and p(R) is the pressure in the medium at the bubble interface, obtained

from the balance of normal stress at the interface:

p(R) − (∇s · τ s)r − τrr(R) = pg, (3)

where pg is the gas pressure in the bubble and viscous effects in the gas have been neglected.

In this equation, the contribution of the interface appears through the radial component of

the surface divergence of the interfacial stress (Edwards et al. 1991), given by: (∇s · τ s)r =

−(τs,θθ + τs,φφ)/R. We will discuss the constitutive laws for the interfacial stress in Sec. 3.2

in the case of bubbles coated with a viscoelastic interfacial layer. For uncoated bubbles,

it reduces to the surface tension of the gas-liquid interface, γ: τ s = γIs, where Is is the

surface unit tensor; for a spherical bubble, Is = eθeθ + eφeφ. Equation (3) then reduces to:

p(R) +
2γ

R
− τrr(R) = pg. (4)

Inserting this equation in Eq. (2), one gets:

Gas bubble: the

bubble contains a

permanent,
noncondensable gas.

Vapor bubble: the

bubble contains the
vapor of the

surrounding liquid

(e.g. cavitation
bubbles,

laser-generated
bubbles)

ρ

(
R2R̈+

3

2
Ṙ2

)
= pg − p∞ − 2γ

R
+ τrr(R) +

∫ ∞
R

(∇ · τ )r dr. (5)

In the linear regime of deformation of a viscoelastic medium, τ is traceless, τθθ+τφφ = −τrr,
hence (∇ · τ )r = ∂τrr

∂r
+ 3τrr

r
. With these assumptions, Eq. (2), simplifies to (Prosperetti

1982)

ρ

(
RR̈+

3

2
Ṙ2

)
= pg − p∞ − 2γ

R
+ 3

∫ ∞
R

τrr
r
dr. (6)

This equation governs the dynamics of a spherical bubble in an incompressible medium

having arbitrary rheological properties, provided that the stress tensor is traceless. Fol-

lowing e.g. Keller & Miksis (1980), a general governing equation that also accounts for

compressibility effects of the medium surrounding the bubble can be obtained.

The gas pressure is a function of the bubble radius and it depends on the thermal

properties of the gas at the frequency of the acoustic driving. In this Review, thermal

dissipation effects due to the gas are effectively accounted for through a polytropic exponent

κ, such that pg = pg,0(R0/R)3κ, pg,0 = p0 + 2γ/R0 being the gas pressure at equilibrium.

The polytropic exponent is equal to 1 for isothermal compression of the gas, and equal to

the ratio of the heat capacities at constant pressure and at constant volume for adiabatic
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compression. We refer the reader to Prosperetti (1977) for the full theoretical treatment of

thermal effects.

The rheological behavior of the medium is specified by introducing the constitutive

equation that relates the stress, τ , to the strain, ε, and the strain rate, ε̇. Because we have

assumed a flow field with spherical symmetry, the only non-zero component of the strain

rate is ε̇rr = ∂u/∂r = −2R2Ṙ/r3. Note that the mode of deformation of the medium around

a spherical bubble is pure extension (biaxial extension upon expansion, uniaxial extension

upon compression). Integration with respect to time gives the corresponding component of

the strain, εrr(r) =
∫ t
0

(∂u/∂r)dt′ = −2(R3 −R3
0)/3r3.

2.2. Effect of the medium rheology on bubble response

Bubbles are extremely sensitive probes of their surroundings, and the changes in bubble

dynamics due to the rheological properties of the medium can indeed be dramatic. To

illustrate this, we first recall the case of a Newtonian fluid, to introduce the analogy between

an acoustically driven bubble and a harmonic oscillator (Section 2.2.1). Although this

analogy is limited to the case of small-amplitude oscillations, it is a simple yet powerful

tool to reveal the effects of the surroundings on bubble response. We then review some

linear and non-linear constitutive models (Sections 2.2.2 and 2.2.3), focusing primarily on

harmonic driving of bubbles and their resonant behavior as a probe of the effect of medium

rheology.

2.2.1. Small-amplitude oscillations in a Newtonian fluid. For an incompressible, Newto-

nian liquid of shear viscosity η, the radial component of the stress tensor is τrr = 2ηε̇rr.

Substituting this constitutive equation in Eq. (6), the familiar Rayleigh-Plesset equation is

obtained (Plesset & Prosperetti 1977):

ρ

(
R2R̈+

3

2
Ṙ2

)
= pg − p∞ − 2γ

R
− 4ηṘ

R
. (7)

For the case of harmonic driving of bubbles in acoustic fields, the pressure far from the

bubble is p∞ = p0 + pa(t), where p0 is the ambient pressure, and the acoustic pressure

pa(t) = ∆p sin(ωt) has amplitude ∆p and angular frequency ω = 2πf with f the frequency.

The Reynolds number based on the equilibrium bubble radius, R0, is Re = ρR2
0ω/η. A

bubble undergoing volumetric oscillations as a result of harmonic driving can be simply

thought of as a forced harmonic oscillator, where the mass corresponds to the inertia of the

fluid displaced by the bubble, and the spring corresponds to the restoring force due to the

compression of the gas inside the bubble and surface tension (Leighton 1994). For sufficiently

small amplitude of the acoustic forcing, ∆p/p0 � 1, the oscillatory response of the bubble

can be assumed to be linear. The temporal evolution of the radius R(t) = R0 + ∆R(t) can

then be written as R(t) = R0[1+x(t)] with x(t) = x0 sin(ωt+ϕ), where ϕ is the phase shift

between the acoustic forcing and the radial oscillations, and the amplitude of oscillations

is small, x0 = ∆R/R0 � 1. Perturbation analysis to first order in the small parameter x

returns the equation for the amplitude x(t) in the form of a damped harmonic oscillator,

ẍ+2βẋ+ω2
0x = −∆p sin(ωt)/ρR2

0, where β is the damping coefficient and ω0 is the natural

frequency (Prosperetti 1977). The natural frequency is given by

ω2
0 =

1

ρR2
0

[
3κp0 +

2(3κ− 1)γ

R0

]
. (8)
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If surface tension effects are negligible, the Minnaert frequency ωM, given by ω2
M =

3κp0/ρR
2
0, is recovered. If the only damping mechanism included in Eq. (7) is viscous

dissipation, the damping coefficient is simply given by β = βvis = 2η/ρR2
0. Damping in a

Newtonian liquid may also include acoustic and thermal contributions, as described by Pros-

peretti (1977). The equation for the resonance curve of the bubble, which is the amplitude

of bubble oscillations as a function of the applied frequency, is given by

x0(ω) =
∆p

ρR2
0

1√
(ω2

0 − ω2)2 + 4β2ω2

. (9)

The frequency for which the amplitude of oscillations is a maximum, i.e. the resonance

frequency, differs from the natural frequency because of damping, and is obtained from

Eq. 9 as ω2
res = ω2

0 − 2β2.

2.2.2. Linear viscoelastic models. A simple linear constitutive model that includes viscous

and elastic effects is the Kelvin-Voigt model (Macosko 1994). The radial component of the

stress tensor is given by τrr = 2(Gεrr+ηε̇rr), where G is the shear modulus of the medium.

The behavior described by this model is that of a spring and a dashpot in parallel, where

the spring causes the material to recover its original configuration after deformation. It is

therefore a model for predominantly solid materials, and is suitable for soft tissue, which

generally recovers its original configuration after the stress is removed.

The Kelvin-Voigt model can be simply combined with the momentum balance, Eq. (6),

to give a governing equation for a bubble in an incompressible, linear viscoelastic medium:

ρ

(
R2R̈+

3

2
Ṙ2

)
= pg − p∞ − 2γ

R
− 4ηṘ

R
+

4

3
G
R3 −R3

0

R3
. (10)

The assumption of a linear relationship between stress and strain, and the use of Eq. (6),

both valid for small deformations, imply that also Eq. (10) is only valid for small amplitude

of oscillations, ∆R/R0 � 1. Linearization of Eq. (10), following the same perturbation

analysis outlined in Section 2.2.1, gives the natural frequency:

ω2
0 =

1

ρR2
0

[
3κp0 +

2(3κ− 1)γ

R0
+ 4G

]
, (11)

which reduces to Eq. (8) for G = 0. For a given bubble radius, the natural frequency

increases with increasing G, as a result of the increased stiffness of the system due to

the solid-like elasticity of the surrounding medium (Figure 2a). Yang & Church (2005)

combined the Kelvin-Voigt constitutive model with the Keller-Miksis equation, to account

also for compressibility effects, and performed perturbation analysis to obtain the resonance

frequency and damping coefficients for this case.

Another simple, linear viscoelastic model is the linear Maxwell model (Macosko 1994),

represented by a spring and a dashpot in series, suitable for predominantly liquid materials.

The constitutive equation is given by λτ̇rr+τrr = 2ηε̇rr, where λ is the relaxation time of the

material, given by λ = η/G. The non-dimensional number comparing the relaxation time

scale of the material with the characteristic timescale of the flow is the Deborah number,

which for harmonic driving at frequency ω writes De = λω. The Deborah number measures

the ability of the material to relax back to its initial state during one cycle of the acoustic

forcing. Despite its simplicity, the Maxwell model combined with Eq. (6) does not yield an
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ordinary differential equation for the bubble radius. Fogler & Goddard (1970) were the first

to obtain and solve numerically the integro-differential equation for the radial dynamics,

with the aim of investigating bubble collapse in polymer processing. Allen & Roy (2000a)

reduced the problem to a set of coupled ordinary differential equations and used a multiple-

scale perturbation method to obtain an equation for the resonance frequency of the bubble.

The equation was solved numerically to obtain resonance curves for parameters of relevance

to medical applications. For small-amplitude forcing (Re = 0.1) such that the response in a

Newtonian fluid (De = 0) was linear, a softening nonlinearity was observed for the Maxwell

fluid, with the nonlinear effect increasing with the elasticity of the medium (De = 1 − 3).

This result highlights a strong effect of the medium rheology on bubble dynamics even for

small-amplitude forcing.

Creep:
Time-dependent

increase in strain for

a step increase in
stress.

Relaxation:
Time-dependent
decrease in stress for

a step increase in

strain, on a
characteristic

timescale λ = η/E.

Table 1 Linear constitutive models.

Model Constitutive equation Properties

Newton τrr = 2ηε̇rr Newtonian liquid

Kelvin-Voigta τrr = 2Gεrr + 2ηε̇rr Viscoelastic solid; creep behavior

Maxwellb λτ̇rr + τrr = 2ηε̇rr Viscoelastic liquid; stress relaxation

Standard Linear Solidc λτ̇rr + τrr = 2Gεrr + 2ηε̇rr Predicts both creep and stress relaxation

aUsed by Yang & Church (2005); Hamaguchi & Ando (2015); Jamburidze et al. (2017).
bUsed by Fogler & Goddard (1970); Allen & Roy (2000a).
cUsed by Hua & Johnsen (2013).

To reflect the fact that many soft materials have intermediate behavior between that of

a fluid and that of a solid, the Kelvin-Voigt and Maxwell models can be combined to obtain

the Standard Linear Solid model. In this model, a spring in parallel to a Maxwell element

(spring and dashpot in series) confers solid-like behavior to the system. The constitutive

equation, shown in Table 1, has been combined with the Keller-Miksis equation by Hua &

Johnsen (2013). They found that when the term in τ̇rr is sufficiently large, nonlinear effects

become important and the steady-state oscillation frequency after a Rayleigh collapse differs

from the natural frequency, with a non-trivial dependence on Re and De.

2.2.3. Nonlinear viscoelastic models. Many applications of bubble dynamics in viscoelastic

media involve relatively large deformations, for instance cavitation in tissues for non-invasive

therapy and drug delivery (Coussios & Roy 2008). To model these situations, the equation

governing bubble dynamics can be combined with a non-linear constitutive model, valid

for large strains. In this case, Eq. (5) with a general form of the stress tensor is used,

as the assumption of a traceless stress tensor may not be valid. Equation (5) is often

modified following Keller & Miksis (1980) to account for compressibility effects, which can

also become important for large strains.

Several authors have considered a non-linear version of the Maxwell model in the context

of bubble dynamics (Allen & Roy 2000b; Jiménez-Fernández & Crespo 2005; Naude &

Méndez 2008; Warnez & Johnsen 2015). In this model, referred to as the Upper-Convected

Maxwell model, the time derivative of the stress tensor is replaced with the upper-convected

time derivative, to respect frame invariance (Macosko 1994). Using this model, Allen & Roy

(2000b) showed that for harmonic forcing near resonance with Re = 2.5 and De = 3, the

linear and nonlinear Maxwell models give the same prediction for small-amplitude forcing

www.annualreviews.org • Bubble dynamics in soft matter 7



(pa = 50 kPa); on the contrary, for larger forcing amplitudes (pa = 200 kPa) the nonlinear

model predicts stable oscillations while the linear model predicts explosive growth. Since

such prediction is inconsistent with the underlying assumption of small strain for the linear

model, the comparison highlights the importance of choosing a suitable nonlinear model for

large strains. Figure 2b shows a comparison of the evolution of the bubble radius during

harmonic driving at pa = 400 kPa for a Newtonian (De = 0), Kelvin-Voigt, Maxwell,

Standard Linear Solid, and Upper-Convected Maxwell model (De ≈ 6) (Warnez & Johnsen

2015). The models without relaxation (Newtonian and Kelvin-Voigt) show limited nonlinear

behavior, while for the models that include relaxation, the effect on the amplitude and

frequency of oscillations is dramatic. For sufficiently large Deborah numbers, the nonlinear

Maxwell model predicts aperiodic oscillations and chaotic behavior (Jiménez-Fernández &

Crespo 2005; Naude & Méndez 2008), as shown in Figure 2c (De = 5), because in this

regime the forcing period, τ ∼ ω−1, is much shorter than the relaxation time of the material,

λ, meaning that the stress continues to build up cycle after cycle of oscillation.

Nonlinear constitutive equations that describe more complex rheological responses have

been combined with the equation governing bubble dynamics (Gaudron et al. 2015; Warnez

& Johnsen 2015; Estrada et al. 2018) but will not be discussed here.

2.3. Experimental results

Motivated by applications in polymer processing, early experimental studies on bubble

dynamics in viscoelastic liquids have focused primarily on bubble collapse. These studies

have been reviewed elsewhere (Macosko 1994) and are not covered here. More recently,

the influence of the mechanical properties of biological fluids and tissues on cavitation and

bubble dynamics has gained widespread interest, because of its relevance in many biomedical

applications, for instance tissue ablation by high-intensity focused ultrasound, ophtalmic

microsurgery, and microbubble-enhanced ultrasound imaging; Brujan (2010) has reviewed

comprehensively the topic of cavitation for biomedical and bioengineering applications.

Here we focus on recent experiments that have used bubble dynamics as a probe of the

rheological properties of a viscoelastic medium.

Because in general the mechanical response of soft materials depends on the rate of

deformation, the rheological properties need to be measured at the frequency of interest.

However, standard instruments typically cannot reach the high strain rates (103 − 106 s−1)

characteristic of bubble collapse and ultrasound-driven bubble dynamics. The theoretical

predictions presented above suggest that experiments on oscillatory bubble dynamics in

viscoelastic media can provide measurements of rheological properties at high frequency.

While such a technique has not yet been benchmarked and adopted widely in applications,

a few studies have shown the viability of this approach, termed “acoustic microrheology”

(Strybulevych et al. 2009). Strybulevych et al. (2009) recorded the resonance curves of

millimetric bubbles in agar gel by measuring the acoustic response of the bubble as a

function of frequency. They fitted the resonance curve and the damping coefficient given

by the linear Kelvin-Voigt model to obtain the material properties. Hamaguchi & Ando

(2015) recorded optically resonance curves using a constant ultrasound frequency while

the bubble radius slowly increased over time due to gas transfer into the bubble. Values of

shear modulus and shear viscosity were extracted by fitting Eq. (9) to the data. Jamburidze

et al. (2017) recorded resonance curves of bubbles excited by ultrasound at small pressure

amplitudes (pa < 1 kPa) in agarose gels, to ensure that the deformation of the material

8 Dollet et al.
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Figure 2

Bubble dynamics in a viscoelastic medium. (a) Prediction of the change in resonance frequency as a function of
bubble radius for a Kelvin-Voigt, linear viscoelastic solid. Plotted using Eq. (11) and parameters taken from Yang &

Church (2005). (b) Comparison of Newton, Kelvin-Voigt, Maxwell, standard linear solid, and and Upper-Convective

Maxwell (Warnez & Johnsen 2015). (c) Chaotic behavior of a bubble undergoing large-amplitude oscillations in a
viscoelastic fluid (Naude & Méndez 2008). (d) Experimental measurement of the change in resonance frequency as a

function of bubble radius in agarose gels with increasing G (Jamburidze et al. 2017). The experimental data are fitted

(solid lines) to Eq. (11) to extract G. (e) Experimental resonance curves from small-amplitude bubble oscillations in
agarose gels with increasing G (Jamburidze et al. 2017). The experimental data are fitted (solid lines) to Eq. (9) to extract

G and η. (f) Collapse of a laser-generated bubble in a polyacrylamide gel (Brujan & Vogel 2006). (g) Cavitation rheology

uses quasi-static bubble injection to measure the elastic modulus (Kundu & Crosby 2009).

remained in the linear regime. The resonance curves were fitted to Eq. (9) to extract the

viscoelastic properties (see Figure 2d). The measurement was found to be robust by

comparing the results from different bubbles, as shown in Figure 2e.

Bubble collapse is also sensitive to the rheology of the surrounding medium, but the

analysis of the experimental results to infer viscoelastic properties can be challenging. Con-

trolled experiments with direct visualizations of bubble collapse in polyacryalmide gels

(Figure 2f) showed that the maximum radius of the laser-generated bubble decreased with

increasing elastic modulus, and the oscillation period of the bubble was reduced (Brujan &

Vogel 2006), qualitatively in agreement with Eq. (11).

Recently, a method for high strain-rate rheometry based on inertial cavitation has been

demonstrated, in which time-resolved data for the temporal evolution of the radius are fitted

to the prediction of the equation governing bubble dynamics, combined with a suitable non-

linear constitutive model (Estrada et al. 2018).
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Finally, another technique that uses bubbles to probe mechanical properties of soft

materials, called “cavitation rheology” (Zimberlin et al. 2007), uses quasi-static bubble

injection to determine the elastic modulus of a soft material by monitoring the pressure in

the bubble at the onset of a mechanical instability (see Figure 2g). This elegant technique

does not provide information on the frequency dependence of the mechanical properties.

One of the advantages of using bubbles as rheological probes is that they can provide

information on the local properties of inhomogeneous materials. This is advantageous for

soft and biological materials, which often have complex microstructures. The knowledge

of the effect of high-rate deformation on the microstructure of a inhomogeneous material

is still limited. Future research should fill this gap, as well as the link between microscale

phenomena and rheological response.

3. BUBBLE DYNAMICS WITH A VISCOELASTIC INTERFACE

Stable bubble dispersions are central in the formulated products industry and in biomedical

imaging. Small bubbles are stabilized against dissolution by coating their interface with

a layer of surface-active material. In Section 2 we have seen that for the case of bubble

dynamics in a viscoelastic medium, theoretical work has predated some of the experimental

developments. Instead, the effect of an interfacial coating on bubble dynamics has been first

observed experimentally, motivating subsequent efforts to develop predictive models. To

reflect this, in this Section the experimental observations are reported before the theoretical

models. Surface viscoelasticity significantly increases the resonance frequency and damping,

and the coating exacerbates nonlinear oscillation effects (Sec. 3.1), which is challenging for

modeling (Sec. 3.2). This Section also covers the recently emerging area of particle-stabilized

bubbles (Sec. 3.3).

3.1. Experimental coating effects

Interfacial layer:
medium of arbitrary

thickness coating a

bubble.

Monolayer: single

layer of molecules or

particles adsorbed at
and interface or

surface.

Shell: curved layer of
thickness much

larger than the

molecular size, such
that it can be

treated as a

continuum across its
thickness.

Coated bubbles are generally micrometric to millimetric in radius, and thus resonate at

several kHz to several MHz. It is therefore difficult to optically resolve their oscillations.

Alternative methods to characterize their resonance properties rely either on purely acous-

tical measurements, or on light scattering (Tu et al. 2009). With the advent of high-speed

cameras, direct imaging has become possible either using streak cameras, recording one

single line of pixels through a bubble up to 100 MHz, or ultrahigh-speed cameras, record-

ing images up to 25 MHz, which becomes sufficient to resolve several cycles of oscillations

(Versluis 2013).

3.1.1. Changes in linear response. Compared to uncoated bubbles, coated bubbles dis-

play a larger resonance frequency, a lower amplitude of response, and a larger damping.

Many studies have characterized coated microbubbles used as ultrasound contrast agents

for medical imaging. These agents have different kinds of coating: either a protein layer

(Figure 3a), or a polymer shell (Figure 3b), or a thin lipid monolayer. Anticipating on

Sec. 3.2, we will see that there exists two kinds of models to describe the effect of the coating

on bubble oscillations: models considering shells as 3D media of finite thickness, adapted

to polymer or protein coatings; and models considering an infinitely thin interface, with

2D properties, adapted to lipid monolayers. However, a common point of all models is to

ascribe to coatings two contributions: an elastic and a viscous one, and the experimental

10 Dollet et al.



t ~ 0 µs t ~ 300 µs t ~ 600 µs

40 µm

t ~ 900 µs

5 µm

0 µs 140 µs 213 µs 267 µs 520 µs

(a) (b) (c)

(d) (e)

(f ) (g)

5 µm

300 µm

t ~ 0 µs t ~ 0.3 µs

~5 µm5 µm
~0.5 µm

Figure 3

Examples of coated bubbles. (a) Electron micrograph of a microbubble coated with a protein layer (Cavalieri et al.
2008). (b) Polymer capsules, which are shells of polymer-coated bubbles (Böhmer et al. 2006). (c) Snapshot of coated

microbubbles under ultrasound at two moments during an acoustic cycle (Marmottant et al. 2011): left, in the inflated

state; right, in the buckled state, with wrinkles. (d) Nonspherical surface modes displayed by a lipid-coated bubbles under
ultrasound (Dollet et al. 2008). (e) Lipid shedding from a microbubble under ultrasound (Luan et al. 2014). (f) Bubbles

coated by magnetic nanoparticles (Zhao et al. 2009). (g) Directional particle shedding from the antinodes of a

particle-coated bubble undergoing shape oscillations (Poulichet & Garbin 2015).

studies have all fitted their measurements to estimate both these contributions.

In the context of ultrasound contrast agents, one of the first acoustic characterization of

a suspension of bubbles coated by a protein layer was performed by de Jong et al. (1992),

and they provided an estimate an elastic contribution of such layers. Frinking & de Jong

(1998) also characterized bubbles coated with a protein layer (Figure 3a), and extended

the analysis by de Jong et al. (1992) by including a dissipative contribution from the coating.

Hoff et al. (2000) studied polymer-coated bubbles, both experimentally and theoretically.

They fitted their measurements by Church (1995)’s model (Sec. 3.2) in the limit of a thin

shell, to obtain a shell shear modulus and a shell viscosity. For bubbles coated with a lipid

monolayer, Gorce et al. (2000) fitted a “shell stiffness” and “friction parameter”.

All these studies characterized a polydisperse population of coated bubbles by purely

acoustic means. The drawback of such methods is that the influence of the coating on the

acoustic properties of the bubbles is convoluted by the bubble size distribution. Parrales

et al. (2014) used microfluidic flow-focusing techniques to produce fairly monodisperse lipid-

coated bubble suspensions, of relevant diameter for medical application (mean diameter

6 µm). Measuring the attenuation coefficient, they had a good estimate of the elasticity

and viscosity of lipid monolayers.

To go beyond purely acoustical measurements, Morgan et al. (2000) insonified bubbles

coated with a lipid monolayer, and simultaneously imaged their oscillations along their

centerline using a streak camera. They compared these measurements with a viscoelastic
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shell model, using shell elastic and viscous moduli as two fitting parameters. They found

that shell viscosity increased with bubble radius. van der Meer et al. (2007) insonified

bubbles coated with a lipid monolayer at amplitude below 40 kPa to minimize nonlinear

effects, imaged their oscillation with an ultrahigh-speed camera, measured the oscillation

amplitude as a function of frequency for individual bubbles of different radii, obtained from

them resonance frequency and damping coefficients as a function of bubble radius, and

fitted these data with a viscoelastic monolayer model. They found a surface elasticity of

χ = 0.5 ± 0.1 N/m (see Sec. 3.2) and confirmed the increase of surface viscosity as bubble

radius increases.

In recent studies, bubbles of controlled coating composition have been synthetized, es-

pecially with lipids, and the influence of this composition has been quantified. For instance,

a method similar to van der Meer et al. (2007) was used by van Rooij et al. (2015) to char-

acterize bubbles coated by two different lipids: DSPC and DPPC. These authors found that

DSPC has a larger surface elasticity than DPPC. Lum et al. (2016) developed a different

technique, using plasmonic bubbles, to investigate the surface rheology of lipid (the D·PC

family) monolayers in the MHz range: the decaying free oscillations of lipid-coated bub-

bles were measured by optical scattering methods, and the natural frequency and damping

were fitted to measure surface elasticity and viscosity. They found an increase of elasticity

with increasing carbon chain length, ascribed to modification of intermolecular forces. Fig-

ure 4a illustrates their results, and exemplifies that coating elasticity leads to a significant

increase of the resonance frequency compared to the Minnaert frequency.

3.1.2. Nonlinear effects. In the context of medical imaging, nonlinear oscillations of coated

bubbles have been studied to improve signal-to-noise ratio, because bubbles have a much

more nonlinear response than the surrounding tissue. Second harmonic (emission at twice

the forcing frequency) is the most classical nonlinearity. However, it is more attenuated,

and less specific, than subharmonic emission (Shankar et al. 1998), which has thus received

much attention.

Among the first ones to identify such nonlinearities, Lotsberg et al. (1996) evidenced a

clear subharmonic signal for protein-coated bubbles, at lower pressure amplitude than the

subharmonic threshold suggested by the theory for uncoated bubbles (Prosperetti 1974).

Shankar et al. (1999) confirmed this fact, and reported subharmonic backscattering at

forcing amplitudes as low as 20 kPa. Beyond acoustical characterization, Sun et al. (2005)

observed that lipid-coated bubbles undergo subharmonic oscillations using streak imaging;

these were also reported by Sijl et al. (2010) from direct optical measurements (Figure 4e).

While purely acoustical methods were efficient in revealing subharmonic emission from

coated bubbles, ultrahigh-speed imaging of oscillating coated bubbles revealed a wealth of

other nonlinear effects, apparent already at very low forcing compared to uncoated bub-

bles, like subharmonics: compression-only, “thresholding”, and nonspherical oscillations,

often associated to buckling or crumpling of the coating. Marmottant et al. (2005) re-

vealed that bubbles coated with a lipid monolayer oscillate in a so-called “compression-

only” manner, i.e. they compress more than they expand, compared to their equilibrium

radius (Figure 4b), in marked contrast with uncoated bubbles oscillating in a nonlinear

fashion, which expand more than they compress. Emmer et al. (2007) showed that the rela-

tion between the oscillation amplitude of lipid-coated bubbles and the forcing amplitude is

highly nonlinear: at forcing frequencies below their resonance frequency, lipid-coated bub-

bles hardly oscillate below a forcing threshold, above which oscillation amplitude increases
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abruptly (Figure 4c). Initially ascribed to size-dependent shell properties, this so-called

“thresholding” nonlinear behavior, together with “compression-only”, was later rational-

ized by Overvelde et al. (2010) in the general framework of nonlinear oscillations. The

latter paper also showed that the resonance frequency of coated bubbles is a strongly de-

creasing function of the amplitude (both forcing and oscillation), reminiscent of a softening

nonlinearity (Figure 4d).

Above a certain forcing amplitude, bubbles display nonspherical oscillations. Like volu-

metric ones, these are significantly affected by surface viscoelasticity. For millimetric bub-

bles, Asaki et al. (1995) and Asaki & Marston (1997) showed that the presence of soluble

and insoluble surfactants slightly changes the natural frequency, and increases the damping

up to eight times, of a quadrupolar nonspherical mode. Dollet et al. (2008) showed that the

nonspherical oscillations of lipid-coated microbubbles (Figure 3d), display a subharmonic

character, reminiscent of a parametric instability, but without shape mode selectivity, un-

like uncoated bubbles (Versluis et al. 2010). Nonspherical shapes can also appear through

buckling of the interfacial layer; indeed, Borden & Longo (2002) showed that lipid-coated

bubbles buckle under slow deflation. Later, Marmottant et al. (2011) studied the buckling

threshold of coated bubbles under ultrasound (Figure 3c), and related this threshold to

the buckling of spherical shells in solid mechanics. Moreover, under strong oscillation, the

coating itself may rupture (Postema et al. 2004) or shed some material (Luan et al. 2014)

(Figure 3e).
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Figure 4

Linear and nonlinear responses of lipid-coated bubbles to an ultrasonic field. (a)

Natural frequency of bubbles coated with DPPC monolayers as a function of their radius (Lum
et al. 2016). Data are fitted by Eq. (12) with χ as fitting parameter (solid line). The Minnaert
frequency is shown for comparison (dashed line). (b) “Compression-only” behavior: the oscillation

amplitude is the compression phase is much larger than in the expansion phase (the horizontal
line represents the equilibrium radius) (Marmottant et al. 2005). (c) Relative oscillation

amplitude as a function of applied pressure. The abrupt jump in amplitude represents the

“thresholding” behavior (Overvelde et al. 2010). (d) Nonlinear resonance: the resonance frequency
(here rescaled by the Minnaert frequency) decreases strongly at increasing applied pressure

(Overvelde et al. 2010); the blue curve corresponds to a model with linear surface viscoelasticity.

Subharmonic oscillations: (e) illustration on a radius-time curve for f = 2.4 MHz and
pa = 40 kPa, and (f) the corresponding power spectrum (Sijl et al. 2010). In subpanels (c) to (f),

the red plain curves represent fits by Eq. (7) with the effective surface tension given by Eq. (13).
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3.2. Coating models

Experimental developments on coated bubbles have motivated active modeling of the

influence of the coating mechanical properties on bubble oscillations. There exist excellent

reviews on such models (e.g. Doinikov & Bouakaz (2011); Faez et al. (2013)), and we refer

to them for full details on the many different models. In this Section, our purpose is to

outline the main physical motivations of the different generations of models.

As soon as it appeared that the resonance frequency and damping of coated bubbles were

larger than uncoated ones, models ascribed elastic and viscous properties to the coating.

This was done on a semi-empirical basis by de Jong et al. (1992), and more rigorously by

Church (1995) who considered a shell of finite thickness coating the bubble, considered as a

viscoelastic solid and modeled by the linear Kelvin-Voigt constitutive law. Several variant

are issued from this model, see e.g. Hoff et al. (2000) or Morgan et al. (2000). These

models generally lead to good fitting of the acoustic response of a polydisperse population

of bubbles with thick shells.

A different assumption is to consider directly the coating as a 2D surface of negligible

thickness, in the spirit of surfactant monolayer modeling (Langevin 2014), hence adapted

to lipid-coated bubbles. Chatterjee & Sarkar (2003) modeled the interface as a Newtonian

interface: τ s = γIs+(κs−µs)(Is : Ds)Is+2µsDs, where κs, µs and Ds are respectively the

dilatational surface viscosity, the shear surface viscosity, and the surface deformation rate

tensor. With this law, the radial component of the surface divergence of the interfacial stress

becomes (divsτ s)r = 2γ
R

+ 4κsṘ
R2 . Sarkar et al. (2005) then extended this model by including

a surface dilatational elasticity through a compression modulus χ defined as χ = dγ/d lnA,

with A the bubble area. This amounts to changing surface tension, hitherto considered as

constant, to an effective, radius-dependent surface tension γ(R) = γ(R0) + χ
(
R2

R2
0
− 1
)

, in

Eq. (4). Including this effective surface tension in Eq. (7) yields a modified Rayleigh–Plesset

equation for coated bubble oscillations. In particular, surface elasticity contributes to the

resonance frequency as follows (compare with Eq. (8):

ω2
0 =

1

ρR2
0

[
3κp0 +

2(3κ− 1)γ(R0)

R0
+

4χ

R0

]
, (12)

and this equation served as fitting formula to measure surface elasticity in several studies

(van der Meer et al. 2007; van Rooij et al. 2015; Lum et al. 2016).

The optical observations of oscillating individual coated bubbles revealed a wealth of

nonlinearities which the aforementioned models, with their linear description of surface

viscoelasticity, were unable to capture (Figure 4d). Motivated by the discovery of the

compression-only behavior (Sec. 3.1.2), a landmark study was performed by Marmottant

et al. (2005). Inspired by the quasistatic behavior of insoluble monolayers of phospholipid

in compression, they proposed the following phenomenological law for the effective surface

tension:

γ(R) =


0 for R ≤ Rbuckling

γ(R0) + χ
(
R2

R2
0
− 1
)

for Rbuckling ≤ R ≤ Rrupture

γwater for R ≥ Rrupture

, (13)

accounting for (i) the appearance of buckling for a radius smaller than Rbuckling, where

the coating cannot sustain compression, (ii) rupture of the coating for a radius larger than

Rrupture, where the bubble behaves as if it wereoated one, and (iii) an elastic regime in
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between. The resulting piecewise definition of the effective surface tension renders the

model highly nonlinear. It was successful in predicting the nonlinearities of oscillating

coated bubbles (Figure 4). This essentially comes from the fact that nonlinearities are

enhanced by the abrupt change of properties at Rbuckling and Rrupture. In the particular

case of the subharmonic threshold, this reason for the good agreement between data and the

model of Marmottant et al. (2005) was suggested by Sijl et al. (2010), and shown analytically

by Prosperetti (2013). In the frame of this model, compression-only is explained by the

lower resistance in compression in the buckled state, than in expansion where elasticity

has to be overcome; the strong decrease of resonance frequency with increasing amplitude

was explained by the increasing influence of the “softer” buckled state as the oscillation

amplitude increases (Overvelde et al. 2010).

More recent models aimed at capturing these nonlinearities with rigorous treatments

of coating mechanics. Tsiglifis & Pelekasis (2008) modeled the coating as a nonlinear

elastic solid, and showed that a strain-softening constitutive law reproduces the decrease

of resonance frequency with increasing amplitude. Other nonlinear models use radius-

dependent surface elasticities (Stride 2008; Paul et al. 2010). Bending elasticity has also

been included in recent models, to understand the onset of nonspherical oscillations (Tsiglifis

& Pelekasis 2011; Liu et al. 2012).

While all these models considered, essentially, coating as a viscoelastic solid, Doinikov

& Dayton (2007) modeled it as a viscoelastic liquid using Maxwell model. It is interesting

to notice that their model was motivated by the fact that some experimental studies showed

no significant difference of resonance frequency of coated bubbles, compared to uncoated

bubbles. However, at least two other physical effects can substantially the resonance fre-

quency: nonlinear effects (Sec. 3.1.2), and vicinity of boundaries (Sec. 4.1), and these effects

are difficult to disentangle from those of surface elasticity.

3.3. Acoustically driven particle-stabilized bubbles

Bubbles can also be stabilized against dissolution by solid particles instead of molecular

surfactants, with the particles forming an “armor” on the interface, hence the name “ar-

mored bubbles” (Abkarian et al. 2007). The response to changes in pH or temperature,

to mechanical stress, and to magnetic fields of particle-stabilized bubbles have been stud-

ied extensively, as reviewed by Fujii & Nakamura (2017), but it is only recently that the

response to acoustic fields has been investigated.

Microbubbles stabilized by a monolayer of colloidal particles (nanoparticles or micropar-

ticles) have been found to exhibit an increased nonlinear response at low ultrasound pressure

amplitudes (Stride et al. 2008; Poulichet & Garbin 2015). Because the particles prevent the

bubble from contracting when they form a close-packed monolayer at the interface during

compression, the oscillation amplitude is asymmetric around the equilibrium radius, and

is dominated by the expansion of the bubble. This “expansion-only” behavior can be un-

derstood as the counterpart of the “compression-only” behavior observed for lipid-coated

bubbles (see Section 3.1.2): while a surfactant monolayer offers minute resistance to com-

pression beyond close packing because it easily buckles, monolayers of solid particles exert

larger mechanical resistance to compression at small pressure amplitudes. For sufficiently

large pressure amplitudes, particle-stabilized bubbles also undergo buckling (Poulichet &

Garbin 2015) and can shed particles from their coating.

Microbubbles can be coated by a multilayer of particles, as is the case for the so-called
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“magnetic bubbles” (Zhao et al. 2009) which present a shell of magnetic nanoparticles a

few tens of nanometers thick, shown in Figure 3f. Magnetic bubbles can be manipulated

with a magnetic field, oscillate in ultrasound, and can shed nanoparticles, with potential

applications to drug delivery (Gao et al. 2016).

The large-amplitude oscillations required for particle expulsion typically also cause

shape oscillations of the bubbles. Particle-coated bubbles undergoing shape oscillations

were found to exhibit directional particle expulsion from the antinodes of the shape oscil-

lations (Gao et al. 2016; Poulichet et al. 2017), as shown in Figure 3g.

The question of what constitutive models best describe the behavior of particle-coated

bubbles remains open. An empirical model has been put forward to describe “expansion-

only” behavior (Stride 2008), but models combining the governing equation for bubble

dynamics with a constitutive model for a particle monolayer are not yet available. Progress

is limited also because of a lack of experimental data suitable to test constitutive models.

4. BUBBLES NEAR VISCOELASTIC MATERIALS

Cavitation near hard boundaries is a classical topic in underwater acoustics and surface

cleaning, reviewed by Blake & Gibson (1987). The interest in the interactions between

bubbles and soft boundaries has recently been revived because of the growing number of

biomedical and biological applications, ranging from ultrasound imaging and drug delivery,

to bubbles in plants and trees. This has driven studies on bubble dynamics in the soft-

confinement conditions encountered in biomedical and biological systems. The proximity of

a solid compliant boundary affects the dynamic response of bubbles in ultrasound (Sec. 4.1).

Other examples of soft confinement include bubble dynamics inside compliant tubes such

as blood vessels (Sec. 4.2), interaction of bubbles with suspended cells or vesicles (Sec. 4.3),

and bubble collapse in elastic cavities (Sec. 4.4).

4.1. Bubble dynamics near a planar viscoelastic boundary

We begin from the case of a bubble near a planar boundary as the starting point for more

complex geometries. As we will see, the effect of even the simplest confinement geometry is

intricate. The effect of an infinitely rigid wall on the resonance of a single bubble is easy to

model by the method of images (Strasberg 1953). The presence of the wall is equivalent to

that of a fictitious second bubble which is the symmetric of the real bubble with respect to

the wall. The velocity field in the liquid is then the superposition of the two fields created

by each of the oscillating bubbles. Strasberg (1953) showed that the resonance frequency is

decreased by the presence of the wall, with the ratio of the resonance frequency of a bubble

at a distance d from a wall to the Minnaert frequency given by (1 + R0/2d)−1/2, which

equals 0.8 for a bubble in contact with the wall (d = R0). This model has been extended,

in particular to account for propagation delays of sound waves between the bubble and the

wall (Leighton 1994). However, it considers the bubble as a point source, and is hence only

valid for d� R0.

Experiments have been conducted to characterize the change in bubble dynamics due to

the proximity of a planar boundary, using optical tweezers to re-position the same bubble

at increasing distances from the boundary (Garbin et al. 2007). Using this method, Helfield

et al. (2014) measured the change in resonance frequency of the same bubble as a function

of distance from a compliant agarose boundary. These authors found that such a soft
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wall has a weak effect on both resonance frequency and amplitude at resonance: these

quantities showed relative variations within 10% when d was varied (Figure 5a). Besides

resonance properties, it has been shown that small-amplitude oscillations are sufficient to

cause nonspherical deformations of a bubble near a viscoelastic boundary (Vos et al. 2011)

and that the oscillations can cause the propagation of surface elastic waves on a viscoelastic

half-space, with characteristics that depend on the viscoelastic properties of the material

(Tinguely et al. 2016).

Theoretical models that take into account the effect of the compliance of the boundary

on the bubble dynamics predict a shift in resonance frequency (Doinikov et al. 2011; Hay

et al. 2012), and a change in nonlinear response (Doinikov & Bouakaz 2013). However,

the models currently available predict resonance frequency shifts in opposite directions, for

interfaces with the same mechanical properties. These discrepancies, together with the

scarcity of available experimental data, call for a better fundamental understanding of the

interaction of oscillating bubbles with soft, deformable boundaries.

For the case of bubble collapse near deformable boundaries, experiments have shown

that there is a strong qualitative effect of the elasticity of the boundary. The liquid jet

formed during bubble collapse is always directed towards a hard boundary, and away from

a free surface. For soft boundaries, there is a threshold in elastic modulus below which the

jet is directed away from the boundary. The example in Figure 5b is for a polyacrylamide

layer. Numerical simulations of bubble collapse near an elastic boundary successfully predict

jet reversal as a function of the elastic properties, and the deformation of the boundary (Ohl

et al. 2009).

Building on the theory for a single boundary or plate, models have been proposed also

for bubbles between two plates (Hay et al. 2012; Doinikov & Bouakaz 2013), as a first step

to approximate confinement conditions relevant to biomedical settings, which are covered

next.

4.2. Bubbles in a compliant tube

Studying bubbles in compliant tube is interesting to understand the behavior of bubbles

in blood vessels, which can either be beneficial for imaging and drug delivery (through

sonoporation mechanisms), or detrimental, owing to the risks of blood vessel disruption.

Oğuz & Prosperetti (1998) considered bubbles in infinitely hard tubes. They showed

that the natural frequencies of bubbles tend to be smaller than Minnaert frequency. Indeed,

because of the tube confinement, an oscillating bubble tends to put into motion all the liquid

within the tube, which has a larger effective mass than the water put into motion around

a bubble oscillating spherically in an unbounded medium. Besides numerical calculation,

Oğuz & Prosperetti (1998) presented an insightful toy model when the bubble is confined

enough to act as a piston across the tube. Sassaroli & Hynynen (2004) later considered

theoretically the linear oscillations of bubbles in blood capillaries, similarly assumed to be

rigid tubes.

Qin & Ferrara (2007) studied numerically the natural frequencies of bubbles in rigid and

compliant vessels. In the latter case, they used a phenomenological relationship between

the vessel deformation and the pressure difference across the vessel wall. They showed that

while in rigid vessels, the natural frequency is below the Minnaert frequency and increases

at increasing vessel radius, the result is exactly opposite in compliant tube; consistently

with this result, they showed that the natural frequency is a decreasing function of the tube
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Figure 5

Bubble dynamics in the presence of soft confinement. (a) Resonance curve of a lipid-coated bubble at various

controlled distances (indicated in the legend) from a soft wall made of agarose gel (Helfield et al. 2014). (b) (Brujan et al.

2001). (c) Snapshots of a bubble expanding and collapsing in a blood vessel (Chen et al. 2011) showing a strong
invagination of the vessel upon bubble collapse. (d) Velocity field in the fluid and in the viscoelastic wall of a microvessel

during bubble compression (Chen et al. 2016). The velocity ranges from 0 m/s (blue) to 0.8 m/s (red). (e) Acoustic

streaming around a bubble in contact with a wall (side view) (Marmottant & Hilgenfeldt 2003). (f) Attraction and
break-up of a vesicle in the streaming flow around a bubble (top view) (Marmottant & Hilgenfeldt 2003) (g) Strobe

photography of bubble nucleation in confinement. Texp is of the order of a microsecond (Vincent et al. 2012) (h) Evolution

of the radius after nucleation (Vincent et al. 2012).

rigidity.

Martynov et al. (2009) proposed a theory of bubbles oscillating in elastic vessels. These

authors use a simplified version of the model by Qin & Ferrara (2007), and extend the toy

model of Oğuz & Prosperetti (1998) by including a finite vessel rigidity. They quantified

the relative effect of the compressibility of the gas within the bubble (of bulk modulus of

order p0) and the compliance of the vessel; denoting Rv and dv the radius and thickness

of the vessel wall, and Ev its shear modulus, they showed that the limit of a “rigid” vessel

(Oğuz & Prosperetti 1998) corresponds to Evdv/p0Rv � 1, while a “compliant” vessel

corresponds to Evdv/p0Rv � 1. In the latter case, they showed that the natural frequency

is larger than Minnaert frequency, in agreement with their simulations and those of Qin &

Ferrara (2007), which they thus helped to rationalize.

18 Dollet et al.



Caskey et al. (2006) and Thomas et al. (2013) studied experimentally coated bubbles

in in-vitro rigid capillaries. They showed that increasing confinement lead to a significant

reduction of bubble oscillations. They did not observe a significant influence of the resonance

frequency. Caskey et al. (2007) and Chen et al. (2011) presented ex-vivo observations of

microbubble response to ultrasound when confined into a blood vessel. Caskey et al. (2007)

showed that bubble oscillation is strongly reduced when confined in a blood vessel, and

Chen et al. (2011) showed that the bubble generates in general a stronger invagination

than a distension of the neighboring blood vessel (Figure 5c), and that, when collapsing,

it generates a jet directed away from the blood vessel, consistently with other studies of

bubble/soft wall interactions (Brujan et al. 2001). This work motivated numerical studies;

for instance, Hosseinkhah et al. (2013) showed that invagination is the phase in which the

maximum wall shear stress is created on an elastic vessel. Figure 5d shows the computed

velocity field in the fluid and in the wall of a viscoelastic vessel during bubble compression

(Chen et al. 2016).

4.3. Bubbles near suspended cells or vesicles

Acoustically driven bubbles can interact with small suspended bodies, such as cells or

biomimetic vesicles, in a variety of geometries of biological, biomedical and industrial rele-

vance. For instance, ultrasound contrast agent microbubbles interact with blood cells in the

vasculature, and cavitation bubbles interact with suspended microorganisms in bioreactors.

Given its importance in a wealth of applications, a large body of work has addressed the

effect of ultrasound on cell suspensions. A majority of these studies have used indirect

experimental observations, which provide limited information on the bubble dynamics and

bubble-cell interactions responsible for the observed phenomena. In this Review, we limit

the scope to recent studies that have provided direct, time-resolved visualizations of the

interactions between bubbles and suspended cells or vesicles.

Le Gac et al. (2007) studied the interaction of a laser-induced cavitation bubble with

suspended mammalian cells in microfluidic confinement. It was found that the cell mem-

brane was damaged for cells located in the close vicinity of the collapsing bubble, while cells

at a few bubble radii away were unaffected. Bacteria and yeast cells, which present thick

cells walls, were also successfully damaged by cavitation bubbles in microfluidics (Tandiono

et al. 2012). Zinin & Allen (2009) developed a theoretical model for the deformation of

bacteria in the acoustic field generated by an oscillating bubble. They obtained the fre-

quency of maximum area deformation of the bacteria, ωK ∼
√
KA/ρa3, where KA is the

stretching elasticity of the cell wall, and a the radius of the cell, suggesting that there exists

an optimal frequency of bubble oscillations that causes cell disruption.

Marmottant & Hilgenfeldt (2003) performed experiments showing that linear bubble

oscillations are sufficient to achieve rupture of lipid vesicles. The microbubbles were adher-

ent to a solid surface and, upon excitation in ultrasound, generated a microstreaming flow,

see Figure 5e, which entrained suspended vesicles. When a vesicle reached the region of

maximum strain rate, close to the bubble, the lipid bilayer was deformed to the point that

it ruptured, see Figure 5f. The flow-induced deformation of the vesicle can be described

by a capillary number, CaK = ηaε̇max/KA, based on the stretching elasticity of the lipid

bilayer, KA, where a is the vesicle radius and ε̇max the maximum strain rate in the flow.

This model for vesicle deformation, introduced by Marmottant et al. (2008), predicts a
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threshold value of the capillary number for vesicle rupture, CacK =

√
6

5

σc

KA

√
∆

4π
+

σc

KA
,

that depends on the vesicle excess area ∆, and the lipid bilayer mechanical properties,

KA and σc, where σc is the rupture tension. Building on this theory, Pommella et al.

(2015) performed experiments using vesicles with controlled membrane properties obtained

by tuning the lipid composition, and showed that selective vesicle rupture with respect to

the membrane stretching elasticity can be obtained.

4.4. Bubbles in a liquid filled elastic cavity

An extreme confinement situation is when a bubble occur in a liquid-filled cavity, the bubble

being confined by walls in all directions of space. This liquid cavity is itself framed within

an elastic material, and thus compressed or dilated by bubble oscillations. The pressure

away from the bubble (p∞, as defined in Sec. 2.1.) now depends on the bubble radius.

Examples of such liquid cavities are found in trees, where ascending water is transported

tiny conduits, a few tens of micrometers in diameter and millimetric in length, within the

xylem tissues (Tyree & Sperry 1989). The pressure of ascending water is negative because

of evapo-transpiration at the top of the tree, and cavitation can occur, with the nucleation

of bubbles. These bubbles are the source of an embolism whose growth proves to be fatal

for a tree. Another astonishing example is the ejection mechanism of spores in ferns, that

relies on cavitation bubbles occurring in a series of liquid filled cavity located all along the

arm of a catapult (Noblin et al. 2012).

Biomimetic elastic and porous materials were recently designed to include such liquid

cavities, while sustaining the very large negative liquid pressures resulting from pervapora-

tion (Wheeler & Stroock 2008). These materials prove useful to study cavitation dynamics

in soft matter materials, while confined cavitation was mostly studied in rocks (Caupin &

Herbert 2006).

The bubble dynamics is strongly affected by the confinement since an oscillation of the

bubble volume must compress the liquid around and deform the elastic solid. For instance

just after the nucleation a cavitation bubble quickly grows and then oscillates around an

equilibrium radius that relaxes the liquid pressure, with very large variations of the bubble

volume. Natural frequencies of these oscillations are well above the Minnaert frequency

(Vincent et al. 2012; Vincent & Marmottant 2017), reaching MHz frequency for cavities of

few dozen of micrometers in radii. The reason for such high frequency oscillations lies in

the fact the effective stiffness resistance of the medium against oscillations is tremendously

increased. The gas compression modulus (equal to κp0) is indeed negligible in front of the

liquid compression modulus (Kl = 2.2 GPa) and the solid shear modulus G. The natural

oscillation of confined bubbles of radius R0 in a cavity of radius Rc writes

ω2
0 =

3K

ρR2
0

(
R0

Rc

)3

, (14)

with K an effective modulus given by 1
K

= 1
Kl

+ 3
4G

describing the effective elastic response

from the elasticity of water and solid that act as springs in series. This natural oscillation

frequency is much higher than for a free bubble. For comparison, with the the Minnaert

frequency (Eq. 8) the denominator is to the same than in Eq. (14) but with a numerator

much lower (3γp0 instead of 3K(R0/Rc)
3).
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5. CONCLUSIONS

Bubbles are simple but fascinating objects. They exhibit a strong ability to oscillate in

response to sound, while being very sensitive to their surrounding environment. They

prove to be useful probes of the viscoelastic properties of the medium, or the presence of

boundaries. The response of bubbles with a coating is strongly affected by the addition

of the coating layer, either thick or a monolayer of molecules or of particles. Bubbles

display nonlinear effects, which can be isolated by ultrasound echography, both in their

high amplitude regime, but also at small amplitude when the coupling with the nonlinear

rheology of the medium is strong.

As a perspective, we expect a variety of promising developments in the future. We

see three directions that seem especially fruitful in view of the recent literature. First,

bubbles being active miniature tracers, they can probe the high-frequency rheology of soft

and biological materials. One could imagine that such information would pave the way

to three-dimensional maps of the rheological properties of heterogenous media, following

bubbles navigating in different regions of these media. Second, further progress is expected

in the description of the constitutive behavior of soft materials at high strain rate, thanks to

the information obtained from experiments where oscillating or collapsing bubbles are used

as rheological probes. In addition, the link between the microscopic changes in the material

upon deformation, and the macroscopic mechanical response, remain to be explored. One

example is the case of particle-coated bubbles, for which interfacial constitutive models are

currently lacking. Last, the interaction of a compliant flat wall and oscillating bubbles

deserves to be better understood, both to quantify the wall influence on bubble dynamics,

and as a starting point to control the physical and biological effects of bubbles on soft

boundaries with more complex geometries, like blood vessels.
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