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INTRODUCTION

Bubbles are present inside a variety of soft materials and biological media. From the bubbles created upon decompression of magma in a volcanic eruption [START_REF] Ichihara | Dynamics of a spherical viscoelastic shell: Implications to a criterion for fragmentation/expansion of bubbly magma[END_REF], to those generated in the synovial fluid when we crack our joints [START_REF] Kawchuk | Real-time visualization of joint cavitation[END_REF], these fascinating objects challenge scientists to understand and control their behavior.

The ability to control bubble dynamics underpins a number of industrial processes in which bubbles grow or undergo collapse within complex fluids. For instance, the expansion of gas bubbles in a polymeric liquid is central to the production of polymer foams [START_REF] Everitt | Bubble dynamics in viscoelastic fluids with application to reacting and non-reacting polymer foams[END_REF], and the dispersion of carbon nanotubes by ultrasonication is affected by cavitation and bubble collapse, which cause nanotube scission [START_REF] Pagani | Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication[END_REF]. Microscopic bubbles injected in the human body can be manipulated with ultrasound to deliver drugs at otherwise inaccessible locations, for instance across the blood-brain barrier [START_REF] Choi | Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles[END_REF]. In this case, and for many other medical applications of ultrasound [START_REF] Coussios | Applications of acoustics and cavitation to noninvasive therapy and drug delivery[END_REF], a deep understanding of bubble dynamics near or within soft tissue is vital to the outcome of a procedure. Cavitation is also involved in biological processes that we have only recently begun to understand. The cell membrane can absorb mechanical energy from an ultrasound wave, leading to bubble formation in the intramembrane space between the two lipid leaflets that make up the membrane [START_REF] Krasovitski | Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects[END_REF]). On a larger length scale, cavitation bubbles can occur in trees and plants under strong hydric evaporative stress and can cause an embolism in the water circulation [START_REF] Tyree | Vulnerability of xylem to cavitation and embolism[END_REF].

Soft and biological materials, including cells, tissues, colloidal suspensions, polymer solutions and gels, exhibit a behavior intermediate between that of a fluid and that of a solid, and is therefore characterized by an elasticity as well as a viscosity. The mechanical properties of such viscoelastic materials typically also depend on the amplitude and the rate of the applied deformation. Rheology is the study of the complex response to flow and deformation of these materials, and of the microscopic origin of this response [START_REF] Chen | Rheology of soft materials[END_REF]. The rheological behavior of a viscoelastic material can be nonlinear, and cause dramatic changes in bubble dynamics, which is in itself highly nonlinear even in simple fluids [START_REF] Plesset | Bubble dynamics and cavitation[END_REF]. In addition, the interaction of bubbles with soft and biological matter occurs in a variety of geometries and configurations (Figure 1), as in some of the examples mentioned above: bubbles can be embedded in a viscoelastic medium, can be coated by an interfacial viscoelastic layer, or can be in proximity of a soft viscoelastic boundary.

The review covers recent developments on the effect of the medium rheology and of soft confinement on bubble dynamics, focusing in particular on the resonant behavior of bubbles as an exquisitely sensitive probe of their surroundings. 

BUBBLE DYNAMICS IN A VISCOELASTIC MEDIUM

Here we introduce the governing equation of spherical bubble dynamics in an incompressible medium. For a Newtonian fluid, it reduces to the famous Rayleigh-Plesset equation [START_REF] Plesset | Bubble dynamics and cavitation[END_REF], a remarkable example of a solution of the Navier-Stokes equation in spherical coordinates. In this formulation, it is easy to specify the material properties of the surrounding medium and of an interfacial layer through the stress tensor, τ , and the interfacial stress tensor, τ s, respectively (Section 2.1). We discuss some examples of linear and non-linear constitutive models for τ , and highlight the effects of viscoelastic properties of the medium on bubble dynamics (Section 2.2). The role of the interfacial stress τ s will be discussed in Section 3.2. Measurements of bubble dynamics in viscoelastic media are presented with a particular focus on experiments in which the rheological properties of the medium are obtained from the bubble response (Section 2.3).

Governing equation of bubble dynamics in a viscoelastic medium

We consider a spherical bubble in an incompressible, homogeneous, viscoelastic medium. We define a spherical coordinate system with origin at the center of the bubble, with r, θ, and φ the radial, azimuthal, and polar coordinates respectively. The position of the bubble is fixed and only its radius, R, changes in time, generating a purely radial velocity field u = (u, 0, 0). From the continuity equation, 1 r 2 ∂ ∂r r 2 u = 0, with the boundary condition u(r = R) = Ṙ, where the dot denotes derivative with respect to time, it follows that the velocity is u(r, t) = R 2 Ṙ/r 2 . Substituting u(r, t) into the radial component of the momentum equation,

ρ ∂u ∂t + u ∂u ∂r = - ∂p ∂r + (∇ • τ ) r , (1) 
where (∇ • τ ) r is the radial component of ∇ • τ , the divergence of the deviatoric stress tensor, and is given by

(∇ • τ ) r = 1 r 2 ∂ ∂r r 2 τrr - τ θθ +τ φφ r
, and integrating with respect to r gives

ρ R 2 R + 3 2 Ṙ2 = p(R) -p∞ + ∞ R (∇ • τ ) r dr, (2) 
valid for any rheology of the surrounding medium. Here p∞ is the pressure in the medium far from the bubble, and p(R) is the pressure in the medium at the bubble interface, obtained from the balance of normal stress at the interface:

p(R) -(∇s • τ s)r -τrr(R) = pg, ( 3 
)
where pg is the gas pressure in the bubble and viscous effects in the gas have been neglected. In this equation, the contribution of the interface appears through the radial component of the surface divergence of the interfacial stress (Edwards et al. 1991), given by: (∇s • τ s)r = -(τ s,θθ + τ s,φφ )/R. We will discuss the constitutive laws for the interfacial stress in Sec. 3.2 in the case of bubbles coated with a viscoelastic interfacial layer. For uncoated bubbles, it reduces to the surface tension of the gas-liquid interface, γ: τ s = γIs, where Is is the surface unit tensor; for a spherical bubble, Is = e θ e θ + e φ e φ . Equation (3) then reduces to:

p(R) + 2γ R -τrr(R) = pg. (4) 
Inserting this equation in Eq. ( 2), one gets:

Gas bubble: the bubble contains a permanent, noncondensable gas.

Vapor bubble: the bubble contains the vapor of the surrounding liquid (e.g. cavitation bubbles, laser-generated bubbles)

ρ R 2 R + 3 2 Ṙ2 = pg -p∞ - 2γ R + τrr(R) + ∞ R (∇ • τ ) r dr. (5) 
In the linear regime of deformation of a viscoelastic medium, τ is traceless, τ θθ +τ φφ = -τrr, hence (∇ • τ )r = ∂τrr ∂r + 3τrr r . With these assumptions, Eq. ( 2), simplifies to [START_REF] Prosperetti | A generalization of the Rayleigh-Plesset equation of bubble dynamics[END_REF])

ρ R R + 3 2 Ṙ2 = pg -p∞ - 2γ R + 3 ∞ R τrr r dr. (6) 
This equation governs the dynamics of a spherical bubble in an incompressible medium having arbitrary rheological properties, provided that the stress tensor is traceless. Following e.g. [START_REF] Keller | Bubble oscillations of large amplitude[END_REF], a general governing equation that also accounts for compressibility effects of the medium surrounding the bubble can be obtained. The gas pressure is a function of the bubble radius and it depends on the thermal properties of the gas at the frequency of the acoustic driving. In this Review, thermal dissipation effects due to the gas are effectively accounted for through a polytropic exponent κ, such that pg = pg,0(R0/R) 3κ , pg,0 = p0 + 2γ/R0 being the gas pressure at equilibrium. The polytropic exponent is equal to 1 for isothermal compression of the gas, and equal to the ratio of the heat capacities at constant pressure and at constant volume for adiabatic compression. We refer the reader to [START_REF] Prosperetti | Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[END_REF] for the full theoretical treatment of thermal effects.

The rheological behavior of the medium is specified by introducing the constitutive equation that relates the stress, τ , to the strain, ε, and the strain rate, ε. Because we have assumed a flow field with spherical symmetry, the only non-zero component of the strain rate is εrr = ∂u/∂r = -2R 2 Ṙ/r 3 . Note that the mode of deformation of the medium around a spherical bubble is pure extension (biaxial extension upon expansion, uniaxial extension upon compression). Integration with respect to time gives the corresponding component of the strain, εrr(r) = t 0 (∂u/∂r)dt = -2(R 3 -R 3 0 )/3r 3 .

Effect of the medium rheology on bubble response

Bubbles are extremely sensitive probes of their surroundings, and the changes in bubble dynamics due to the rheological properties of the medium can indeed be dramatic. To illustrate this, we first recall the case of a Newtonian fluid, to introduce the analogy between an acoustically driven bubble and a harmonic oscillator (Section 2.2.1). Although this analogy is limited to the case of small-amplitude oscillations, it is a simple yet powerful tool to reveal the effects of the surroundings on bubble response. We then review some linear and non-linear constitutive models (Sections 2.2.2 and 2.2.3), focusing primarily on harmonic driving of bubbles and their resonant behavior as a probe of the effect of medium rheology.

2.2.1. Small-amplitude oscillations in a Newtonian fluid. For an incompressible, Newtonian liquid of shear viscosity η, the radial component of the stress tensor is τrr = 2η εrr. Substituting this constitutive equation in Eq. ( 6), the familiar Rayleigh-Plesset equation is obtained [START_REF] Plesset | Bubble dynamics and cavitation[END_REF]:

ρ R 2 R + 3 2 Ṙ2 = pg -p∞ - 2γ R - 4η Ṙ R . (7) 
For the case of harmonic driving of bubbles in acoustic fields, the pressure far from the bubble is p∞ = p0 + pa(t), where p0 is the ambient pressure, and the acoustic pressure pa(t) = ∆p sin(ωt) has amplitude ∆p and angular frequency ω = 2πf with f the frequency. The Reynolds number based on the equilibrium bubble radius, R0, is Re = ρR 2 0 ω/η. A bubble undergoing volumetric oscillations as a result of harmonic driving can be simply thought of as a forced harmonic oscillator, where the mass corresponds to the inertia of the fluid displaced by the bubble, and the spring corresponds to the restoring force due to the compression of the gas inside the bubble and surface tension [START_REF] Leighton | The Acoustic Bubble[END_REF]. For sufficiently small amplitude of the acoustic forcing, ∆p/p0 1, the oscillatory response of the bubble can be assumed to be linear. The temporal evolution of the radius R(t) = R0 + ∆R(t) can then be written as R(t) = R0[1 + x(t)] with x(t) = x0 sin(ωt + ϕ), where ϕ is the phase shift between the acoustic forcing and the radial oscillations, and the amplitude of oscillations is small, x0 = ∆R/R0

1. Perturbation analysis to first order in the small parameter x returns the equation for the amplitude x(t) in the form of a damped harmonic oscillator, ẍ + 2β ẋ + ω 2 0 x = -∆p sin(ωt)/ρR 2 0 , where β is the damping coefficient and ω0 is the natural frequency [START_REF] Prosperetti | Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[END_REF]. The natural frequency is given by

ω 2 0 = 1 ρR 2 0 3κp0 + 2(3κ -1)γ R0 . (8) 
If surface tension effects are negligible, the Minnaert frequency ωM, given by ω 2 M = 3κp0/ρR 2 0 , is recovered. If the only damping mechanism included in Eq. ( 7) is viscous dissipation, the damping coefficient is simply given by β = βvis = 2η/ρR 2 0 . Damping in a Newtonian liquid may also include acoustic and thermal contributions, as described by [START_REF] Prosperetti | Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[END_REF]. The equation for the resonance curve of the bubble, which is the amplitude of bubble oscillations as a function of the applied frequency, is given by

x0(ω) = ∆p ρR 2 0 1 (ω 2 0 -ω 2 ) 2 + 4β 2 ω 2 . ( 9 
)
The frequency for which the amplitude of oscillations is a maximum, i.e. the resonance frequency, differs from the natural frequency because of damping, and is obtained from Eq. 9 as ω 2 res = ω 2 0 -2β 2 .

Linear viscoelastic models.

A simple linear constitutive model that includes viscous and elastic effects is the Kelvin-Voigt model [START_REF] Macosko | Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles[END_REF]. The radial component of the stress tensor is given by τrr = 2(Gεrr + η εrr), where G is the shear modulus of the medium.

The behavior described by this model is that of a spring and a dashpot in parallel, where the spring causes the material to recover its original configuration after deformation. It is therefore a model for predominantly solid materials, and is suitable for soft tissue, which generally recovers its original configuration after the stress is removed.

The Kelvin-Voigt model can be simply combined with the momentum balance, Eq. ( 6), to give a governing equation for a bubble in an incompressible, linear viscoelastic medium:

ρ R 2 R + 3 2 Ṙ2 = pg -p∞ - 2γ R - 4η Ṙ R + 4 3 G R 3 -R 3 0 R 3 . ( 10 
)
The assumption of a linear relationship between stress and strain, and the use of Eq. ( 6), both valid for small deformations, imply that also Eq. ( 10) is only valid for small amplitude of oscillations, ∆R/R0 1. Linearization of Eq. ( 10), following the same perturbation analysis outlined in Section 2.2.1, gives the natural frequency:

ω 2 0 = 1 ρR 2 0 3κp0 + 2(3κ -1)γ R0 + 4G , (11) 
which reduces to Eq. ( 8) for G = 0. For a given bubble radius, the natural frequency increases with increasing G, as a result of the increased stiffness of the system due to the solid-like elasticity of the surrounding medium (Figure 2a). [START_REF] Yang | A model for the dynamics of gas bubbles in soft tissue[END_REF] combined the Kelvin-Voigt constitutive model with the Keller-Miksis equation, to account also for compressibility effects, and performed perturbation analysis to obtain the resonance frequency and damping coefficients for this case.

Another simple, linear viscoelastic model is the linear Maxwell model [START_REF] Macosko | Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles[END_REF]), represented by a spring and a dashpot in series, suitable for predominantly liquid materials. The constitutive equation is given by λ τrr +τrr = 2η εrr, where λ is the relaxation time of the material, given by λ = η/G. The non-dimensional number comparing the relaxation time scale of the material with the characteristic timescale of the flow is the Deborah number, which for harmonic driving at frequency ω writes De = λω. The Deborah number measures the ability of the material to relax back to its initial state during one cycle of the acoustic forcing. Despite its simplicity, the Maxwell model combined with Eq. ( 6) does not yield an ordinary differential equation for the bubble radius. [START_REF] Fogler | Collapse of spherical cavities in viscoelastic fluids[END_REF] were the first to obtain and solve numerically the integro-differential equation for the radial dynamics, with the aim of investigating bubble collapse in polymer processing. Allen & Roy (2000a) reduced the problem to a set of coupled ordinary differential equations and used a multiplescale perturbation method to obtain an equation for the resonance frequency of the bubble. The equation was solved numerically to obtain resonance curves for parameters of relevance to medical applications. For small-amplitude forcing (Re = 0.1) such that the response in a Newtonian fluid (De = 0) was linear, a softening nonlinearity was observed for the Maxwell fluid, with the nonlinear effect increasing with the elasticity of the medium (De = 1 -3). This result highlights a strong effect of the medium rheology on bubble dynamics even for small-amplitude forcing.

Creep: Time-dependent increase in strain for a step increase in stress.

Relaxation:

Time-dependent decrease in stress for a step increase in strain, on a characteristic timescale λ = η/E. To reflect the fact that many soft materials have intermediate behavior between that of a fluid and that of a solid, the Kelvin-Voigt and Maxwell models can be combined to obtain the Standard Linear Solid model. In this model, a spring in parallel to a Maxwell element (spring and dashpot in series) confers solid-like behavior to the system. The constitutive equation, shown in Table 1, has been combined with the Keller-Miksis equation by [START_REF] Hua | Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium[END_REF]. They found that when the term in τrr is sufficiently large, nonlinear effects become important and the steady-state oscillation frequency after a Rayleigh collapse differs from the natural frequency, with a non-trivial dependence on Re and De.

2.2.3. Nonlinear viscoelastic models. Many applications of bubble dynamics in viscoelastic media involve relatively large deformations, for instance cavitation in tissues for non-invasive therapy and drug delivery [START_REF] Coussios | Applications of acoustics and cavitation to noninvasive therapy and drug delivery[END_REF]. To model these situations, the equation governing bubble dynamics can be combined with a non-linear constitutive model, valid for large strains. In this case, Eq. ( 5) with a general form of the stress tensor is used, as the assumption of a traceless stress tensor may not be valid. Equation ( 5) is often modified following [START_REF] Keller | Bubble oscillations of large amplitude[END_REF] to account for compressibility effects, which can also become important for large strains.

Several authors have considered a non-linear version of the Maxwell model in the context of bubble dynamics (Allen & Roy 2000b;[START_REF] Jiménez-Fernández | Bubble oscillation and inertial cavitation in viscoelastic fluids[END_REF][START_REF] Naude | Periodic and chaotic acoustic oscillations of a bubble gas immersed in an upper convective maxwell fluid[END_REF]Warnez & Johnsen 2015). In this model, referred to as the Upper-Convected Maxwell model, the time derivative of the stress tensor is replaced with the upper-convected time derivative, to respect frame invariance [START_REF] Macosko | Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles[END_REF]. Using this model, Allen & Roy (2000b) showed that for harmonic forcing near resonance with Re = 2.5 and De = 3, the linear and nonlinear Maxwell models give the same prediction for small-amplitude forcing (pa = 50 kPa); on the contrary, for larger forcing amplitudes (pa = 200 kPa) the nonlinear model predicts stable oscillations while the linear model predicts explosive growth. Since such prediction is inconsistent with the underlying assumption of small strain for the linear model, the comparison highlights the importance of choosing a suitable nonlinear model for large strains. Figure 2b shows a comparison of the evolution of the bubble radius during harmonic driving at pa = 400 kPa for a Newtonian (De = 0), Kelvin-Voigt, Maxwell, Standard Linear Solid, and Upper-Convected Maxwell model (De ≈ 6) (Warnez & Johnsen 2015). The models without relaxation (Newtonian and Kelvin-Voigt) show limited nonlinear behavior, while for the models that include relaxation, the effect on the amplitude and frequency of oscillations is dramatic. For sufficiently large Deborah numbers, the nonlinear Maxwell model predicts aperiodic oscillations and chaotic behavior [START_REF] Jiménez-Fernández | Bubble oscillation and inertial cavitation in viscoelastic fluids[END_REF][START_REF] Naude | Periodic and chaotic acoustic oscillations of a bubble gas immersed in an upper convective maxwell fluid[END_REF], as shown in Figure 2c (De = 5), because in this regime the forcing period, τ ∼ ω -1 , is much shorter than the relaxation time of the material, λ, meaning that the stress continues to build up cycle after cycle of oscillation.

Nonlinear constitutive equations that describe more complex rheological responses have been combined with the equation governing bubble dynamics [START_REF] Gaudron | Bubble dynamics in a viscoelastic medium with nonlinear elasticity[END_REF]Warnez & Johnsen 2015;[START_REF] Estrada | High strain-rate soft material characterization via inertial cavitation[END_REF]) but will not be discussed here.

Experimental results

Motivated by applications in polymer processing, early experimental studies on bubble dynamics in viscoelastic liquids have focused primarily on bubble collapse. These studies have been reviewed elsewhere [START_REF] Macosko | Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles[END_REF] and are not covered here. More recently, the influence of the mechanical properties of biological fluids and tissues on cavitation and bubble dynamics has gained widespread interest, because of its relevance in many biomedical applications, for instance tissue ablation by high-intensity focused ultrasound, ophtalmic microsurgery, and microbubble-enhanced ultrasound imaging; [START_REF] Brujan | Cavitation in Non-Newtonian Fluids: With Biomedical and Bioengineering Applications[END_REF] has reviewed comprehensively the topic of cavitation for biomedical and bioengineering applications.

Here we focus on recent experiments that have used bubble dynamics as a probe of the rheological properties of a viscoelastic medium.

Because in general the mechanical response of soft materials depends on the rate of deformation, the rheological properties need to be measured at the frequency of interest. However, standard instruments typically cannot reach the high strain rates (10 3 -10 6 s -1 ) characteristic of bubble collapse and ultrasound-driven bubble dynamics. The theoretical predictions presented above suggest that experiments on oscillatory bubble dynamics in viscoelastic media can provide measurements of rheological properties at high frequency. While such a technique has not yet been benchmarked and adopted widely in applications, a few studies have shown the viability of this approach, termed "acoustic microrheology" [START_REF] Strybulevych | Acoustic microrheology: Shear moduli of soft materials determined from single bubble oscillations[END_REF]. [START_REF] Strybulevych | Acoustic microrheology: Shear moduli of soft materials determined from single bubble oscillations[END_REF] recorded the resonance curves of millimetric bubbles in agar gel by measuring the acoustic response of the bubble as a function of frequency. They fitted the resonance curve and the damping coefficient given by the linear Kelvin-Voigt model to obtain the material properties. [START_REF] Hamaguchi | Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation[END_REF] recorded optically resonance curves using a constant ultrasound frequency while the bubble radius slowly increased over time due to gas transfer into the bubble. Values of shear modulus and shear viscosity were extracted by fitting Eq. ( 9) to the data. [START_REF] Jamburidze | High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics[END_REF] recorded resonance curves of bubbles excited by ultrasound at small pressure amplitudes (pa < 1 kPa) in agarose gels, to ensure that the deformation of the material 9) to extract G and η. (f) Collapse of a laser-generated bubble in a polyacrylamide gel [START_REF] Brujan | Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom[END_REF]. (g) Cavitation rheology uses quasi-static bubble injection to measure the elastic modulus [START_REF] Kundu | Cavitation and fracture behavior of polyacrylamide hydrogels[END_REF].

remained in the linear regime. The resonance curves were fitted to Eq. ( 9) to extract the viscoelastic properties (see Figure 2d). The measurement was found to be robust by comparing the results from different bubbles, as shown in Figure 2e.

Bubble collapse is also sensitive to the rheology of the surrounding medium, but the analysis of the experimental results to infer viscoelastic properties can be challenging. Controlled experiments with direct visualizations of bubble collapse in polyacryalmide gels (Figure 2f ) showed that the maximum radius of the laser-generated bubble decreased with increasing elastic modulus, and the oscillation period of the bubble was reduced [START_REF] Brujan | Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom[END_REF], qualitatively in agreement with Eq. ( 11).

Recently, a method for high strain-rate rheometry based on inertial cavitation has been demonstrated, in which time-resolved data for the temporal evolution of the radius are fitted to the prediction of the equation governing bubble dynamics, combined with a suitable nonlinear constitutive model [START_REF] Estrada | High strain-rate soft material characterization via inertial cavitation[END_REF].

Finally, another technique that uses bubbles to probe mechanical properties of soft materials, called "cavitation rheology" [START_REF] Zimberlin | Cavitation rheology for soft materials[END_REF], uses quasi-static bubble injection to determine the elastic modulus of a soft material by monitoring the pressure in the bubble at the onset of a mechanical instability (see Figure 2g). This elegant technique does not provide information on the frequency dependence of the mechanical properties.

One of the advantages of using bubbles as rheological probes is that they can provide information on the local properties of inhomogeneous materials. This is advantageous for soft and biological materials, which often have complex microstructures. The knowledge of the effect of high-rate deformation on the microstructure of a inhomogeneous material is still limited. Future research should fill this gap, as well as the link between microscale phenomena and rheological response.

BUBBLE DYNAMICS WITH A VISCOELASTIC INTERFACE

Stable bubble dispersions are central in the formulated products industry and in biomedical imaging. Small bubbles are stabilized against dissolution by coating their interface with a layer of surface-active material. In Section 2 we have seen that for the case of bubble dynamics in a viscoelastic medium, theoretical work has predated some of the experimental developments. Instead, the effect of an interfacial coating on bubble dynamics has been first observed experimentally, motivating subsequent efforts to develop predictive models. To reflect this, in this Section the experimental observations are reported before the theoretical models. Surface viscoelasticity significantly increases the resonance frequency and damping, and the coating exacerbates nonlinear oscillation effects (Sec. 3.1), which is challenging for modeling (Sec. 3.2). This Section also covers the recently emerging area of particle-stabilized bubbles (Sec. 3.3).

Experimental coating effects

Interfacial layer: medium of arbitrary thickness coating a bubble.

Monolayer: single layer of molecules or particles adsorbed at and interface or surface.

Shell: curved layer of thickness much larger than the molecular size, such that it can be treated as a continuum across its thickness.

Coated bubbles are generally micrometric to millimetric in radius, and thus resonate at several kHz to several MHz. It is therefore difficult to optically resolve their oscillations. Alternative methods to characterize their resonance properties rely either on purely acoustical measurements, or on light scattering [START_REF] Tu | Estimating the shell parameters of SonoVue R microbubbles using light scattering[END_REF]. With the advent of high-speed cameras, direct imaging has become possible either using streak cameras, recording one single line of pixels through a bubble up to 100 MHz, or ultrahigh-speed cameras, recording images up to 25 MHz, which becomes sufficient to resolve several cycles of oscillations [START_REF] Versluis | High-speed imaging in fluids[END_REF].

3.1.1. Changes in linear response. Compared to uncoated bubbles, coated bubbles display a larger resonance frequency, a lower amplitude of response, and a larger damping. Many studies have characterized coated microbubbles used as ultrasound contrast agents for medical imaging. These agents have different kinds of coating: either a protein layer (Figure 3a), or a polymer shell (Figure 3b), or a thin lipid monolayer. Anticipating on Sec. 3.2, we will see that there exists two kinds of models to describe the effect of the coating on bubble oscillations: models considering shells as 3D media of finite thickness, adapted to polymer or protein coatings; and models considering an infinitely thin interface, with 2D properties, adapted to lipid monolayers. However, a common point of all models is to ascribe to coatings two contributions: an elastic and a viscous one, and the experimental Examples of coated bubbles. (a) Electron micrograph of a microbubble coated with a protein layer [START_REF] Cavalieri | Ultrasonic synthesis of stable, functional lysozyme microbubbles[END_REF]. (b) Polymer capsules, which are shells of polymer-coated bubbles [START_REF] Böhmer | Preparation of monodisperse polymer particles and capsules by ink-jet printing[END_REF]). (c) Snapshot of coated microbubbles under ultrasound at two moments during an acoustic cycle [START_REF] Marmottant | Buckling resistance of solid shell bubbles under ultrasound[END_REF]): left, in the inflated state; right, in the buckled state, with wrinkles. (d) Nonspherical surface modes displayed by a lipid-coated bubbles under ultrasound [START_REF] Dollet | Nonspherical oscillations of ultrasound contrast agent microbubbles[END_REF]. (e) Lipid shedding from a microbubble under ultrasound [START_REF] Luan | Lipid shedding from single oscillating microbubbles[END_REF]). (f) Bubbles coated by magnetic nanoparticles [START_REF] Zhao | Dynamics of magnetic bubbles in acoustic and magnetic fields[END_REF]). (g) Directional particle shedding from the antinodes of a particle-coated bubble undergoing shape oscillations [START_REF] Poulichet | Ultrafast desorption of colloidal particles from fluid interfaces[END_REF].

studies have all fitted their measurements to estimate both these contributions.

In the context of ultrasound contrast agents, one of the first acoustic characterization of a suspension of bubbles coated by a protein layer was performed by de [START_REF] De Jong | Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements[END_REF], and they provided an estimate an elastic contribution of such layers. Frinking & de Jong (1998) also characterized bubbles coated with a protein layer (Figure 3a), and extended the analysis by [START_REF] De Jong | Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements[END_REF] by including a dissipative contribution from the coating. [START_REF] Hoff | Oscillations of polymeric microbubbles: Effect of the encapsulating shell[END_REF] studied polymer-coated bubbles, both experimentally and theoretically. They fitted their measurements by [START_REF] Church | The effects of an elastic solid surface layer on the radial pulsations of gas bubbles[END_REF]'s model (Sec. 3.2) in the limit of a thin shell, to obtain a shell shear modulus and a shell viscosity. For bubbles coated with a lipid monolayer, [START_REF] Gorce | Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of SonoVue TM[END_REF] fitted a "shell stiffness" and "friction parameter".

All these studies characterized a polydisperse population of coated bubbles by purely acoustic means. The drawback of such methods is that the influence of the coating on the acoustic properties of the bubbles is convoluted by the bubble size distribution. [START_REF] Parrales | Acoustic characterization of monodisperse lipid-coated microbubbles: Relationship between size and shell viscoelastic properties[END_REF] used microfluidic flow-focusing techniques to produce fairly monodisperse lipidcoated bubble suspensions, of relevant diameter for medical application (mean diameter 6 µm). Measuring the attenuation coefficient, they had a good estimate of the elasticity and viscosity of lipid monolayers.

To go beyond purely acoustical measurements, [START_REF] Morgan | Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size[END_REF] insonified bubbles coated with a lipid monolayer, and simultaneously imaged their oscillations along their centerline using a streak camera. They compared these measurements with a viscoelastic shell model, using shell elastic and viscous moduli as two fitting parameters. They found that shell viscosity increased with bubble radius. van der Meer et al. ( 2007) insonified bubbles coated with a lipid monolayer at amplitude below 40 kPa to minimize nonlinear effects, imaged their oscillation with an ultrahigh-speed camera, measured the oscillation amplitude as a function of frequency for individual bubbles of different radii, obtained from them resonance frequency and damping coefficients as a function of bubble radius, and fitted these data with a viscoelastic monolayer model. They found a surface elasticity of χ = 0.5 ± 0.1 N/m (see Sec. 3.2) and confirmed the increase of surface viscosity as bubble radius increases.

In recent studies, bubbles of controlled coating composition have been synthetized, especially with lipids, and the influence of this composition has been quantified. For instance, a method similar to van der Meer et al. ( 2007) was used by [START_REF] Van Rooij | Non-linear response and viscoelastic properties of lipid-coated microbubbles: Dspc versus dppc[END_REF] to characterize bubbles coated by two different lipids: DSPC and DPPC. These authors found that DSPC has a larger surface elasticity than DPPC. [START_REF] Lum | Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations[END_REF] developed a different technique, using plasmonic bubbles, to investigate the surface rheology of lipid (the D•PC family) monolayers in the MHz range: the decaying free oscillations of lipid-coated bubbles were measured by optical scattering methods, and the natural frequency and damping were fitted to measure surface elasticity and viscosity. They found an increase of elasticity with increasing carbon chain length, ascribed to modification of intermolecular forces. Figure 4a illustrates their results, and exemplifies that coating elasticity leads to a significant increase of the resonance frequency compared to the Minnaert frequency.

3.1.2. Nonlinear effects. In the context of medical imaging, nonlinear oscillations of coated bubbles have been studied to improve signal-to-noise ratio, because bubbles have a much more nonlinear response than the surrounding tissue. Second harmonic (emission at twice the forcing frequency) is the most classical nonlinearity. However, it is more attenuated, and less specific, than subharmonic emission [START_REF] Shankar | Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement[END_REF]), which has thus received much attention.

Among the first ones to identify such nonlinearities, [START_REF] Lotsberg | Experimental observations of subharmonic oscillations in infoson bubbles[END_REF] evidenced a clear subharmonic signal for protein-coated bubbles, at lower pressure amplitude than the subharmonic threshold suggested by the theory for uncoated bubbles [START_REF] Prosperetti | Nonlinear oscillations of gas bubbles in liquids: steady-state solutions[END_REF]. [START_REF] Shankar | Subharmonic backscattering from ultrasound contrast agents[END_REF] confirmed this fact, and reported subharmonic backscattering at forcing amplitudes as low as 20 kPa. Beyond acoustical characterization, Sun et al. (2005) observed that lipid-coated bubbles undergo subharmonic oscillations using streak imaging; these were also reported by [START_REF] Sijl | Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles[END_REF] from direct optical measurements (Figure 4e).

While purely acoustical methods were efficient in revealing subharmonic emission from coated bubbles, ultrahigh-speed imaging of oscillating coated bubbles revealed a wealth of other nonlinear effects, apparent already at very low forcing compared to uncoated bubbles, like subharmonics: compression-only, "thresholding", and nonspherical oscillations, often associated to buckling or crumpling of the coating. [START_REF] Marmottant | A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture[END_REF] revealed that bubbles coated with a lipid monolayer oscillate in a so-called "compressiononly" manner, i.e. they compress more than they expand, compared to their equilibrium radius (Figure 4b), in marked contrast with uncoated bubbles oscillating in a nonlinear fashion, which expand more than they compress. [START_REF] Emmer | The onset of microbubble vibration[END_REF] showed that the relation between the oscillation amplitude of lipid-coated bubbles and the forcing amplitude is highly nonlinear: at forcing frequencies below their resonance frequency, lipid-coated bubbles hardly oscillate below a forcing threshold, above which oscillation amplitude increases abruptly (Figure 4c). Initially ascribed to size-dependent shell properties, this so-called "thresholding" nonlinear behavior, together with "compression-only", was later rationalized by [START_REF] Overvelde | Nonlinear shell behavior of phospholipid-coated microbubbles[END_REF] in the general framework of nonlinear oscillations. The latter paper also showed that the resonance frequency of coated bubbles is a strongly decreasing function of the amplitude (both forcing and oscillation), reminiscent of a softening nonlinearity (Figure 4d).

Above a certain forcing amplitude, bubbles display nonspherical oscillations. Like volumetric ones, these are significantly affected by surface viscoelasticity. For millimetric bubbles, [START_REF] Asaki | Effect of an insoluble surfactant on capillary oscillations of bubbles in water: Observation of a maximum in the damping[END_REF] and [START_REF] Asaki | The effects of a soluble surfactant on quadrupole shape oscillations and dissolution of air bubbles in water[END_REF] showed that the presence of soluble and insoluble surfactants slightly changes the natural frequency, and increases the damping up to eight times, of a quadrupolar nonspherical mode. [START_REF] Dollet | Nonspherical oscillations of ultrasound contrast agent microbubbles[END_REF] showed that the nonspherical oscillations of lipid-coated microbubbles (Figure 3d), display a subharmonic character, reminiscent of a parametric instability, but without shape mode selectivity, unlike uncoated bubbles [START_REF] Versluis | Microbubble shape oscillations excited through ultrasonic parametric driving[END_REF]. Nonspherical shapes can also appear through buckling of the interfacial layer; indeed, [START_REF] Borden | Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length[END_REF] showed that lipid-coated bubbles buckle under slow deflation. Later, [START_REF] Marmottant | Buckling resistance of solid shell bubbles under ultrasound[END_REF] studied the buckling threshold of coated bubbles under ultrasound (Figure 3c), and related this threshold to the buckling of spherical shells in solid mechanics. Moreover, under strong oscillation, the coating itself may rupture [START_REF] Postema | Ultrasound-induced microbubble coalescence[END_REF] or shed some material [START_REF] Luan | Lipid shedding from single oscillating microbubbles[END_REF]) (Figure 3e). Linear and nonlinear responses of lipid-coated bubbles to an ultrasonic field. (a) Natural frequency of bubbles coated with DPPC monolayers as a function of their radius [START_REF] Lum | Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations[END_REF]. Data are fitted by Eq. ( 12) with χ as fitting parameter (solid line). The Minnaert frequency is shown for comparison (dashed line). (b) "Compression-only" behavior: the oscillation amplitude is the compression phase is much larger than in the expansion phase (the horizontal line represents the equilibrium radius) [START_REF] Marmottant | A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture[END_REF]. (c) Relative oscillation amplitude as a function of applied pressure. The abrupt jump in amplitude represents the "thresholding" behavior [START_REF] Overvelde | Nonlinear shell behavior of phospholipid-coated microbubbles[END_REF]). (d) Nonlinear resonance: the resonance frequency (here rescaled by the Minnaert frequency) decreases strongly at increasing applied pressure [START_REF] Overvelde | Nonlinear shell behavior of phospholipid-coated microbubbles[END_REF]; the blue curve corresponds to a model with linear surface viscoelasticity. Subharmonic oscillations: (e) illustration on a radius-time curve for f = 2.4 MHz and pa = 40 kPa, and (f) the corresponding power spectrum [START_REF] Sijl | Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles[END_REF]. In subpanels (c) to (f), the red plain curves represent fits by Eq. ( 7) with the effective surface tension given by Eq. ( 13).

Coating models

Experimental developments on coated bubbles have motivated active modeling of the influence of the coating mechanical properties on bubble oscillations. There exist excellent reviews on such models (e.g. Doinikov & Bouakaz (2011);[START_REF] Faez | 20 years of ultrasound contrast agent modeling[END_REF]), and we refer to them for full details on the many different models. In this Section, our purpose is to outline the main physical motivations of the different generations of models.

As soon as it appeared that the resonance frequency and damping of coated bubbles were larger than uncoated ones, models ascribed elastic and viscous properties to the coating. This was done on a semi-empirical basis by [START_REF] De Jong | Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements[END_REF], and more rigorously by [START_REF] Church | The effects of an elastic solid surface layer on the radial pulsations of gas bubbles[END_REF] who considered a shell of finite thickness coating the bubble, considered as a viscoelastic solid and modeled by the linear Kelvin-Voigt constitutive law. Several variant are issued from this model, see e.g. [START_REF] Hoff | Oscillations of polymeric microbubbles: Effect of the encapsulating shell[END_REF] or [START_REF] Morgan | Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size[END_REF]. These models generally lead to good fitting of the acoustic response of a polydisperse population of bubbles with thick shells.

A different assumption is to consider directly the coating as a 2D surface of negligible thickness, in the spirit of surfactant monolayer modeling [START_REF] Langevin | Rheology of adsorbed surfactant monolayers at fluid surfaces[END_REF], hence adapted to lipid-coated bubbles. [START_REF] Chatterjee | A Newtonian rheological model for the interface of microbubble contrast agents[END_REF] modeled the interface as a Newtonian interface: τ s = γIs +(κs -µs)(Is : Ds)Is +2µsDs, where κs, µs and Ds are respectively the dilatational surface viscosity, the shear surface viscosity, and the surface deformation rate tensor. With this law, the radial component of the surface divergence of the interfacial stress becomes (divsτ [START_REF] Sarkar | Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation[END_REF] then extended this model by including a surface dilatational elasticity through a compression modulus χ defined as χ = dγ/d ln A, with A the bubble area. This amounts to changing surface tension, hitherto considered as constant, to an effective, radius-dependent surface tension γ

s)r = 2γ R + 4κs Ṙ R 2 .
(R) = γ(R0) + χ R 2 R 2 0 -1 , in
Eq. ( 4). Including this effective surface tension in Eq. ( 7) yields a modified Rayleigh-Plesset equation for coated bubble oscillations. In particular, surface elasticity contributes to the resonance frequency as follows (compare with Eq. ( 8):

ω 2 0 = 1 ρR 2 0 3κp0 + 2(3κ -1)γ(R0) R0 + 4χ R0 , (12) 
and this equation served as fitting formula to measure surface elasticity in several studies [START_REF] Van Der Meer | Microbubble spectroscopy of ultrasound contrast agents[END_REF][START_REF] Van Rooij | Non-linear response and viscoelastic properties of lipid-coated microbubbles: Dspc versus dppc[END_REF][START_REF] Lum | Single microbubble measurements of lipid monolayer viscoelastic properties for small-amplitude oscillations[END_REF].

The optical observations of oscillating individual coated bubbles revealed a wealth of nonlinearities which the aforementioned models, with their linear description of surface viscoelasticity, were unable to capture (Figure 4d). Motivated by the discovery of the compression-only behavior (Sec. 3.1.2), a landmark study was performed by [START_REF] Marmottant | A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture[END_REF]. Inspired by the quasistatic behavior of insoluble monolayers of phospholipid in compression, they proposed the following phenomenological law for the effective surface tension:

γ(R) =      0 for R ≤ R buckling γ(R0) + χ R 2 R 2 0 -1 for R buckling ≤ R ≤ Rrupture γwater for R ≥ Rrupture , ( 13 
)
accounting for (i) the appearance of buckling for a radius smaller than R buckling , where the coating cannot sustain compression, (ii) rupture of the coating for a radius larger than Rrupture, where the bubble behaves as if it wereoated one, and (iii) an elastic regime in between. The resulting piecewise definition of the effective surface tension renders the model highly nonlinear. It was successful in predicting the nonlinearities of oscillating coated bubbles (Figure 4). This essentially comes from the fact that nonlinearities are enhanced by the abrupt change of properties at R buckling and Rrupture. In the particular case of the subharmonic threshold, this reason for the good agreement between data and the model of [START_REF] Marmottant | A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture[END_REF] was suggested by [START_REF] Sijl | Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles[END_REF], and shown analytically by [START_REF] Prosperetti | A general derivation of the subharmonic threshold for non-linear bubble oscillations[END_REF]. In the frame of this model, compression-only is explained by the lower resistance in compression in the buckled state, than in expansion where elasticity has to be overcome; the strong decrease of resonance frequency with increasing amplitude was explained by the increasing influence of the "softer" buckled state as the oscillation amplitude increases [START_REF] Overvelde | Nonlinear shell behavior of phospholipid-coated microbubbles[END_REF]).

More recent models aimed at capturing these nonlinearities with rigorous treatments of coating mechanics. [START_REF] Tsiglifis | Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: The effect of membrane constitutive law[END_REF] modeled the coating as a nonlinear elastic solid, and showed that a strain-softening constitutive law reproduces the decrease of resonance frequency with increasing amplitude. Other nonlinear models use radiusdependent surface elasticities [START_REF] Stride | The influence of surface adsorption on microbubble dynamics[END_REF][START_REF] Paul | Material characterization of the encapsulation of an ultrasound contrast agent microbubble and its subharmonic response: Strain-softening interfacial model[END_REF]. Bending elasticity has also been included in recent models, to understand the onset of nonspherical oscillations [START_REF] Tsiglifis | Parametric stability and dynamic buckling of an encapsulated microbubble subject to acoustic disturbances[END_REF][START_REF] Liu | Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave[END_REF].

While all these models considered, essentially, coating as a viscoelastic solid, [START_REF] Doinikov | Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents[END_REF] modeled it as a viscoelastic liquid using Maxwell model. It is interesting to notice that their model was motivated by the fact that some experimental studies showed no significant difference of resonance frequency of coated bubbles, compared to uncoated bubbles. However, at least two other physical effects can substantially the resonance frequency: nonlinear effects (Sec. 3.1.2), and vicinity of boundaries (Sec. 4.1), and these effects are difficult to disentangle from those of surface elasticity.

Acoustically driven particle-stabilized bubbles

Bubbles can also be stabilized against dissolution by solid particles instead of molecular surfactants, with the particles forming an "armor" on the interface, hence the name "armored bubbles" [START_REF] Abkarian | Dissolution arrest and stability of particle-covered bubbles[END_REF]). The response to changes in pH or temperature, to mechanical stress, and to magnetic fields of particle-stabilized bubbles have been studied extensively, as reviewed by [START_REF] Fujii | Stimuli-responsive bubbles and foams stabilized with solid particles[END_REF], but it is only recently that the response to acoustic fields has been investigated.

Microbubbles stabilized by a monolayer of colloidal particles (nanoparticles or microparticles) have been found to exhibit an increased nonlinear response at low ultrasound pressure amplitudes [START_REF] Stride | Increasing the nonlinear character of microbubble oscillations at low acoustic pressures[END_REF][START_REF] Poulichet | Ultrafast desorption of colloidal particles from fluid interfaces[END_REF]. Because the particles prevent the bubble from contracting when they form a close-packed monolayer at the interface during compression, the oscillation amplitude is asymmetric around the equilibrium radius, and is dominated by the expansion of the bubble. This "expansion-only" behavior can be understood as the counterpart of the "compression-only" behavior observed for lipid-coated bubbles (see Section 3.1.2): while a surfactant monolayer offers minute resistance to compression beyond close packing because it easily buckles, monolayers of solid particles exert larger mechanical resistance to compression at small pressure amplitudes. For sufficiently large pressure amplitudes, particle-stabilized bubbles also undergo buckling [START_REF] Poulichet | Ultrafast desorption of colloidal particles from fluid interfaces[END_REF] and can shed particles from their coating.

Microbubbles can be coated by a multilayer of particles, as is the case for the so-called "magnetic bubbles" [START_REF] Zhao | Dynamics of magnetic bubbles in acoustic and magnetic fields[END_REF]) which present a shell of magnetic nanoparticles a few tens of nanometers thick, shown in Figure 3f. Magnetic bubbles can be manipulated with a magnetic field, oscillate in ultrasound, and can shed nanoparticles, with potential applications to drug delivery [START_REF] Gao | Controlled nanoparticle release from stable magnetic microbubble oscillations[END_REF]).

The large-amplitude oscillations required for particle expulsion typically also cause shape oscillations of the bubbles. Particle-coated bubbles undergoing shape oscillations were found to exhibit directional particle expulsion from the antinodes of the shape oscillations [START_REF] Gao | Controlled nanoparticle release from stable magnetic microbubble oscillations[END_REF][START_REF] Poulichet | Shape oscillations of particle-coated bubbles and directional particle expulsion[END_REF], as shown in Figure 3g.

The question of what constitutive models best describe the behavior of particle-coated bubbles remains open. An empirical model has been put forward to describe "expansiononly" behavior [START_REF] Stride | The influence of surface adsorption on microbubble dynamics[END_REF]), but models combining the governing equation for bubble dynamics with a constitutive model for a particle monolayer are not yet available. Progress is limited also because of a lack of experimental data suitable to test constitutive models.

BUBBLES NEAR VISCOELASTIC MATERIALS

Cavitation near hard boundaries is a classical topic in underwater acoustics and surface cleaning, reviewed by [START_REF] Blake | Cavitation bubbles near boundaries[END_REF]. The interest in the interactions between bubbles and soft boundaries has recently been revived because of the growing number of biomedical and biological applications, ranging from ultrasound imaging and drug delivery, to bubbles in plants and trees. This has driven studies on bubble dynamics in the softconfinement conditions encountered in biomedical and biological systems. The proximity of a solid compliant boundary affects the dynamic response of bubbles in ultrasound (Sec. 4.1). Other examples of soft confinement include bubble dynamics inside compliant tubes such as blood vessels (Sec. 4.2), interaction of bubbles with suspended cells or vesicles (Sec. 4.3), and bubble collapse in elastic cavities (Sec. 4.4).

Bubble dynamics near a planar viscoelastic boundary

We begin from the case of a bubble near a planar boundary as the starting point for more complex geometries. As we will see, the effect of even the simplest confinement geometry is intricate. The effect of an infinitely rigid wall on the resonance of a single bubble is easy to model by the method of images [START_REF] Strasberg | The pulsation frequency of nonspherical gas bubbles in liquids[END_REF]. The presence of the wall is equivalent to that of a fictitious second bubble which is the symmetric of the real bubble with respect to the wall. The velocity field in the liquid is then the superposition of the two fields created by each of the oscillating bubbles. [START_REF] Strasberg | The pulsation frequency of nonspherical gas bubbles in liquids[END_REF] showed that the resonance frequency is decreased by the presence of the wall, with the ratio of the resonance frequency of a bubble at a distance d from a wall to the Minnaert frequency given by (1 + R0/2d) -1/2 , which equals 0.8 for a bubble in contact with the wall (d = R0). This model has been extended, in particular to account for propagation delays of sound waves between the bubble and the wall [START_REF] Leighton | The Acoustic Bubble[END_REF]). However, it considers the bubble as a point source, and is hence only valid for d R0. Experiments have been conducted to characterize the change in bubble dynamics due to the proximity of a planar boundary, using optical tweezers to re-position the same bubble at increasing distances from the boundary [START_REF] Garbin | Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging[END_REF]. Using this method, [START_REF] Helfield | The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles[END_REF] measured the change in resonance frequency of the same bubble as a function of distance from a compliant agarose boundary. These authors found that such a soft wall has a weak effect on both resonance frequency and amplitude at resonance: these quantities showed relative variations within 10% when d was varied (Figure 5a). Besides resonance properties, it has been shown that small-amplitude oscillations are sufficient to cause nonspherical deformations of a bubble near a viscoelastic boundary [START_REF] Vos | Nonspherical shape oscillations of coated microbubbles in contact with a wall[END_REF] and that the oscillations can cause the propagation of surface elastic waves on a viscoelastic half-space, with characteristics that depend on the viscoelastic properties of the material [START_REF] Tinguely | Surface waves on a soft viscoelastic layer produced by an oscillating microbubble[END_REF].

Theoretical models that take into account the effect of the compliance of the boundary on the bubble dynamics predict a shift in resonance frequency (Doinikov et al. 2011;[START_REF] Hay | Model for bubble pulsation in liquid between parallel viscoelastic layers[END_REF], and a change in nonlinear response [START_REF] Doinikov | Ultrasonically induced dynamics of a contrast agent microbubble between two parallel elastic walls[END_REF]. However, the models currently available predict resonance frequency shifts in opposite directions, for interfaces with the same mechanical properties. These discrepancies, together with the scarcity of available experimental data, call for a better fundamental understanding of the interaction of oscillating bubbles with soft, deformable boundaries.

For the case of bubble collapse near deformable boundaries, experiments have shown that there is a strong qualitative effect of the elasticity of the boundary. The liquid jet formed during bubble collapse is always directed towards a hard boundary, and away from a free surface. For soft boundaries, there is a threshold in elastic modulus below which the jet is directed away from the boundary. The example in Figure 5b is for a polyacrylamide layer. Numerical simulations of bubble collapse near an elastic boundary successfully predict jet reversal as a function of the elastic properties, and the deformation of the boundary [START_REF] Ohl | The dynamics of a non-equilibrium bubble near bio-materials[END_REF].

Building on the theory for a single boundary or plate, models have been proposed also for bubbles between two plates [START_REF] Hay | Model for bubble pulsation in liquid between parallel viscoelastic layers[END_REF][START_REF] Doinikov | Ultrasonically induced dynamics of a contrast agent microbubble between two parallel elastic walls[END_REF], as a first step to approximate confinement conditions relevant to biomedical settings, which are covered next.

Bubbles in a compliant tube

Studying bubbles in compliant tube is interesting to understand the behavior of bubbles in blood vessels, which can either be beneficial for imaging and drug delivery (through sonoporation mechanisms), or detrimental, owing to the risks of blood vessel disruption. [START_REF] Oguz | The natural frequency of oscillation of gas bubbles in tubes[END_REF] considered bubbles in infinitely hard tubes. They showed that the natural frequencies of bubbles tend to be smaller than Minnaert frequency. Indeed, because of the tube confinement, an oscillating bubble tends to put into motion all the liquid within the tube, which has a larger effective mass than the water put into motion around a bubble oscillating spherically in an unbounded medium. Besides numerical calculation, [START_REF] Oguz | The natural frequency of oscillation of gas bubbles in tubes[END_REF] presented an insightful toy model when the bubble is confined enough to act as a piston across the tube. [START_REF] Sassaroli | Forced linear oscillations of microbubbles in blood capillaries[END_REF] later considered theoretically the linear oscillations of bubbles in blood capillaries, similarly assumed to be rigid tubes. Qin & Ferrara (2007) studied numerically the natural frequencies of bubbles in rigid and compliant vessels. In the latter case, they used a phenomenological relationship between the vessel deformation and the pressure difference across the vessel wall. They showed that while in rigid vessels, the natural frequency is below the Minnaert frequency and increases at increasing vessel radius, the result is exactly opposite in compliant tube; consistently with this result, they showed that the natural frequency is a decreasing function of the tube rigidity. [START_REF] Martynov | The natural frequencies of microbubble oscillation in elastic vessels[END_REF] proposed a theory of bubbles oscillating in elastic vessels. These authors use a simplified version of the model by Qin & Ferrara (2007), and extend the toy model of [START_REF] Oguz | The natural frequency of oscillation of gas bubbles in tubes[END_REF] by including a finite vessel rigidity. They quantified the relative effect of the compressibility of the gas within the bubble (of bulk modulus of order p0) and the compliance of the vessel; denoting Rv and dv the radius and thickness of the vessel wall, and Ev its shear modulus, they showed that the limit of a "rigid" vessel [START_REF] Oguz | The natural frequency of oscillation of gas bubbles in tubes[END_REF]) corresponds to Evdv/p0Rv 1, while a "compliant" vessel corresponds to Evdv/p0Rv

1. In the latter case, they showed that the natural frequency is larger than Minnaert frequency, in agreement with their simulations and those of Qin & Ferrara (2007), which they thus helped to rationalize. [START_REF] Caskey | Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns[END_REF] and [START_REF] Thomas | Microbubble oscillations in capillary tubes[END_REF] studied experimentally coated bubbles in in-vitro rigid capillaries. They showed that increasing confinement lead to a significant reduction of bubble oscillations. They did not observe a significant influence of the resonance frequency. [START_REF] Caskey | Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall[END_REF] and [START_REF] Chen | Blood vessel deformations on microsecond time scales by ultrasonic cavitation[END_REF] presented ex-vivo observations of microbubble response to ultrasound when confined into a blood vessel. [START_REF] Caskey | Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall[END_REF] showed that bubble oscillation is strongly reduced when confined in a blood vessel, and [START_REF] Chen | Blood vessel deformations on microsecond time scales by ultrasonic cavitation[END_REF] showed that the bubble generates in general a stronger invagination than a distension of the neighboring blood vessel (Figure 5c), and that, when collapsing, it generates a jet directed away from the blood vessel, consistently with other studies of bubble/soft wall interactions [START_REF] Brujan | Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus[END_REF]). This work motivated numerical studies; for instance, [START_REF] Hosseinkhah | Mechanisms of microbubblevessel interactions and induced stresses: A numerical study[END_REF] showed that invagination is the phase in which the maximum wall shear stress is created on an elastic vessel. Figure 5d shows the computed velocity field in the fluid and in the wall of a viscoelastic vessel during bubble compression [START_REF] Chen | Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study[END_REF].

Bubbles near suspended cells or vesicles

Acoustically driven bubbles can interact with small suspended bodies, such as cells or biomimetic vesicles, in a variety of geometries of biological, biomedical and industrial relevance. For instance, ultrasound contrast agent microbubbles interact with blood cells in the vasculature, and cavitation bubbles interact with suspended microorganisms in bioreactors. Given its importance in a wealth of applications, a large body of work has addressed the effect of ultrasound on cell suspensions. A majority of these studies have used indirect experimental observations, which provide limited information on the bubble dynamics and bubble-cell interactions responsible for the observed phenomena. In this Review, we limit the scope to recent studies that have provided direct, time-resolved visualizations of the interactions between bubbles and suspended cells or vesicles.

Le [START_REF] Gac | Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement[END_REF] studied the interaction of a laser-induced cavitation bubble with suspended mammalian cells in microfluidic confinement. It was found that the cell membrane was damaged for cells located in the close vicinity of the collapsing bubble, while cells at a few bubble radii away were unaffected. Bacteria and yeast cells, which present thick cells walls, were also successfully damaged by cavitation bubbles in microfluidics [START_REF] Tandiono | Sonolysis of escherichia coli and pichia pastoris in microfluidics[END_REF]. [START_REF] Zinin | Deformation of biological cells in the acoustic field of an oscillating bubble[END_REF] developed a theoretical model for the deformation of bacteria in the acoustic field generated by an oscillating bubble. They obtained the frequency of maximum area deformation of the bacteria, ωK ∼ KA/ρa 3 , where KA is the stretching elasticity of the cell wall, and a the radius of the cell, suggesting that there exists an optimal frequency of bubble oscillations that causes cell disruption. [START_REF] Marmottant | Controlled vesicle deformation and lysis by single oscillating bubbles[END_REF] performed experiments showing that linear bubble oscillations are sufficient to achieve rupture of lipid vesicles. The microbubbles were adherent to a solid surface and, upon excitation in ultrasound, generated a microstreaming flow, see Figure 5e, which entrained suspended vesicles. When a vesicle reached the region of maximum strain rate, close to the bubble, the lipid bilayer was deformed to the point that it ruptured, see Figure 5f. The flow-induced deformation of the vesicle can be described by a capillary number, CaK = ηa εmax/KA, based on the stretching elasticity of the lipid bilayer, KA, where a is the vesicle radius and εmax the maximum strain rate in the flow. This model for vesicle deformation, introduced by Marmottant et al. (2008), predicts a threshold value of the capillary number for vesicle rupture, Ca c K = 6 5 σc KA ∆ 4π + σc KA , that depends on the vesicle excess area ∆, and the lipid bilayer mechanical properties, KA and σc, where σc is the rupture tension. Building on this theory, [START_REF] Pommella | Selective flow-induced vesicle rupture to sort by membrane mechanical properties[END_REF] performed experiments using vesicles with controlled membrane properties obtained by tuning the lipid composition, and showed that selective vesicle rupture with respect to the membrane stretching elasticity can be obtained.

Bubbles in a liquid filled elastic cavity

An extreme confinement situation is when a bubble occur in a liquid-filled cavity, the bubble being confined by walls in all directions of space. This liquid cavity is itself framed within an elastic material, and thus compressed or dilated by bubble oscillations. The pressure away from the bubble (p∞, as defined in Sec. 2.1.) now depends on the bubble radius.

Examples of such liquid cavities are found in trees, where ascending water is transported tiny conduits, a few tens of micrometers in diameter and millimetric in length, within the xylem tissues [START_REF] Tyree | Vulnerability of xylem to cavitation and embolism[END_REF]. The pressure of ascending water is negative because of evapo-transpiration at the top of the tree, and cavitation can occur, with the nucleation of bubbles. These bubbles are the source of an embolism whose growth proves to be fatal for a tree. Another astonishing example is the ejection mechanism of spores in ferns, that relies on cavitation bubbles occurring in a series of liquid filled cavity located all along the arm of a catapult [START_REF] Noblin | The fern sporangium: A unique catapult[END_REF]. Biomimetic elastic and porous materials were recently designed to include such liquid cavities, while sustaining the very large negative liquid pressures resulting from pervaporation [START_REF] Wheeler | The transpiration of water at negative pressures in a synthetic tree[END_REF]. These materials prove useful to study cavitation dynamics in soft matter materials, while confined cavitation was mostly studied in rocks [START_REF] Caupin | Cavitation in water: a review[END_REF].

The bubble dynamics is strongly affected by the confinement since an oscillation of the bubble volume must compress the liquid around and deform the elastic solid. For instance just after the nucleation a cavitation bubble quickly grows and then oscillates around an equilibrium radius that relaxes the liquid pressure, with very large variations of the bubble volume. Natural frequencies of these oscillations are well above the Minnaert frequency [START_REF] Vincent | Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree[END_REF][START_REF] Vincent | On the statics and dynamics of fully confined bubbles[END_REF], reaching MHz frequency for cavities of few dozen of micrometers in radii. The reason for such high frequency oscillations lies in the fact the effective stiffness resistance of the medium against oscillations is tremendously increased. The gas compression modulus (equal to κp0) is indeed negligible in front of the liquid compression modulus (K l = 2.2 GPa) and the solid shear modulus G. The natural oscillation of confined bubbles of radius R0 in a cavity of radius Rc writes

ω 2 0 = 3K ρR 2 0 R0 Rc 3 , (14) 
with K an effective modulus given by 1 K = 1 K l + 3 4G describing the effective elastic response from the elasticity of water and solid that act as springs in series. This natural oscillation frequency is much higher than for a free bubble. For comparison, with the the Minnaert frequency (Eq. 8) the denominator is to the same than in Eq. ( 14) but with a numerator much lower (3γp0 instead of 3K(R0/Rc) 3 ).

CONCLUSIONS

Bubbles are simple but fascinating objects. They exhibit a strong ability to oscillate in response to sound, while being very sensitive to their surrounding environment. They prove to be useful probes of the viscoelastic properties of the medium, or the presence of boundaries. The response of bubbles with a coating is strongly affected by the addition of the coating layer, either thick or a monolayer of molecules or of particles. Bubbles display nonlinear effects, which can be isolated by ultrasound echography, both in their high amplitude regime, but also at small amplitude when the coupling with the nonlinear rheology of the medium is strong.

As a perspective, we expect a variety of promising developments in the future. We see three directions that seem especially fruitful in view of the recent literature. First, bubbles being active miniature tracers, they can probe the high-frequency rheology of soft and biological materials. One could imagine that such information would pave the way to three-dimensional maps of the rheological properties of heterogenous media, following bubbles navigating in different regions of these media. Second, further progress is expected in the description of the constitutive behavior of soft materials at high strain rate, thanks to the information obtained from experiments where oscillating or collapsing bubbles are used as rheological probes. In addition, the link between the microscopic changes in the material upon deformation, and the macroscopic mechanical response, remain to be explored. One example is the case of particle-coated bubbles, for which interfacial constitutive models are currently lacking. Last, the interaction of a compliant flat wall and oscillating bubbles deserves to be better understood, both to quantify the wall influence on bubble dynamics, and as a starting point to control the physical and biological effects of bubbles on soft boundaries with more complex geometries, like blood vessels.

Figure 1

 1 Figure 1 Bubble dynamics in soft confinement. (a) Bubble embedded in a viscoelastic medium in which the bubble radius can evolve. (b) Bubble coated with a viscoelastic interfacial layer. Examples include (c) lipid monolayers and (d) particle monolayers. Different geometrical examples of confinements: (e) Bubble near a viscoelastic boundary; (f) bubble between parallel plates; (g) bubble in a compliant tube; (h) bubble near a suspended, deformable object; and (i) bubble in a cavity within a viscoelastic material.

Figure 2

 2 Figure 2 Bubble dynamics in a viscoelastic medium. (a) Prediction of the change in resonance frequency as a function of bubble radius for a Kelvin-Voigt, linear viscoelastic solid. Plotted using Eq. (11) and parameters taken from Yang & Church (2005). (b) Comparison of Newton, Kelvin-Voigt, Maxwell, standard linear solid, and and Upper-Convective Maxwell (Warnez & Johnsen 2015). (c) Chaotic behavior of a bubble undergoing large-amplitude oscillations in a viscoelastic fluid (Naude & Méndez 2008). (d) Experimental measurement of the change in resonance frequency as a function of bubble radius in agarose gels with increasing G (Jamburidze et al. 2017). The experimental data are fitted (solid lines) to Eq. (11) to extract G. (e) Experimental resonance curves from small-amplitude bubble oscillations in agarose gels with increasing G[START_REF] Jamburidze | High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics[END_REF]. The experimental data are fitted (solid lines) to Eq. (9) to extract G and η. (f) Collapse of a laser-generated bubble in a polyacrylamide gel[START_REF] Brujan | Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom[END_REF]. (g) Cavitation rheology uses quasi-static bubble injection to measure the elastic modulus[START_REF] Kundu | Cavitation and fracture behavior of polyacrylamide hydrogels[END_REF].

Figure 3

 3 Figure 3

  Figure 4

  Figure 5Bubble dynamics in the presence of soft confinement. (a) Resonance curve of a lipid-coated bubble at various controlled distances (indicated in the legend) from a soft wall made of agarose gel[START_REF] Helfield | The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles[END_REF]. (b)[START_REF] Brujan | Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus[END_REF]. (c) Snapshots of a bubble expanding and collapsing in a blood vessel[START_REF] Chen | Blood vessel deformations on microsecond time scales by ultrasonic cavitation[END_REF] showing a strong invagination of the vessel upon bubble collapse. (d) Velocity field in the fluid and in the viscoelastic wall of a microvessel during bubble compression[START_REF] Chen | Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study[END_REF]). The velocity ranges from 0 m/s (blue) to 0.8 m/s (red). (e) Acoustic streaming around a bubble in contact with a wall (side view)[START_REF] Marmottant | Controlled vesicle deformation and lysis by single oscillating bubbles[END_REF]. (f) Attraction and break-up of a vesicle in the streaming flow around a bubble (top view)[START_REF] Marmottant | Controlled vesicle deformation and lysis by single oscillating bubbles[END_REF] (g) Strobe photography of bubble nucleation in confinement. Texp is of the order of a microsecond[START_REF] Vincent | Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree[END_REF]) (h) Evolution of the radius after nucleation[START_REF] Vincent | Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree[END_REF]).

Table 1

 1 Linear constitutive models.

	Model	Constitutive equation	Properties
	Newton	τrr = 2η εrr	Newtonian liquid
	Kelvin-Voigt a	τrr = 2Gεrr + 2η εrr	Viscoelastic solid; creep behavior
	Maxwell b	λ τrr + τrr = 2η εrr	Viscoelastic liquid; stress relaxation
	Standard Linear Solid c	λ τrr + τrr = 2Gεrr + 2η εrr	Predicts both creep and stress relaxation

a Used by

[START_REF] Yang | A model for the dynamics of gas bubbles in soft tissue[END_REF]

;

[START_REF] Hamaguchi | Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation[END_REF]

;

[START_REF] Jamburidze | High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics[END_REF]

. b Used by

[START_REF] Fogler | Collapse of spherical cavities in viscoelastic fluids[END_REF]

;

Allen & Roy (2000a)

. c Used by

[START_REF] Hua | Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium[END_REF]

.

 Dollet et al. 

www.annualreviews.org • Bubble dynamics in soft matter

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

Dollet et al. 

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

 Dollet et al. 

ACKNOWLEDGMENTS

We thank M. Böhmer, M. Borden, M. De Corato, A. Doinikov, D. Goertz, E. Johnsen and C.-D. Ohl for helpful discussions. P. M. is supported by ERC Consolidator Grant 614655. V. G. is supported by ERC Starting Grant 639221.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.