
HAL Id: hal-02004171
https://hal.science/hal-02004171

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using HiGraph to define a Formal Integrated System
Modeling Framework that ensures Complete System

Consistency
Anis Otmane Cherif, Bruno Monsuez, Vladimir-Alexandru Paun, Michel

Nakhlé

To cite this version:
Anis Otmane Cherif, Bruno Monsuez, Vladimir-Alexandru Paun, Michel Nakhlé. Using HiGraph to
define a Formal Integrated System Modeling Framework that ensures Complete System Consistency.
IEEE Advancing Technology for Humanity 26th International Conference on Systems Engineering
(ICSEng), Dec 2018, Sydney, NSW, Australia. �hal-02004171�

https://hal.science/hal-02004171
https://hal.archives-ouvertes.fr

Using HiGraph to define a Formal Integrated System Modeling Framework that
ensures Complete System Consistency

Anis Otmane Cherif1, Bruno Monsuez1, Vladimir-Alexandru Paun1,2
1U2IS - ENSTA ParisTech,2Five Rescue Laboratory
828 Boulevard des Marchaux, F-91120 Palaiseau

anis.otmane-cherif@ens-paris-saclay.fr,
bruno.monsuez@ensta-paristech.fr,

vladimir-alexandru.paun@ensta-paristech.fr

Michel Nakhlé
CS SI - Activité Aéronautique, Énergie & Industrie.

22, avenue Galilée
92350 Le Plessis Robinson

michel.nakhle@cs-si.fr

Abstract—The evolution of the design of complex systems
leads to increasing complexity and requires the joint analysis
and refinement of different views of the same system which
generally consist of: (1) A functional view that describes
the main features of the system; (2) An implementation
view that allocates functions on system constituents; (3) A
non-functional view ensuring that properties such as quality
of services, real-time constraints. . . are satisfied by the
system; (4) As well as a dysfunctional view that defines the
reliability requirements. Despite the complexity of systems,
the consistency of views when exploring the solution space
must be ensured. For example: (1) A decision on the required
availability may induce new functions or involve redundancy
of function/constituent; (2) Another difficulty comes from the
fact that the functions are being described using different
formalisms, therefore the system engineer must always be
able to handle all the following aspects: the availability or
reliability models that are mainly based on probabilistic
models, the functional view that can be expressed using
finite state machines or by event models; the quality of the
services that can be expressed either by using a probabilistic
approach or an approach based on a bounded set. . . The
work described in this paper focuses on the implementation
of a unified industrial modeling process using the graphical
language of Hi-Graphs, a specific class of hyper graphs, in
support to SysML. This process brings in addition functional
views, taking into account, at all stages of the life cycle,
non-functional and dysfunctional views of the system in order
to make the right choices / compromises in terms of both
software engineering and formal verification. It provides
end-to-end assurance that the system meets the requirements
and contracts associated with service quality during the
process of exploring and refining the solution among the
different views of the system. It also offers multiple semantics
so that existing modeling languages and tools are taken into
account.

Keywords-Formal System Modeling; Hypergraphs; Multiple-
Views Modeling; Solution Exploration; Complex System; Sys-
tems Engineering.

I. INTRODUCTION

The evolution of complex system design induces an
increasing complexity of functionalities that are performed
by the system. This increasing complication impacts the

complexity of the functional, the logical as well as the
technical architectures. Additional requirements like safety,
dependability, but also reusability or maintainability increase
the number of constraints that should be taken into account
when exploring the design solution space. As a consequence,
novel methodologies as well as new design approaches
emerge with the goal not only to ensure that the system
works according to the expectations but to ensure that the
resulting design is optimal, exhibits a safe behavior and is
reliable.

System modeling plays a key role in Systems Engineering.
System modeling as well as Model Transformations allow a
comprehensive and coherent representation of all the aspects
of the systems going from the requirements to the logical
structure, the functional behavior, the resource consumption,
the safety and reliability assignments. . . It helps to improve
the exploration of the solutions, the evaluation of the de-
sign during the exploration phase. It also helps during the
implementation and integration phases to ensure that the
implemented system conforms to the system model. System
modeling also greatly helps to communicate between and
to coordinate the activities of the stakeholders, reducing
the risk of exploring inadequate solutions and the risk
of implementing inadequate or non-conforming solutions.
With a complete system model as well as sound model
transformations that simplify the exploration of the system
solution space, the implementation should be straightfor-
ward. Current Modeling approach concentrates on modeling
different paradigms. Depending on the type of paradigms
to model, the system engineer will provide a specialized
model expressed in a given modeling language that is well
suited for the addressed paradigm. Each model can be seen
as an independent model and the system designer has to
ensure that the different models are consistent. There are
very little to no meta-models or tools that help to ensure the
consistency of the views.

In this paper, we introduce HiGraphs, a specific class of
Hypergraphs in roder to provide a meta-modeling language
that can encapsulate current modeling languages (eg, state-

chart, grafcet, Petri Nets, etc) and that is capable of repre-
senting and handling jointly different paradigms; Typically
the functional model, the non-functional model, the dys-
functional model and the implementation model of different
kinds of architectures. HiGraphs provide a formal model
that natively supports multi-formalism, typically this allows
using different ways of modeling and integrating them in the
model as sub models; HiGraphs also ensure the consistency
of the multiple views, allowing the system designer to relate
and characterize the impact of the requirements on the
impacted physical and logical components. This allows to
ensure that at the end of the refinement process the solution
is complete and fulfills the whole requirements. This joint
modeling approach allows to aggregate the qualitative study,
which eases checking requirements enforcement for each
step of the integrative verification.

The multi-formalism aspect of HiGraph also refers to
the ability of HiGraph based model to be transformed to
others existing known formalism by model transformations,
according to two techniques: graph transformations and
hybrid transformation approaches :
• Based on graph grammars [17], graph transformations

are techniques and formalisms directly applicable to
model transformation. In this approach the source and
target models are represented as graphs. This visual
notation also makes it possible to express the trans-
formation rules in graphical form. It is formal and
well founded on mathematical bases (like the theory of
graphs and formal grammars), allowing to verify certain
properties of the transformation. A graph grammar thus
allows for a formalism to model a transformation [18],
AToM3, AGG et GReAT [19]

• Hybrid approaches are a combination of different tech-
niques. In particular, we can find approaches using both
declarative and imperative rules. ATL (ATLAS Trans-
formation Language) is an example of this approach
[20].

If we consider a concurrent distributed system, the HiGraph
based model may be transformed to a Petri-Net represen-
tation so that a model checker can formally check that for
instance no deadlock can occur.

The paper is structured as follows: after a brief introduc-
tion of current system modeling languages (Section 2), we
formally introduce the HiGraph (Section 3) and their key
properties (Hierarchy and Orthogonality). We then briefly
introduce the working example (Section 4) and the modeling
process on the working example (Section 5). We finally
discuss the interest of the approach and the integration of
the existing formalism (Section 5). Finally, we show future
works and conclude the paper.

II. STATE OF ART

The literature provides a wide variety of systems modeling
languages (e.g., SysML, UML, arKItect, Statechart, Petri

Net, . . . etc.). Key properties of modeling languages are
simplicity, visual and semantic flexibility, domain and user
specificity, semantic preciseness, customization, composi-
tionality, multiple views, integrability, extensibility, textual
property, versioning, completeness check property. SysML
and UML suffer from a lack of formal semantics (e.g.,
confusing and/or absence of a hierarchy definition among
allocations), difficult navigation as they do not support fully
hierarchical organization of information (e.g., get lost in the
different system views), connections between components,
functions and requirement lack of consistency (e.g. nothing
ensure that a requirement is satisfied or not), UML focuses
too much on (software) system design and need better re-
quirements modeling. SysML partly addresses those aspects
but still maintains different fully separated views based on
different formalisms (Class Diagrams, Sequence Diagrams,
. . .). arKItect’s propose a powerful extensible graphical lan-
guage that may expose different views. However the inherent
complexity of arranging the edges and nodes as defined in
arKItect into a visual layout that can be manipulated by an
end-use reduces the number of supported transformations
and can be seen as one of the most severe limitation of
arKItect. Petri Nets are suitable for modeling the system’s
behavior. Petri Nets like HiGraphs are highly extensible,
with the ability of adding many attributes like colors, time,
probabilities. However Petri Net are not hierarchized, the
more complex a system becomes, the larger is the number
of states and transitions; this leads to a state explosion that
either the designers or the formal verification or simulation
tools have difficulty to cope with.

III. HIGRAPH-BASED MODEL

Graphs have been used to represent and model problems
since the emergence of automated systems. Graph-based
models give a visual and intuitive representation of the dif-
ferent concepts or components as well as the interactions and
relationships between all the components or concepts that
compose the system. It can represent different paradigms
with the required accuracy. Therefore, Graphs are often the
most natural way to describe a great variety of systems since
we can associate to the graph representation different se-
mantics that assign to nodes and edges completely different
meanings depending on the type of the paradigm we want
to model.

HiGraphs can be seen as an extension of ordinary
graphs. Vertices are decomposed according to different
orthogonal planes. Typically, the basic decomposition
includes the AND and the OR planes. However the number
of orthogonal planes is not limited. This extension is
achieved by defining (1) a function that associates the depth
or hierarchy to sub-graphs (depicted by encapsulation)
and (2) an orthogonality function that maps the graph to
is projection on each orthogonal plane, the graph is seen
as the cartesian product of the sub-graphs (depicted by

juxtaposed partitions that are separated by dashed lines,
each partition representing the projection to a plane). In
the spirit of [7], [8] and formalization work of D-HiGraph
[16], we may write:

HiGraph = Graph+Hierarchy +Orthogonality (1)

A. Mathematical definitions

Definition 1 (HiGraph) A HiGraph is a quadruple
H = (B,E, ρ, π) defined by [9]):

• a finite set B = {b1, b2, . . . , bn}, whose elements are
called blobs, where each blob can represent according
to the application a class, an attribute, an element of a
system, a function, etc.;

• a finite set E = {e1, e2, . . . , em}, whose elements
are called edges (arcs), an arc when it is defined
can connect any blob to another to represent different
relationships (e.g. physical connections, logical con-
nections, functional connections, etc.). For an edge
e = (b1, b2), b1 denotes the source blob and b2 the
target blob by edge e;

• ρ is the hierarchy function;
• π is the partitioning (or orthogonality) function.

B. Hierarchy & Orthogonality

1) Formal presentation:

Definition 2 (Hierarchy function & Hierarchy) Let ρ :
B → 2B be the hierarchy function. ρ maps each blob b ∈ B
to the set of sub-blobs ρ (b) that compose the blob b (i.e.,
it defines the direct descendants of a blob b). Literally a
blob in another defines hierarchy and shows aggregation and
composition relationships.

Definition 3 (Partitioning function) Let π : B → 2B×B

be the partitioning (orthogonality) function, so that it defines
for each blob b ∈ B an equivalence relation π (b) on the set
ρ (b) of b’s descendants. This induce equivalence classes,
denoted π1 (b) , . . . , πkb (b) and specifies the breakup of
b into its orthogonal components. Let ρ∗ and ρ+ be the
reflexive transitive closure, and the irreflexive transitive
closure, respectively of ρ. It is required that blobs in different
orthogonal components of b to be disjoint and for any pair
of blobs x and y that satisfy x /∈ ρ∗ (y), y ∈ ρ∗ (x)
and ρ∗ (x) ∩ ρ∗ (y) 6= ∅, the blobs in ρ∗ (x) ∩ ρ∗ (y) be
contained in exactly one orthogonal component of x and
one orthogonal component of y.

Definition 4 (Orthogonality) Two blobs x and y are or-
thogonal, denoted orth (x, y), if x = y or if there exist blobs
b, c and d such that b contains r orthogonal components and
there exist 1 ≤ i, j ≤ r with i 6= j, such that c ∈ πi (b),
x ∈ ρ∗ (c), d ∈ πi (b) and y ∈ ρ∗ (d). A set of blobs X is
orthogonal if any two elements therein are orthogonal.

Figure 1. Example of Hierarchy and Orthogonality

2) Use of hierarchy and orthogonality notions:
Hierarchy. Referring to hierarchy definition blobs can be
contained in other blobs. The outer blob that contains the
included blob is called the ancestor; the included blob is
called the descendant. For example, in Fig.1 (left part)
function 2 is included in function 1 so function 1 is the
ancestor of function 2 (super-blob) which is the descendant
of function 1 (sub-blob). A blob with no descendants is
called an atomic blob. Sub-blob that are included into a blob
implies that to the function, the property, the activity or the
concept as defined by the sub-blob is required by the super-
blob. The sub-blob is an essential element of the super-blob.
No sub-blob that does not contribute to the definition as
exposed by the super-blob should be included in the super-
blob.
Orthogonality. A blob can be decomposed into orthogonal
blobs (the blob is represented by all the orthogonal partitions
that are separated by a dashed line). Each orthogonal parti-
tion is composed of at least one blob. This blob defines the
projection of the main function, activity, concept exposed
by the blob that is relevant to the specific partition. The
function π defines the semantics meaning of the relationship.
Orthogonality in HiGraphs can represent (but is not limited
to) separation, logical/structural partitioning, synchronized
behavior, concurrent behavior, etc. In fig.1 (right part), for
instance, the outer function (function 1) has been partitioned
into two orthogonal components using a dashed line. This
HiGraph means that ACTOR 1 performs function 1 but
it needs either function 2 or function 3 and function 4.
Moreover, function 5 is included in function 4 so ACTOR
4 needs the function performed by ACTOR 5 to carry out
function 4. Each partition of a blob can be active or not,
to show this behavior, each partition can have a condition.
Another kind of orthogonality will be presented in the next
sections, for example, requirements will be organized into
groups that can be assigned to teams having expertise in an
area relevant to those requirements.

3) HiGraph based transformations: To apply the paper
approach, we define the following transformations on Hi-
Graphs.
The first transformation is defined as a top-down trans-

formation. For that, we introduce the notion of type. A
type denotes that objects having the same type T share a
set of common characteristics that are defined by the type
T . Grouping elements by types allows to group elements
that share the same common characteristics that is denoted
by the type. Refining the entities implies deriving type
since for each type we refine, we have to conform to the
characteristics associated to the entity and we add additional
properties, constraints to the refined entity. If we suppose
that an entity A′ has type T2; the refined entity A′ has type
T2 and that T2 derives from T1, this implies that the entry
A′ fulfills all the common characteristics that are defined
by the type T1 and may fulfill additional characteristics as
defined by the type T2.

Definition 5 (Decomposition) Let H be a HiGraph. Let x
be a blob. Let yi be the blobs such that yi ∈ ρ(x).
The decomposition function1 fdec maps a single element x
to a set of elements yi. fdec : H → H such that fdec (x) =
y1, . . . , y|ρ(x)|.

Definition 6 (Type HiGraph) Let the quadruple Tπ =
(BTπ , ETπ , ρ, π) be a Type HiGraph such that:
• ETπ = ∅ no edge are defined;
• ∀x ∈ BTπ , π (x) = ρ (x) (i.e., all the elements have

the same type).

Definition 7 (Type Refinement) Let T1 and T2 are Type
HiGraphs. A type T1 is refined by type T2 if T1 contains T2,
i.e., T2 = ρ (T1). This transformation allows also refining
any non atomic element in the model.

The second transformation is aggregation. This is the dual
transformation to refinement. Aggregation gathers the ele-
ments properties into a higher-level aggregating element (the
aggregated element) and hides the lower-level elements.

Definition 8 (Aggregation) Let H be a HiGraph. Let x be
a blob. Let yi be blobs such that yi ∈ ρ(x).
The aggregation function fagg maps a set of elements
yi to a single element x2. fagg : H → H such that
fagg

(
y1, . . . , y|ρ(x)|

)
= x.

Views are defined by filtering the global model (the Hi-
Graph of type HiGraphs) accord to the type of the elements.
This allows to map the model to a common set of interest-
ing views like functional, non-functional, dysfunctional or
architectural views.

Definition 9 (View) Let HT the HiGraph of Type Hi-
Graphs. Vi is said a view if:
• Vi is a HiGraph

1This function makes the content of the object visible (white box), i.e.
all the children elements are visible [10]

2This function hides the content of the object (blackbox), i.e. all the
children elements are hidden. This function is the inverse function of
decomposition function [10].

Figure 2. The RCS functional view HiGraph

• Vi ⊂ HT

In general HT = ∪Vi.

Definition 10 (Filter function) A filter function is a func-
tion f : HT → HT , where HT is the HiGraph of Type
HiGraphs such as:
• f (HT) ⊂ HT

• ρ (f (HT)) ⊂ ρ (HT)

IV. WORKING EXAMPLE

As an example, we consider a Controlled Railway Track
Cross Section (RCS) throughout this paper to illustrate how
to use HiGraphs to model and refine a typical system.

The RCS describes a decentralized controller that au-
tonomously activates visual and auditory signals and closes
a railroad barrier at a railroad crossing when a train is
approaching the railway track cross section. This controller
autonomously opens the railroad barrier and stops the visual
and auditory signals when the train has left the railway track
cross section. This system is typical of a broad family of
digital control applications. A set of senors detect the trains
that are approaching. When the trains get detected by the
sensors, the controller process the information and either
generates a command to close the railroad barriers or to
maintain the railroad barriers closed if the railroad barriers
are already closed. This ensures that the railway track gets
isolated from the road and that no car will be present on the
railway track cross section.

A. Characteristics of Models

A system model offers a representation of the different
aspects of the system. It should be capable of providing
a representation of the conceptual as well as the physical
properties of a system. He should be capable to offer a
simple and adequate representation that matches the specifier
or designer thoughts. The modeling process should allow
to identify the elements that are relevant for modeling; the
modeling process should also offer the tools to define the
relations between those elements. Modeling elements as well
as relationship between elements should be done by using
well-defined and adequate languages. For instance, at very
high abstraction level, the requirements are written in natural
language. When refining the design, the requirements get

Figure 3. The RCS implementation view HiGraph

replaced by components that are expressed in semi-formal
or formal languages, whose semantics are mathematically
rigorous and support behavioral simulation or execution.

The presented Hi-Graph based model has been conceived
(1) to support multiple level of abstractions, (2) to offer
the full expressive power required to model all the relevant
issues (3) to offer to the specifier or designer a way to specify
or express his requirements and system decomposition based
on their current practices, (4) to offer a comprehensive
representation of the multiple views based on a graphical
representation, (5) to offer a rigorous mathematical structure
to support model transformation, (6) to offer a rigorous
mathematical semantics (see [9]) that is required to simulate
system behavior and perform analysis of the system.

B. Modeling Views

When building a model, the designer converts non-
formalized ideas into concrete and tangible descriptions
[13], [14]. In the presented approach, different views de-
scribe the system specification according to the nature of
the properties. Typically, the designer will introduce at
least three views: the functional, the dysfunctional as well
as the physical one corresponding to the implementation.
In the current example, we introduce the functional, the
dysfunctional, the physical as well as the non-functional
(temporal) view, since we need to ensure that the delay
between detecting the train, activating the signals, closing
the barrier, stopping the signals and releasing the barrier are
adequate.

1) Functional view: The functional description of a sys-
tem specifies the system’s capabilities. It details the func-
tional components or activities, that the system is capable
of carrying out. It also describes the interaction among
the components or activities as well as with the envi-
ronment. The environment may be modeled in this view

Figure 4. Mapping basic functions to control region HiGraph

or the interface to the environment may be specified and
the environment get modeled or simulated into another
view. The functional view defines the information that are
exchanged between the components or activities. It also
defines the logical interconnection of the components or
activities. The intent of the functional view is to help to
decompose complex functions into less complex functions
that can be distributed to different processing components
or activities that will implement the sub-function or execute
the sub-task. When refining the functional view, the different
components or activities that described the functions carried
out by the system are decomposed into sub-components or
sub-activities. This refinement process will be carried out till
there are no benefit to decompose the sub-function or the
sub-task. Components or activities can be organized into a
hierarchy and can also be grouped by orthogonality. High-
level basic functions or activities will be specified using
structured natural language. When refining the components
or activities, the sub-components or activities will be speci-
fied either by more precise definition in the same formalism
or using a more formal mechanism like a formal description
language or programming code.

2) Implementation view: The implementation captures
the system architecture. The initial view of the
implementation view captures a typical control command
view at a high abstraction level. During the exploration
of the solution space, the components get refined by
more precise implementation components. This refinement
process ends with the final components that correspond
to the final components that support the functions that
get implemented into the system. The components can
be hardware components, logical components (software
running on hardware) or even human activities. The
implementation view also specifies how the components
are interconnected and interact. These components may
eventually materialize as hardware, software, or even
human tasks. The relationships between the implementation
view and the functional view ensure that all the functions
get mapped to the components and that all the required

Figure 5. Non-functional/Dysfonctional view HiGraph

functions will be implemented. The relationships between
the implementation view and the non-functional view (resp.
dysfunctional view) ensure that all the temporal behaviors
or the components (resp. faults affecting the components)
are taken into account. As in the other views, they are
organized into a hierarchy and grouped by orthogonality.

To illustrate functional and implementation views function
based decomposition, we consider the controlled RCS
example. We start by describing the main functionality, we
organize them through groups using orthogonality function
(dashed lines), we obtain three regions: a detection region,
a control region, and an action region (see fig. 2). Now we
apply the decomposition transformation that implements
components to each one of these regions, we obtain
the HiGraph shown in fig. 3, for example the detection
relies on physical device like sensor, communication
mean to transmit data signal and power supply to feed
this sub-system. Lets take the control region and map
basic activities for each region’s components textually in
dashed box (fig. 4): the logical processing unit (LPU)
receives the given information, processes it and generates
the resulting commands that may be a controlled signal;
detection/control interface (control/action interface) allows
exchanging information between respectively the detection
region and the control region (the control region and
the action region); finally the power supply feeding this
sub-system. This operation could be repeated for each
element in other regions.

3) Non-functional view: The non-functional description
describes non-functional properties that can be quantified.
When modeling non-functional views, we concentrate on
runtime non-functional properties. For example, we will not

Figure 6. Ensuring the consistency of the multiple views HiGraph

model in this view re-usability, testability and modifiability.3.
Typical non-functional properties are the performance of
an action, the delay of a computation. It can also be the
number of transactions that can be served at a given time,
the power consumption,. . . Non-functional views may mix
properties coming from different aspects of the attributes.
When specifying temporal properties, we specify constraints
of the time when an event is generated as well as the delay
of an operation. Typically non-functional view should sup-
port decomposition of the typical expressed non-functional
property according to the different aspects of the expressed
non-functional attribute. A real-time system may express a
constraint on the loop time; this constraint will decompose
into a constraint on computation performance as well as a
constraint on communication latency.

4) Dysfunctional view: The dysfunctional view of a
system specifies the system’s failure occurrences. It details
the dysfunctional events, that lead the system to failure, and
how these failure modes propagate through the system. The
main method for describing the dysfunction of a system in
our approach is that of decomposition, by which the system
is viewed as a collection of hazardous events, organized
into a hierarchy and grouped by orthogonality. Each event
may be decomposed into sub-events, repeatedly, until the
system has been specified in terms of basic events. Those
basic events are the basic events that determine the origin

3However, additional views supporting those attributes may be introduced
to support those attributes

of the critical failure.

Between the non-functional and dysfunctional view, it
remains a close link, to illustrate the different views, we
propose to study a critical scenario in terms of safety
based on the RCS example. The scenario consists of the
non-sealing level crossing in the presence of a train, in other
words, the occurrence of non-closure of the RCS at the
passage of a train. By applying the decomposition to this
hazardous non-functional event. We obtain a HiGraph (fig.
5 first graph from left-hand) composed of three sub-events:
the non-detection in the presence of a train, the non-taking
into account of the detection in the presence of a train, and
the non taking into account of the action in the presence
of a train. The occurrence of at least one of these events is
sufficient for the occurrence of the higher-order event, the
non-closure of the RCS. These non-functional sub-events
are grouped by orthogonality into three distinct regions,
which recall the decomposition and partitioning of the
functional view (fig. 2). Taking the non-functional sub-
event: not taking into consideration detection in presence
of a train by decomposition we obtain four events that
can induce this higher-order event (fig. 5 second graph
from left-hand): dysfunction of the LPU, dysfunction of
detection/control interface, dysfunction of control/action
interface and dysfunction of power supply systems. These
sub-events are grouped by orthogonality, in this case
structural. Now let us explore the event dysfunction of the
LPU, the decomposition leads to sub-events that may be
dysfunctional (e.g., physical loss of LPU, loss of integrity
of data) or non-functional (e.g. occurrence of malfunction
during data processing, malfunction in time during data
processing), partitioning suggests a grouping according to
the type of the events: physical, logical and temporal (see
fig. 5 first graph from the right). This methodology allowed
a top-down modeling until reaching the basic event that
leads to the dreaded top events as well as specifies its type
(in our e.g., physical, logical and temporal).

C. Ensuring the consistency of the multiple views

In the previous sections we discussed different kinds of
views, and their representations. A full-fledged model of a
system may consist of many views. It is interesting to note
that the number of views is not fixed and that there is not
a limited set of predefined views. In the working example,
we have introduce four views, however a system designer
can introduce as many views as he feels adequate. All the
views must not be specified when starting the exploration
of the solution space, a view may be added when reaching
a certain exploration level. Another benefit of using the
HiGraph-based modeling is the ability to support different
formalisms when modeling the system, since there is
no single formalism that can handle all the different
aspects to be modeled. For instance, dysfunctional view is

mainly based on probabilistic models, functional view may
be expressed using finite state machines or event-based
models, non-functional view may be expressed either using
probabilistic approach or bounded set approach. HiGraphs
allows putting things together, typically a HiGraph that
contains different HiGraphs each one representing a typical
view that has many elements inside, edges and orthogonality
that can respectively show connections between the multiple
views and ensure the consistency of the multiple views
during the exploration of the solution space for instance a
decision on the expected availability may either induce new
functions or implies component duplication.

We now recollect the full model of our RCS example
(see fig. 6). To achieve this, we combine the various
views that are described in the previous sections. The
non-functional/dysfunctional view of the RCS that appears
in fig. 5 5 (first graph from left-hand in fig. 6), the
functional view of detecting non-function/dysfunction
following the safety scenario (second from left-hand in
fig. 6), and the implementation view of monitoring (first
graph from right-hand in fig. 6). The different perspectives
are depicted by the same HiGraph. Lets consider the
event not taking into account the detection of the train
form the dysfunctional/non-functional view, this suggest
a dysfunction/non function of the control system, the
decision to guarantee the safety implies new functions to
the functional view; for instance robustification/redundancy
aspects to the physical level, the ability to detect faults
(non-functional and/or dysfunctional) for logical aspects,
and the ability to detect dormant faults (latency) for
temporal aspects. In order to be able to check/compare the
new induced functions we need the implementation view of
monitoring aspects whether physical, logical and temporal.

V. DISCUSSION

A. Interest of the approach in terms of following require-
ments

The interest of the approach is mainly in providing a
framework that handles multiple views through orthogonal-
ity, ensure the consistency while refining abstraction levels
and exploring solution space, for instance it brings adaptable
implementation model according to the requirements (e.g.,
in Fig.2 sensor must detect a train - induce checking the
failure of sensor, this leads to the use of monitoring architec-
ture), the new needed requirements and/or the safety while
designing. This also allows to check that each requirement
is respected during the conception.

B. Integrating existing formalisms

The multi-formalism aspect of HiGraph refers to the
ability of HiGraph-based model to be transformed to other

existing known formalism by model transformations, ac-
cording to two techniques: graph transformations and hy-
brid transformation approaches presented in the introduction
section. If we consider a concurrent distributed system, the
HiGraph based model may be transformed into a Petri-Net
representation so that a model checker can formally check
that for instance no deadlock can occur.

VI. FUTURE WORKS

A future direction worth pursuing is providing dysfunc-
tional modeling by a complementary view, making relation
between the availability and the safety; also introduce the
notion of time by adding time information to the model.
Another future direction worth pursuing is potentially adding
the notion of cybersecurity (e.g., authentication of sensors),
integrating existing formalisms and provide tools that handle
HiGraphs.

VII. CONCLUSION

We formally introduced the HiGraphs and their key
properties (Hierarchy and orthogonality). We then briefly
introduced the working example and the modeling process
on the working example. We finally discuss the interest of
the approach and the integration of the existing formalism.

ACKNOWLEDGMENT

Acknowledgements: This research carried out in the
Project DEPARTS is partially supported by grants from
BPI France within the French government R&D program
PIA/FSN.

REFERENCES

[1] H. Aboutaleb, Applying HiGraph-Based Model to System
Engineering - Methodology, Formalism and Metrics, PhD in
Computer Science, Paris, École Polytechnique, 2015.

[2] P. Letelier, A Framework for Requirements Traceability in
UML-based Projects In Proc. of 1st International Workshop on
Traceability in Engineering Forms of Software Engineering. In
conjunction with the 17th IEEE

[3] S. Bernardi, S. Donatelli, and J. Merseguer, From UML
sequence diagrams and statecharts to analysable Petri net
models. In WOSP 02 : Proceedings of the 3rd international
workshop on Software and performance, pages 3545, New
York, NY, USA, 2002. ACM.

[4] T. Holvoet and P. Verbaeten, Petri charts : an alternative
technique for hierarchical net construction., in Proceedings of
IEEE Conference on System, Man, and Cybernetics, 1995.

[5] Z. Hu and S. M. Shatz, Mapping UML diagrams to a Petri net
notation for system simulation, in SEKE, pages 213219, 2004.

[6] Sh. Yao and S. M. Shatz, Consistency checking of UML
dynamic models based on Petri net techniques, in CIC, pages
289297, 2006.

[7] D. Harel, On visual formalisms in Communications of the
ACM, 31(5):514530, 1988.

[8] D. Harel, Statecharts: A visual formalism for complex systems
in Science of Computer Programming, 8(5):231274, 1987.

[9] O. Grossman and D. Harel (1997). On the Algorithmics of
HiGraphs.

[10] H. Aboutaleb and B. Monsuez. Handling Complexity of a
Model in System Design: Framework, Formalism and Metrics,
in Procedia Manufacturing. 3:1981-1988. 2015.

[11] M. Naklé and B. Monsuez RTCE-SAFECOMP: Introduction
a la Methodologie SAFECOMP et Rapport d’étape, Version
1.3c du 11/9/2018.

[12] J. A. Stankovic and K. Ramamritham, What is predictability
for real-time systems in Real-Time Systems, 2:247254, 1990.

[13] D. Drusinsky and D. Harel Using Statecharts for Hardware
Description and Synthesis, in IEEE Trans. Computer Aided
Design of Integrated Circuits and Systems 8 (1989), 798-807.

[14] K. Fogarty, System Modeling and Traceability Applications
of the HiGraph Formalism.MS thesis. Institute for Systems
Research. University of Maryland, MD 20742. May 2006.

[15] M. Raitner, Efficient visual navigation of hierarchically struc-
tured graphs, 2006.

[16] J. L. de la Mata and M. Rodriguez, D-HiGraphs Functional
Modeling, R-2010-009. May 4, 2010. Autonomous Systems
Laboratory. UPM-ETS Ingenieros Industriales. Jos Gutirrez
Abascal, 2.28006 Madrid, SPAIN.

[17] A. Gerber, M. Lawley, K. Raymond, J. Steel and A. Wood,
Transformation: The Missing Link of MDA, In : Graph Trans-
formation. Volume 2505 of Lecture Notes in Computer Sci-
ence, Springer- Verlag (2002) 90-105 Proc. 1st International
Conference. Graph Transformation, Barcelona, Spain 2002.

[18] H. Vangheluwe, J. de Lara and P. J. Mosterman, An Introduc-
tion to Multi-Paradigm Modelling and Simulation, Tutorial, In
Proceedings AI Simulation and Planning AIS-2002. Pages 9-
20. Lisbone. Avril 2002.

[19] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara et al. Model
Transformation by Graph Transformation : A Comparative
Study, in Model Transformations in Practice Workshop at
MoDELS, Montego, 2005.

[20] F. Jouault, F. Allilaire, J. Bzivin, I. Kurtev and P. Valduriez,
ATL: a QVT like transformation language, in Companion
to the 21th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA

