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Élisabeth Gassiat*, Luc Lehéricy*, and Sylvain Le Corff**
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Abstract

In this paper, we consider partially observed dynamical systems where the observations are given
as the sum of latent variables lying in a general state space and some independent noise with unknown
distribution. In the case of dependent latent variables such as Markov chains, it is shown that this fully
nonparametric model is identifiable with respect to both the distribution of the latent variables and the
distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric
estimation methods are proposed and we prove that the corresponding estimators are consistent for the
weak convergence topology. These results are illustrated with numerical experiments.

1 Introduction
The use of latent data models is ubiquitous in time series analysis across a wide range of applied sci-
ence and engineering domains such as signal processing [Crouse et al., 1998], genomics [Yau et al., 2011,
Wang et al., 2017], target tracking [Särkkä et al., 2007], enhancement and segmentation of speech and audio
signals [Rabiner, 1989], see also [Särkkä, 2013, Douc et al., 2014, Zucchini et al., 2016] and the numerous
references therein. In such frameworks, often referred to in the literature as partially observed dynamical
systems, only indirect observations of the state sequence, possibly lying in a high dimensional state space,
are available to perform statistical inference.

Solving inverse problems, i.e. recovering information about the hidden process using the observations,
is a long standing statistical problem. In the case of hidden Markov models (HMMs), the sequence of
latent states is assumed to be a Markov chain and the conditional distributions of the observations given
the states are referred to as emission distributions. Although parametric HMMs have been widely stud-
ied and are appealing for a wide range of applications, inference procedures for such models may lead to
poor results in real data and high dimensional learning problems. This explains the recent keen interest
for nonparametric latent data models which have been introduced in many disciplines such as climate state
identification [Lambert et al., 2003, Touron, pear], genomics [Yau et al., 2011], statistical modelling of an-
imal movement [Langrock et al., 2015] or biology [Volant et al., 2014]. For finite state space HMMs, such
nonparametric modeling has been recently validated by theoretical identifiability results and the analysis
of estimation procedures with provable guarantees, see [Gassiat et al., 2016], [Alexandrovich et al., 2016],
[De Castro et al., 2016], [Lehéricy, 2018]. In this setting, the parameters to be estimated are the transition
matrix of the hidden chain and the emission densities. See also [Gassiat and Rousseau, 2016] for translation
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HMMs with finite state space. While certainly of interest, the finite state space setting may be too restrictive
for many applications.

The aim of this paper is to propose a solution to fully nonparametric translation HMMs when, for all
1 6 i 6 n, the observation Yi is given by

Yi = Xi + εi , (1)

where Xi is the latent state and εi is the noise. This work can be considered as the first contribution to
establish theoretical results in a general nonparametric setting for latent data models with general state
space.

The inverse problem in (1) is to infer the distribution of the latent data based on (Y1, . . . , Yn). When
the observations are i.i.d., it is known as the deconvolution problem. There is a wide range of literature on
density deconvolution when the distribution of the noise εi is assumed to be known and with a nowhere
vanishing Fourier transform, in the situation where the random variables (Xi, εi)16i6n are assumed to be
independent and for all 1 6 i 6 n, εi is independent of Xi, see [Devroye, 1989], [Liu and Taylor, 1989],
[Stefanski and Carroll, 1990], for some early nonparametric deconvolution methods, [Carroll and Hall, 1988]
and [Fan, 1991] for minimax rates, see also [Eckle et al., 2016] and references therein for a recent work.
However, when the distribution of the noise is also unknown, model (1) can not be identified in full gener-
ality. In [Gassiat and Rousseau, 2016], the authors proved that when the latent variables take finitely many
values, all the parameters of the model are identifiable as soon as the matrix that defines the joint distribution
of two consecutive latent variables is nonsingular and the location parameters are distinct. When there are
two possible distinct states the assumption on the matrix is equivalent to the fact that the latent variables are
not independent.

The first objective of this paper is to prove that, when the state space is Rd for some d > 1, and if one
considers non independent observations, identifiability can be obtained in model (1) without any assumption
on the distribution of the noise. The second objective is to propose nonparametric estimators and to prove
that they are consistent. In Section 2.1, the identifiability of the fully nonparametric hidden translation model
is established under the weak assumption that the Laplace transform of the latent state has an exponential
growth smaller than 2, see Theorem 1. This result is then displayed in Section 2.2 in the specific case
where the latent data is a stationary Markov chain, see Corollary 1. In the case of real valued HMMs,
identifiability is extended to latent variables having Laplace transform with exponential growth smaller than
3, see Theorem 2. In Section 3, two different methods are proposed to recover the distribution of the latent
variables. The first one is a least squares method arising naturally from the identifiability proof, the second
one is the classical maximum likelihood method using discrete probability measures as approximation of
all probability measures. Both estimators are proved to be consistent for the weak convergence topology,
see Theorem 3 and Theorem 4. Simulations are presented in Section 4. The Appendices contain proofs and
further examples where the theory developed in this paper could be applied.

2 Identifiability theorems

2.1 Setting and theorem
Let X = (X1, X2) and ε = (ε1, ε2) be random variables defined on the same probability space (Ω,F ,P)
such that for i ∈ {1, 2}, Xi and εi take values in Rdi and such that ε is independent of X . For i ∈ {1, 2},
define

Yi = Xi + εi .
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Let P(2)
R,P be the distribution of Y = (Y1, Y2) when X has distribution R and (εi)i∈{1,2} are independent

and such that for i ∈ {1, 2}, εi has distribution Pi, with P = (P1, P2). Let A be the set of distributions on
Rd1 × Rd2 such that for all (λ1, λ2) ∈ Rd1 × Rd2 ,∫

exp
(
λT1 x1 + λT2 x2

)
R(dx1,dx2) < +∞ ,

where for any vector λ in a Euclidian space, λT denotes its transpose vector. Note that if R ∈ A, then the
function ΦR, defined as

ΦR : Cd1 × Cd2 −→ C

(z1, z2) 7→
∫

exp
(
zT1 x1 + zT2 x2

)
R(dx1,dx2) ,

is a multivariate analytic function. For any ρ > 0, letMρ be the set of probability distributions µ on Rd for
some d > 1 such that there exist A,B > 0 satisfying, for all λ ∈ Rd,∫

exp
(
λTx

)
µ(dx) 6 A exp (B‖λ‖ρ) ,

where for a vector λ in a Euclidian space, ‖λ‖ denotes its euclidian norm. For any distribution R ∈ A
and any random variables (X1, X2) on (Ω,F ,P) with distribution R, denote by R1 (resp. R2) the marginal
distribution of X1 (resp. X2). Consider the following assumptions.

H1 The distribution R ∈ A is said to satisfy H1 if and only if for any z0 ∈ Cd1 , z 7→ ΦR(z0, z) is not the
null function and for any z0 ∈ Cd2 , z 7→ ΦR(z, z0) is not the null function.

H2 In the case where d1 = d2 = d, R ∈ A is said to satisfy H2 if and only if R1 = R2 and for any
z0 ∈ Cd, z 7→ ΦR(z0, z) is not the null function or z 7→ ΦR(z, z0) is not the null function.

In addition, the assertion R = R̃ and P = P̃ up to translation means that there exists m = (m1,m2) ∈
Rd1 ×Rd2 such that if X has distribution R and for i ∈ {1, 2}, εi has distribution Pi, then (Xi−mi)i∈{1,2}

has distribution R̃ and for i ∈ {1, 2}, εi +mi has distribution P̃i.

Theorem 1. Assume that R ∈ A, R̃ ∈ A, and that there exists ρ < 2 such that one of the following
assumptions holds.

• (A1) R1, R2, R̃1 and R̃2 are inMρ and R and R̃ satisfy assumption H1.

• (A2) R1 and R̃1 are inMρ and R and R̃ satisfy assumption H2.

Then, P(2)
R,P = P(2)

R̃,P̃
implies that R = R̃ and P = P̃ up to translation.

Remark 1. One way to fix the “up to translation” indeterminacy when the noises have a first order moment
is to assume that they are centered, that is E[εi] = 0 for i ∈ {1, 2}.

Remark 2. Note that there is no assumption at all on the distributions of the noises ε1 and ε2. For instance,
it is not required that their characteristic functions do not vanish, which is usually assumed in the litera-
ture on deconvolution. The only assumptions concern the distribution of X . When (X1, X2) has compact
support, then R ∈ A and the marginal distributions of X1 and X2 are inM1. Regarding assumption H1
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Élisabeth Gassiat, Luc Lehéricy, Sylvain Le Corff Nonparametric general translation HMM

and assumption H2, using Hadamard’s factorization Theorem, see [Stein and Shakarchi, 2003, Chapter 5,
Theorem 5.1], if R ∈ Mρ with ρ < 2, then ΦR(0, ·) has no zeros if and only if X1 is deterministic and
ΦR(·, 0) has no zeros if and only if X2 is deterministic. Thus, if X1 and X2 are not deterministic, ΦR(0, ·)
and ΦR(·, 0) have zeros. Moreover, if for i ∈ {1, 2}, Xi can be decomposed as Xi = X̃i + ηi, with η1 and
η2 independent variables independent of X̃ = (X̃1, X̃2), and if for some z0, E[ez

T
0 η1 ] = 0 and for some z1,

E[ez
T
1 η2 ] = 0, then H1 does not hold. In other words, H1 and H2 can hold only if all the additive noise has

been removed from X .

Proof. In this section, the following result, which may be established by arguing variable by variable, is
used repeatedly. If a multivariate function is analytic on the whole multivariate complex space and is the null
function in an open set of the multivariate real space or in an open set of the multivariate purely imaginary
space, then it is the null function on the whole multivariate complex space. Assume P(2)

R,P = P(2)

R̃,P̃
and let

φi (resp. φ̃i) be the characteristic function of Pi (resp. P̃i) for i ∈ {1, 2}. Since the distribution of Y1 and
Y2 are the same under P(2)

R,P and P(2)

R̃,P̃
, for any t ∈ Rd1 ,

φ1 (t) ΦR (it, 0) = φ̃1 (t) ΦR̃ (it, 0) (2)

and for any t ∈ Rd2 ,
φ2 (t) ΦR (0, it) = φ̃2 (t) ΦR̃ (0, it) . (3)

Since the distribution of (Y1, Y2) is the same under P(2)
R,P and P(2)

R̃,P̃
, for any (t1, t2) ∈ Rd1 × Rd2 ,

φ1 (t1)φ2 (t2) ΦR (it1, it2) = φ̃1 (t1) φ̃2 (t2) ΦR̃ (it1, it2) . (4)

There exists a neighborhood V of 0 in Rd1×Rd2 such that for all t = (t1, t2) ∈ V , φ1 (t1) 6= 0, φ2 (t2) 6= 0,
φ̃1 (t1) 6= 0, φ̃2 (t2) 6= 0, so that (2), (3) and (4) imply that for any (t1, t2) ∈ V 2,

ΦR (it1, it2) ΦR̃ (it1, 0) ΦR̃ (0, it2) = ΦR̃ (it1, it2) ΦR (it1, 0) ΦR (0, it2) . (5)

Since (z1, z2) 7→ ΦR (z1, z2) ΦR̃ (z1, 0) ΦR̃ (0, z2)−ΦR̃ (z1, z2) ΦR (z1, 0) ΦR (0, z2) is a multivariate an-
alytic function of d1 + d2 variables which is zero in a purely imaginary neighborhood of 0, then it is the null
function on the whole multivariate complex space so that for any z1 ∈ Cd1 and z2 ∈ Cd2 ,

ΦR (z1, z2) ΦR̃ (z1, 0) ΦR̃ (0, z2) = ΦR̃ (z1, z2) ΦR (z1, 0) ΦR (0, z2) . (6)

i). Consider first the situation where (A1) holds. Fix (u2, . . . , ud) ∈ Cd1−1 and let Z be the set of zeros
of u 7→ ΦR(u, u2, . . . , ud, 0) and Z̃ be the set of zeros of u 7→ ΦR̃(u, u2, . . . , ud, 0). Let u1 ∈ Z . Write
z1 = (u1, u2, . . . , ud) so that by (6), for any z2 ∈ Cd2 ,

ΦR (z1, z2) ΦR̃ (z1, 0) ΦR̃ (0, z2) = 0 . (7)

Using (A1), z2 → ΦR (z1, z2) is not the null function. Thus, there exists z?2 in Cd2 such that ΦR (z1, z
?
2) 6= 0

and by continuity, there exists an open neighborhood of z?2 such that for all z2 in this open set, ΦR (z1, z2) 6=
0. Since z 7→ ΦR̃ (0, z) is not the null function and is analytic on Cd2 , it can not be null all over this open
set, so that there exists z2 such that simultaneously ΦR (z1, z2) 6= 0 and ΦR̃ (0, z2) 6= 0. Then (7) leads
to ΦR̃ (z1, 0) = 0, so that Z ⊂ Z̃ . A symmetric argument yields Z̃ ⊂ Z so that Z = Z̃ . Moreover, the
analytic functions u 7→ ΦR(u, u2, . . . , ud, 0) and u 7→ ΦR̃(u, u2, . . . , ud, 0) have exponential growth order
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less than 2, so that using Hadamard’s factorization Theorem, see [Stein and Shakarchi, 2003, Chapter 5,
Theorem 5.1], there exists a polynomial function s with degree at most 1 (and coefficients depending on
(u2, . . . , ud)) such that for all u ∈ C,

ΦR(u, u2, . . . , ud, 0) = es(u)ΦR̃(u, u2, . . . , ud, 0) .

Arguing similarly for all variables, there exists a polynomial function S on Cd1 with degree at most 1 in
each variable such that for all (u1, . . . , ud) ∈ Cd,

ΦR(u1, u2, . . . , ud, 0) = eS(u1,u2,...,ud)ΦR̃(u1, u2, . . . , ud, 0) . (8)

Since ΦR(0, . . . , 0) = ΦR̃(0, . . . , 0) = 1, the constant term of the polynomial S is 0. On the other hand, if
(A1) or (A2) holds, then under R̃, X1 is not deterministic and its probability mass function is not supported
by 0 (see Remark 2). Thus, there exist a = (a1, . . . , ad1) ∈ Rd1 , α > 0 and δ > 0 such that

0 /∈
d1∏
j=1

[aj − α, aj + α] and P(2)

R̃,P̃

X1 ∈
d1∏
j=1

[aj − α, aj + α]

 > δ ,

which gives, for all λ ∈ Rd1 ,

ΦR̃(λ, 0) > δe
∑d1
j=1 infx∈[aj−α,aj+α] λjx .

Since R̃1 ∈Mρ for some ρ < 2, if S has degree at least 2, then ΦR(·, 0) has exponential growth of order at
least 2, contradicting assumption (A1) and (A2). Then, S has degree at most 1 and there exists m1 ∈ Cd1
such that for all z ∈ Cd1 , ΦR(z, 0) = em

T
1 zΦR̃(z, 0). As for all z ∈ Rd, ΦR(−iz, 0) = ΦR(iz, 0) and

ΦR̃(−iz, 0) = ΦR̃(iz, 0), m1 ∈ Rd1 . Arguing similarly for the function ΦR(0, z2), there exists m2 ∈ Rd2

such that for all z ∈ Cd2 , ΦR(0, z) = em
T
2 zΦR̃(0, z).

ii). Consider now the situation where (A2) holds. Then, for all z ∈ Cd, ΦR(z, 0) = ΦR(0, z) and
ΦR̃(z, 0) = ΦR̃(0, z), and following the same steps as the first part of the proof, there existsm = (m1,m2) ∈
Rd1 × Rd2 such that for all z ∈ Cd,

ΦR(z, 0) = em
T
1 zΦR̃(z, 0) and ΦR(0, z) = em

T
2 zΦR̃(0, z) . (9)

Combining (9) with (6) yields, for all (t1, t2) ∈ Rd × Rd,

ΦR(it1, it2) = eim
T
1 t1+imT2 t2ΦR̃(it1, it2) . (10)

Then, using (2), for all t ∈ Rd such that ΦR(it, 0) 6= 0, φ1(t) = e−im
T
1 tφ̃1(t). Since the set of zeros of

t 7→ ΦR(it, 0) has empty interior, for each t such that ΦR(it, 0) = 0 it is possible to find a sequence (tn)n>1

such that tn tends to t and for all n, ΦR(itn, 0) 6= 0. But φ1 and φ̃1 are continuous functions, so that for all
t ∈ R,

φ1(t) = e−im
T
1 tφ̃1(t) . (11)

The fact that for all t ∈ R,
φ2(t) = e−im

T
2 tφ̃2(t) (12)

follows from the same arguments. The proof is concluded by noting that (10), (11) and (12) imply that
R = R̃ and P = P̃ up to translation.
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2.2 The case of translation hidden Markov models
Consider a sequence of random variables (Yn)n>1 taking values in Rd such that for all n ∈ N,

Yn = Xn + εn , (13)

where (Xn)n>1 is a stationary Markov chain, and (εn)n>1 is a sequence of independent and identically
distributed (i.i.d.) random variables independent of (Xn)n>1. For all transition kernel K : Rd × B(Rd) →
[0, 1] with stationary distribution µK , define the measure RK on Rd as follows. For all A ∈ B(R2d),

RK(A) =

∫
µK(dx)K(x,dy)1A(x, y) .

For any probability distribution P on Rd, denote by PK,P the distribution of the sequence (Yn)n>1 when
the stationary Markov chain (Xn)n>1 has transition K and the εi’s have distribution P . Theorem 1 has the
following corollary.

Corollary 1. Assume that K (resp. K̃) is a transition kernel on Rd × B(Rd) admitting a unique stationary
distribution µK (resp. µK̃). Assume thatRK ∈ A,RK̃ ∈ A, and that there exists ρ < 2 such that µK ∈Mρ

and µK̃ ∈ Mρ. Assume that RK and RK̃ satisfy (A2). Then, PK,P = PK̃,P̃ implies that RK = RK̃ and

P = P̃ up to translation.

In the case of real valued random variables, identifiability holds for a larger class of transition kernels,
including Gaussian Markov chains.

Theorem 2 (Case d = 1). Assume that K (resp. K̃) is a transition kernel on R× B(R) admitting a unique
stationary distribution µK (resp. µK̃) and a density with respect to the Lebesgue measure. Assume that
RK ∈ A, RK̃ ∈ A, and that there exists ρ < 3 such that µK ∈ Mρ and µK̃ ∈ Mρ. Assume that RK and
RK̃ satisfy (A2). Assume moreover that if the stationary Markov chain with transition kernel K (resp. K̃) is
Gaussian, it is not a sequence of i.i.d. variables. Then, PK,P = PK̃,P̃ implies that RK = RK̃ and P = P̃
up to translation.

2.3 Further examples
Theorem 1 applies to other models such as deconvolution with repeated measurements, errors in variable
regression models, or nonparametric hidden regression variables, see Section D for more details. Note that
all examples given in that section are submodels of the general model displayed in Section 2.1, so that
Theorem 1 not only proves that such submodels are identifiable, but also that they may be recovered even in
the larger general model.

3 Consistent estimation
This section displays two different methods to obtain consistent estimators. The first method is directly
inspired by the identifiability proof, and may be used in more general contexts than HMMs. The second
method should be more accurate in the HMM context since it uses the full dependency properties of the
observed process. In the following, objects related to the true (unknown) distribution P? of the observed
process are denoted with the superscript ?.
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3.1 Using least squares for characteristic functions
Let S be a compact neighborhood of 0 in Rd1+d2 , and let W : Rd1 × Rd2 → R+ be a positive function on
S. For any probability distribution R on Rd1 × Rd2 define

M(R) =

∫
S
|ΦR?(t1, t2)ΦR(t1; 0)ΦR(0; t2)− ΦR(t1, t2)ΦR?(t1; 0)ΦR?(0; t2)|2

|φ?1(t1)φ?2(t2)|2W (t1, t2)dt1dt2 .

Under appropriate assumptions, by the proof of Theorem 1, then M(R) = 0 if and only if R = R? up
to translation. Using an estimator Φ̂n of the characteristic function of (Y1, Y2), define now an estimator of
M(·) by

Mn(R) =

∫
S

∣∣∣Φ̂n(t1, t2)ΦR(t1; 0)ΦR(0; t2)− ΦR(t1, t2)Φ̂n(t1; 0)Φ̂n(0; t2)
∣∣∣2W (t1, t2)dt1dt2 .

Note that if R = R̃ up to translation, then M(R) = M(R̃) and Mn(R) = Mn(R̃). Let R be a set of
probability distributions on Rd1 × Rd2 , such that for some ρ < 2, for all R ∈ R, R ∈ Mρ and satisfies
assumption A1 (resp. A2). Define R̂n as an element ofR satisfying

Mn(R̂n) = inf
R∈R

Mn(R).

Under the assumptions of Theorem 3, R̂n exists but may be not uniquely defined because of translation
invariance. Let d be a distance that metrizes weak convergence onR. Define Zn(t1, t2) by

Zn(t1, t2) =
√
n
(

Φ̂n(t1, t2)− ΦR?(t1, t2)φ?1(t1)φ?2(t2)
)
.

The following consistency theorem holds.

Theorem 3. Assume that R is compact for the weak convergence topology and that R? ∈ R. Assume
moreover that

sup
(t1,t2)∈S

|Zn(t1, t2)| = OP?(1) . (14)

Then,
M(R̂n) = OP?(n−1/2) , (15)

and d(R̂n,R?) tends to 0 in P?-probability as n tends to infinity, where R? is the set of R ∈ R that are
equal to R? up to translation.

Here is an example where the assumptions of Theorem 3 are easily verified. Consider (Rθ)θ∈Θ a para-
metric family of probability densities (with respect to the Lebesgue measure) on Rd1 × Rd2 , in which Θ is
a compact subset of a Euclidian space, and let P(Θ) be the set of probability distributions on Θ endowed
with the Borel sigma-field. LetR be the following set of mixtures:

R =

{
Rµ :=

∫
Rθdµ(θ), µ ∈ P(Θ)

}
.

7
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If (θ, x1, x2) 7→ Rθ(x1, x2) is a continuous and bounded function, then R is compact for the weak con-
vergence topology. Also, if there exists some ρ such that for all θ ∈ Θ, Rθ ∈ Mρ, then for all R ∈ R,
R ∈Mρ. Moreover, for any µ ∈ P(Θ), for any (z0, z1) ∈ Cd1 × Cd2 ,

ΦRµ(z0, z1) =

∫
Θ

ΦRθ (z0, z1)dµ(θ) ,

so that as soon as for some u0 ∈ Cd2 , for all θ ∈ Θ, ΦRθ (z0, zu0) tends to +∞ when z ∈ R tends to
+∞, then z 7→ ΦRµ(z0, z) can not be the null function. Regarding (14), using the empirical estimator for
Φ̂n, then (14) holds under stationarity and mixing conditions, see for instance [Doukhan et al., 1994] and
[Doukhan et al., 1995].

3.2 Using maximum likelihood
This Section focuses on the situation where the observed process is a HMM. Using the fact that continuous
distributions may be approximated by discrete distributions, we consider finite state space HMMs and the
associated maximum likelihood estimator (MLE). The consistency of the MLE is deduced from the oracle
inequality proved in [Lehéricy, 2018] for possibly misspecified HMMs. We thus consider modelling assump-
tions for which Theorem 8 of [Lehéricy, 2018] can be applied. Assume that the hidden process (Xn)n>1

takes values in a known compact set Λ = [−L,L]d ⊂ Rd and that the distribution of the noise is absolutely
continuous with respect to the Lebesgue measure on Rd. Denote by K? the transition kernel of the hidden
process, and by γ? the density of the noise with respect to the Lebesgue measure on Rd.

Transition kernels on finite sets are described by the number of points M of their support, the vector
m = (m1, . . . ,mM ) of their support points and the transition matrix Q between these points: for all (i, j) ∈
{1, . . . ,M}2, Q(i, j) = P(X1 = mj |X0 = mi). Then, for a vectorm, a transition matrixQwith stationary
distribution µQ, and a density γ, the log-likelihood is given by:

`n(m,Q, γ) = log

 ∑
x1,...,xn∈{1,...,M}

µQ(x1)γ(Y1 −mx1
)

n−1∏
i=1

Q(xi, xi+1)γ(Yi+1 −mxi+1
)

 . (16)

Let Γ a set of densities and consider the following assumptions.

H3 Γ is a set of continuous, positive and centered probability densities in the sense that

∀γ ∈ Γ, ∀i ∈ {1, . . . , d},
∫
Ri−1×(−∞,0]×Rd−i

γ(y)dy =
1

2
, (17)

Γ is a compact subset of L1(Rd), and the envelope function b defined by

∀y ∈ Rd, b(y) = sup
γ∈Γ

sup
x∈2Λ

max(γ(y − x), γ(x− y)) (18)

satisfies b ∈ L1(Rd) ∩ L∞(Rd). Moreover, γ? ∈ Γ.

The centering assumption (17) allows to fix the translation parameter in the identifiability results. Note that
the probability density b/‖b‖1 is also centered.

8
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Example. Assume that d = 1. Let f : y 7−→ (2π)−1/2 exp(−y2/2), Θ be a compact subset of R×(0,+∞)
and

Γ =

{
γ : y 7−→

∫
Θ

1

σ
f

(
y − µ
σ

)
dp(µ, σ) : p ∈ P(Θ), γ centered

}
(19)

be the set of densities of mixtures of Gaussian distributions with parameters in Θ. Then Γ satisfies H3.

Denote by P(Λ) the set of probability measures on Λ. Transition kernels are understood as functions
from Λ to P(Λ) endowed with the weak convergence topology, which is metrized by the Wasserstein 1
metric W1. It is assumed that all such functions used in the proposed procedure share the same modulus of
continuity ω. It is possible to assume that ω is a concave function with no loss of generality since P(Λ) has
finite W1-diameter.

H4 The application x ∈ Λ 7−→ K?(x, ·) ∈ (P(Λ),W1) admits the modulus of continuity ω/2 and there
exists a measure λ? on Λ such that for all x ∈ Λ, K?(x, ·) has a density with values in [2/C,C/2]
with respect to λ?.

Then, consider (GD)D>1 a family of subsets of Γ whose union
⋃
D>1GD is dense in Γ. The following

assumption essentially means that each GD is a parametric model with dimension D.

H5 There exists an application D 7−→ c(D) such that log c(D) = O(Dζ) for some constant ζ > 0 and
for all D > 1, there exists an application [−1, 1]D −→ L∞(Rd) that is c(D)-Lipschitz and whose
image contains GD.

The collection of models (SM,D,n)M>1,D>1,n>1 used in the maximum likelihood estimation is defined as
follows. For all M > 1, D > 1 and n > 1, let SM,D,n be the set of parameters (m,Q, γ) ∈ ΛM ×
[0, 1]M×M × L1(Rd) such that

- Q is a transition matrix such that for all (i, j) ∈ {1, . . . ,M}2, Q(i, j) ∈
[

1
CM , CM

]
;

- the application mi 7−→ mQ(i,·) admits the modulus of continuity ω with respect to W1 ;

- there exist α ∈ [n−2, 1] and γ′ ∈ GD such that γ = (1− α)γ′ + αb/‖b‖1.

Let
(m̂M,D, Q̂M,D, γ̂M,D) ∈ arg max

(m,Q,γ)∈SM,D,n

1

n
`n(m,Q, γ) (20)

be the maximum likelihood estimator associated with each model. Then, select the number of states and the
model dimension using the penalized likelihood:

(M̂n, D̂n) ∈ arg max
M6logn,D6n

(
1

n
`n(m̂M,D, Q̂M,D, γ̂K,M )− (D +M2)

(log n)15

n

)
(21)

and define the final estimators

(m̂n, Q̂n, γ̂n) = (m̂
M̂n,D̂n

, Q̂
M̂n,D̂n

, γ̂
M̂n,D̂n

) . (22)

In order to state the consistency result, a continuous kernel associated with the discrete kernels of the models
has to be introduced. For (m,Q, γ) ∈ SM,D,n, denote by Km,Q a transition kernel on Λ that admits
the modulus of continuity ω with respect to the Wasserstein 1 metric, extends the kernel defined by Q
on {mi}i∈{1,...,M} and such that the support of Km,Q(x, ·) is in {mi}i∈{1,...,M} for all x ∈ Λ. Linear
interpolation provides a way to construct such a kernel as soon as the modulus ω is concave. The following
theorem is proved in Section C.

9
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Theorem 4. Assume that assumptions H2, H3, H4 and H5 hold. Then

sup
x∈Supp(λ?)

W1(Km̂n,Q̂n
(x, ·),K?(x, ·)) −→

n→∞
0 , (23)

where λ? is the measure defined in assumption H4 and

‖γ̂n − γ?‖1 −→
n→∞

0 . (24)

In particular, for all x ∈ Supp(λ?),

Km̂n,Q̂n
(x, ·) (d)−→

n→∞
K?(x, ·) (25)

and if PXK denotes the distribution of the stationary Markov chain with transition kernel K,

PXKm̂n,Q̂n
(d)−→
n→∞

PXK? . (26)

The first step of the proof of Theorem 4 is to check the compacity of the parameter space and the
continuity of the total variation distance between the distributions of the observations. Then, Theorem 8
of [Lehéricy, 2018] shows that the maximum likelihood estimator converges to a zero of the total variation
distance to the true distribution, given by the true parameters by Corollary 1.

4 Simulations
Consider the model given by Z0 ∼ U(0, 2π) and for all k > 1,

Zk = φZk−1 + σxεk , Xk = cos (Zk) and Yk = Xk + σyηk ,

where (φ, σx, σy) ∈ [−1, 1] × R∗+ × R∗+ and where (εk, ηk)k>1 are i.i.d. standard Gaussian random vari-
ables independent of Z0. The parameters (φ, σx, σy) = (1, 0.1, 0.1) are used to sample n = 100, 000
observations.

Least squares for characteristic functions. In this section, the empirical least squares criterion Mn(R)

introduced in Section 3.1 is approximated to obtain a practical estimate of R. The estimate Φ̂n of the
characteristic function of the observations (Y1, Y2) is given for all (t1, t2) ∈ R2 by

Φ̂n(t1, t2) =
1

n

n−1∑
j=1

eit1Yj+it2Yj+1 .

The function W is set as the probability density function of a Gaussian random variable with standard
deviation σ = 3 and Mn is estimated by the Monte Carlo estimate:

M̂n(R) =
1

N

N∑
`=1

∣∣∣Φ̂n(U `1 , U
`
2)ΦR(U `1 ; 0)ΦR(0;U `2)− ΦR(U `1 , U

`
2)Φ̂n(U `1 ; 0)Φ̂n(0;U `2)

∣∣∣2 ,

10
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where (U `1 , U
`
2)16`6N are i.i.d. with distribution W . In the following experiments, N is set to N =

5000. This estimated criterion is minimized over the set Dr of piecewise constant probability densities on
(−1, 1)× (−1, 1) with r2 uniformly spaced cells:

Dr =
{
R : R2 → R+ ; R =

r∑
i,j=1

αi,j1(xi,xi+1)×(xj ,xj+1)

}
,

where for all 1 6 i, j 6 r, xi = −1 + 2(i − 1)/r, αi,j > 0 and
∑r
i,j=1 αi,j = r−2. In this setting where

the support of the law of (X1, X2) is compact and known, the up to translation indeterminacy is ruled out.
The optimization is performed using the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
introduced in [Igel et al., 2007] which optimizes iteratively all parameters using (µ, λ)-selection. At each
iteration, the best offsprings of the current parameter estimate are combined to form the population of the
following iteration and the other offsprings are discarded.

The performance of the least squares approach is assessed by comparing the estimated probability that
(X1, X2) lies in each cell (xi, xi+1) × (xj , xj+1), 1 6 i, j 6 r, given by αi,jr

2 and the benchmark
estimation given by the empirical estimate that would be computed if the sequence (Xk)16k6n were ob-
served: n−1

∑n−1
k=1 1(xi,xi+1)×(xj ,xj+1)(Xk, Xk+1). The results are displayed in Figure 1 when r = 10 with

CMA-ES initialized at a random point and a maximum number of evaluations of M̂n(R) set to 15000. The
associated estimated histograms for the estimation of the distribution of X1 are displayed in Figure 2 with
their confidence regions. The estimated values are defined as the mean of the optimization results over 50 in-
dependent Monte Carlo runs and the associated confidence regions are obtained with the empirical variance
over those runs.

Penalized maximum likelihood. The performance of the estimation procedure proposed in Section 3.2 is
assessed in the case where Λ = R and Γ is as in (19) with Θ = R × (0,+∞). This section serves as an
illustration of the maximum likelihood approach and, although the compacity assumptions of Section 3.2 are
not satisfied, the practical estimator is shown to converge to the true distribution. The main reason for these
assumptions is to ensure theoretical consistency by ruling out the worst case scenarios where the estimators
are degenerate.

For even D > 1, the spaces GD are chosen as the set of densities of mixtures of D/2 Gaussian distri-
butions, that is when the measure p in (19) has D/2 support points. The models SM,D,n are defined as the
set of parameters (m,Q, γ) ∈ RM × [0, 1]M×M ×GD such that Q is a transition matrix, with no constraint
on Q or on the regularity of the kernel. Note that γ ∈ GD, which corresponds to α = 0 in the previous
definition of SM,D,n. An approximation of the maximum likelihood estimator is computed using the EM
algorithm [Dempster et al., 1977] for (M,D) = (10, 4) (γ is a mixture of two distributions). The results
are displayed in Figure 1 and 2 where the estimated joint distribution and the benchmark distribution are
assumed to be piecewise constant on the Voronoi diagram obtained with the output points of the maximum
likelihood procedure (the histogram provides the probability that X1 lies in each cell of the diagram).
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A Proof of Theorem 2
Using Hadamard’s Theorem, if µK ∈ Mρ (resp. µK̃ ∈ Mρ) with ρ < 3, then z 7→ ΦRK (z, 0) (resp.
z 7→ ΦR

K̃
(z, 0)) and z 7→ ΦRK (0, z) (resp. z 7→ ΦR

K̃
(0, z)) have no zeros if and only if the Markov chain

is Gaussian. Therefore, the assumptions imply that in all cases, the stationary Markov chains with transition
kernel K (resp. K̃) is not a sequence of i.i.d. variables.

Following the same steps as in the proof of Theorem 1, there exists a polynom S with real coefficients
and degree at most 2 such that, for all z ∈ C,

ΦRK (z, 0) = eS(z)ΦR
K̃

(z, 0) and ΦRK (0, z) = eS(z)ΦR
K̃

(0, z) ,

and for all for all (z1, z2) ∈ C× C,

ΦRK (z1, z2) = eS(z1)eS(z2)ΦR
K̃

(z1, z2) . (27)

Assume that S has degree equal to 2. Then, there exist real numbers a, b, c such that for all z ∈ C,
S(z) = az2 + bz + c. With no loss of generality assume that a > 0 (otherwise, replace K by K̃). Then,
(27) means that there exist i.i.d.Gaussian variables ηi, with variance 2a, such that, if (Xi)i>1 is a stationary
Markov chain with transition kernel K and (X̃i)i>1 is a stationary Markov chain with transition kernel K̃,
(Xi)i>1 has the same distribution as (X̃i + ηi)i>1, with ηi, i > 1, independent of (X̃i)i>1. Using Lemma
1, this implies that the (Xi)i>1, are i.i.d., contradicting the assumption of Theorem 2. Then, S has degree at
most 1, and the end of the proof of Theorem 2 follows the same steps as the proof of Theorem 1.

Lemma 1. Assume that (Xi)i>1 is a stationary real valued Markov chain with transition kernel having
a density with respect to the Lebesgue measure. Assume that (ηi)i>1 is a sequence of i.i.d. real valued
Gaussian random variables with positive variance and independent of (Xi)i>1. If (Xi + ηi)i>1 is Markov
chain, then (Xi)i>1 is an i.i.d. sequence.

Proof. For all x ∈ R, let x′ 7→ q(x, x′) be the density of transition kernel Q(x, ·) of the Markov chain
(Xi)i>1 with respect to the Lebesgue measure and µ be its stationary density. The fact that (Xi + ηi)i>1 is
a Markov chain implies that the conditional distribution of X3 + η3, conditionally to (X2 + η2, X1 + η1),
equals the conditional distribution of X3 + η3, conditionally to X2 + η2 alone. This rewrites as follows. If
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φ is the Gaussian density of ηi, for all real numbers y1, y2, y3,∫
µ(x1)q(x1, x2)φ(y1 − x1)φ(y2 − x2)q(x2, x3)φ(y3 − x3)µ(x4)φ(y2 − x4)dx1dx2dx3dx4

=

∫
µ(x1)q(x1, x2)φ(y1 − x1)φ(y2 − x2)µ(x4)q(x4, x3)φ(y3 − x3)φ(y2 − x4)dx1dx2dx3dx4.

Since y is a complete statistic for φ(x− y)dx, for all real numbers x1, x3, y2,∫
µ(x1)q(x1, x2)µ(x4)[q(x2, x3)− q(x4, x3)]φ(y2 − x2)φ(y2 − x4)dx2dx4 = 0 .

Using that φ(y2 − x2)φ(y2 − x4) = φ(
√

2[y2 − (x2 + x4)/2)])φ((x2 − x4)/2), for all real numbers x1, x3,∫
µ(x1)q

(
x1,

u+ v

2

)
µ

(
u− v

2

)[
q

(
u+ v

2
, x3

)
− q

(
u− v

2
, x3

)]
φ(v/2)dv = 0 .

Let (X̃i)i>1 be a Markov chain with the same distribution of (Xi)i>1 but independent of (Xi)i>1. For any
measurable and positive function H , by writing expectations for G using the previous identity when G is
defined by G : (x, y, z) 7→ H(x, y, z)1/φ((x− y)/2),

E
[
H
(
X2, X̃2, X3

)]
= E

[
H
(
X2, X̃2, X̃3

)]
,

which means that (X2, X̃2, X3) and (X2, X̃2, X̃3) have the same distribution. But this implies that X2 is
independent of (X̃2, X3) which implies that X2 is independent of X3.

B Proof of Theorem 3
Using the fact that characteristic functions are bounded by 1, for all R ∈ R,

|Mn(R)−M(R)| 6 3√
n

sup
(t1,t2)∈S

|Zn(t1, t2)|+ 1

n
sup

(t1,t2)∈S
|Zn(t1, t2)|2 , (28)

and using assumption (14), supR∈R |Mn(R)−M(R)| = OP?(n−1/2). Now, using the definition of R̂n and
(28),

M(R̂n) 6 Mn(R̂n) +OP?(n−1/2) ,

6 Mn(R?) +OP?(n−1/2) ,

6 M(R?) +OP?(n−1/2) ,

= OP?(n−1/2) ,

since M(R?) = 0, and (15) is proved. Now, R 7→ M(R) is continuous for the weak convergence topol-
ogy, and for any ε > 0, supR∈R,d(R,R?)>εM(R) is attained by compacity of {R ∈ R, d(R,R?) > ε},
and positive since M(R) = 0 if and only if R = R? up to translation. Thus using Theorem 5.7 in
[van der Vaart, 1998], the set of limiting values of (R̂n)n>1 for the weak convergence topology is the set
of R ∈ R such that R = R? up to translation.
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C Proof of Theorem 4
Compacity of the set of parameters. Let Ωω be the set of transition kernels on Λ which admit the modulus
of continuity ω with respect to the Wasserstein 1 metric. Ωω is an equicontinuous family of functions from
Λ to the set of probability measures P(Λ) on Λ endowed with the Wasserstein 1 metric. Since Λ is compact,
convergence in Wasserstein distance is equivalent to convergence in distribution and P(Λ) is compact for
the topology of the convergence in distribution, so that Arzelà-Ascoli’s theorem ensures that Ωω is relatively
compact in the class of continuous functions from Λ to (P(Λ),W1) with respect to the uniform convergence
distance. It is closed, therefore it is compact.

Let ΩCω be the subset of Ωω such thatK ∈ ΩCω if and only if there exists a probability measure λ such that
for all x ∈ Λ, K(x, ·) is absolutely continuous with respect to λ with a density taking values in [1/C,C].
Let us show that it is closed. Let (Kn)n>1 be a convergent sequence in ΩCω and (λn)n>1 the associated
probability measures. Write K ∈ Ωω its limit. Without loss of generality, it is possible to assume that
λn −→ λ for some λ ∈ P(Λ) as n grows to +∞. Let C0

b,+ be the set of real-valued, nonnegative, bounded
and continuous function on Λ, then for all f ∈ C0

b,+ and all x ∈ Λ,∫
Kn(x,dx′)f(x′) ∈ [1/C,C]

∫
fdλn

by definition of ΩCω . Then, using the convergence of the sequences, for all f ∈ C0
b,+ and all x ∈ Λ,∫

K(x, dx′)f(x′) ∈ [1/C,C]

∫
fdλ .

For all closed set F ⊂ Λ, there exists a sequence (fi)i>1 ↘ 1F , so that this implies

∀F ⊂ Λ closed, ∀x ∈ Λ, K(x, F ) ∈
[

1

C
,C

]
λ(F ) .

Thus, using the regularity of Borel probability measures on polish spaces, the same holds for all measurable
sets, so that K ∈ ΩCω . Therefore, ΩCω is closed, so that it is compact. Finally, note that the set

Γ̃ =

{
α

b

‖b‖1
+ (1− α)γ : γ ∈ Γ, α ∈ [0, 1]

}
(29)

is a compact subset of L1(Rd) ∩ L∞(Rd) with respect to the L1 norm such that all functions in Γ̃ are
positive, continuous and centered and supγ∈Γ̃ supx∈Λ γ(y − x) 6 B(y) for all y ∈ Rd, where the function
B ∈ L1(Rd) ∩ L∞(Rd) is defined, for all y ∈ Rd, by

B(y) = max
z∈{−L,L}d

b(y + z) . (30)

Continuity of the total variation distance between the distributions of the observed process. The set
of possible parameters ΩCω × Γ̃ is endowed with the product topology induced by the uniform convergence
topology on ΩCω and the L1 norm on Γ̃. Let (Kn, γn)n>1 be a sequence on Ωω × Γ̃ that converges to (K, γ)
with respect to this topology. K admits a unique stationary distribution, so that Theorem 4 and the corollary
of Theorem 6 of [Karr, 1975] entail that

PXKn
(d)−→
n→∞

PXK , (31)
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where PXK denotes the distribution of a stationary Markov chain (Xn)n>1 with transition kernel K. This
convergence holds for the distribution of the whole Markov chain, which implies in particular that the dis-
tribution of k-tuples (X1, . . . , Xk) for all k > 1 converges in the same way. Let us now show that the
distribution of (Y1, . . . , Yk) converges in total variation distance.

‖p(Y1,...,Yk)|K,γ − p(Y1,...,Yk)|Kn,γn‖1

=

∫ ∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γn(yi − xi)dPXKn(x)

∣∣∣∣∣dy ,
6
∫ ∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γ(yi − xi)dPXKn(x)

∣∣∣∣∣ dy ,
+

∫ ∫ ∣∣∣∣∣
k∏
i=1

γ(yi − xi)−
k∏
i=1

γn(yi − xi)

∣∣∣∣∣dPXK(x)dy .

Since x 7−→ γ(y − x) is continuous and bounded for all y ∈ Rd, Equation (31) implies that

∀y ∈ Rd,

∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γ(yi − xi)dPXKn(x)

∣∣∣∣∣ −→n→∞ 0 .

Then, as supx∈Λ γ(y − x) 6 B(y) for all y ∈ Rd where B is defined in Equation (30),∣∣∣∣∣
∫ k∏

i=1

γ(yi − xi)dPXK(x)

∣∣∣∣∣ 6
k∏
i=1

B(yi) ,

and the right hand side is integrable. The same holds for Kn, so that the dominated convergence theorem
implies ∫ ∣∣∣∣∣

∫ k∏
i=1

γ(yi − xi)dPXK(x)−
∫ k∏

i=1

γ(yi − xi)dPXKn(x)

∣∣∣∣∣dy −→n→∞ 0 . (32)

For the second term, note that∫ ∫ ∣∣∣∣∣
k∏
i=1

γ(yi − xi)−
k∏
i=1

γn(yi − xi)

∣∣∣∣∣ dPXK(x)dy ,

6
k∑
i=1

∫ ∫ ∏
j<i

γ(yj − xj)|γ(yi − xi)− γn(yi − xi)|
∏
j>i

γn(yi − xi)dPXK(x)dy ,

=

k∑
i=1

∫ ∫
|γ(yi − xi)− γn(yi − xi)|dyidPXK(xi) ,

= k‖γ − γn‖1 . (33)

Let P(k)
K,γ be the distribution of (Y1, . . . , Yk) under the parameters (K, γ), then this equation shows that

dTV(P
(k)
K,γ , P

(k)
Kn,γn

) −→
n→∞

0 for all k > 1.
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Convergence in Kullback-Leibler divergence entails convergence in total variation distance of the dis-
tribution of the observed process. For all probability measures µ and ν, the Kullback Leibler divergence
between µ and ν is defined by

KL(µ‖ν) :=

{∫
log dµ

dν dµ when µ is absolutely continuous with respect to ν,
+∞ otherwise.

(34)

Lemma 3 of [Douc et al., 2004] implies that for all K,K ′ ∈ ΩCω and for all γ, γ′ ∈ Γ̃, the limit

K(PK,γ‖PK′,γ′) = lim
m→+∞

1

m
KL(P(m)

K,γ‖P
(m)
K′,γ′) (35)

exists, is in R ∪ {+∞}, and if it is finite, then for all k,m > 1,∣∣∣kK(PK,γ‖PK′,γ′)−
(
KL(P(m+k)

K,γ ‖P(m+k)
K′,γ′ )−KL(P(m)

K,γ‖P
(m)
K′,γ′)

)∣∣∣ 6 C4

(
1− 1

C2

)m−1

. (36)

Let (Kn, γn)n>1 ∈ (ΩCω × Γ̃)N be a sequence of parameters such that K(PK?,γ?‖PKn,γn) −→ 0. The
above equation implies that for all k > 1, there exists sequences (mn)n>1 −→ +∞ and (ln)n>1 −→ +∞
such that

KL(P(mn+ln+k)
K?,γ? ‖P(mn+ln+k)

Kn,γn
)−KL(P(mn)

K?,γ?‖P
(mn)
Kn,γn

) −→
n→∞

0 . (37)

Note that

KL(P(mn+ln+k)
K?,γ? ‖P(mn+ln+k)

Kn,γn
)−KL(P(mn)

K?,γ?‖P
(mn)
Kn,γn

)

= EYmn1 |K?,γ?

[
KL

(
PYmn+ln+k

mn+1 |Ymn1 ,K?,γ?‖PYmn+ln+k
mn+1 |Ymn1 ,Kn,γn

)]
,

> EYmn1 |K?,γ?

[
KL

(
PYmn+ln+k

mn+ln+1 |Y
mn
1 ,K?,γ?‖PYmn+ln+k

mn+ln+1 |Y
mn
1 ,Kn,γn

)]
,

> 2EYmn1 |K?,γ?

[
d2

TV

(
PYmn+ln+k

mn+ln+1 |Y
mn
1 ,K?,γ? ,PYmn+ln+k

mn+ln+1 |Y
mn
1 ,Kn,γn

)]
,

using the chain rule and Pinsker’s inequality. Since the kernels satisfy the Doeblin condition (see for instance
[Cappé et al., 2005], Section 4.3.3), the resulting processes are φ-mixing with mixing coefficients φ(i) 6
2(1 − 1

C )i (see the proof of Lemma 1 of [Lehéricy, 2018] for a proof, and [Bradley, 2005] for a survey
of mixing properties). In particular, for all K ∈ ΩCω , for all positive probability density γ and for all
A ∈ σ(Y1, . . . , Ymn) such that PK,γ(A) > 0,

dTV

(
PYmn+ln+k

mn+ln+1 |A,K,γ
,PYmn+ln+k

mn+ln+1 |K,γ

)
6 2

(
1− 1

C

)ln
, (38)

so that using the continuity of γn and γ,

2EYmn1 |K?,γ?

[
d2

TV

(
PYmn+ln+k

mn+ln+1 |Y
mn
1 ,K?,γ? ,PYmn+ln+k

mn+ln+1 |Y
mn
1 ,Kn,γn

)]
> 2

(
dTV

(
PYmn+ln+k

mn+ln+1 |K?,γ? ,PYmn+ln+k
mn+ln+1 |Kn,γn

)
− 4

(
1− 1

C

)ln)2

,

> d2
TV

(
P(k)
K?,γ? ,P

(k)
Kn,γn

)
− 32

(
1− 1

C

)2ln

,
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using that (a− b)2 > a2

2 − b
2 for all a, b ∈ R and the stationarity of the distributions PK,γ for all K ∈ ΩCω

and γ ∈ Γ̃. Therefore, one has for all k > 1,

dTV

(
P(k)
K?,γ? ,P

(k)
Kn,γn

)
−→

n→+∞
0 . (39)

Consistency. Let us check the assumptions of [Lehéricy, 2018]. We endow Rd with the probability mea-
sure with density b/‖b‖1 with respect to the Lebesgue measure. Then [A?mixing] and [A?forgetting] follow
from his [Lehéricy, 2018, Lemma 1] and H4. [A?tail] follows from H3 since

p?(Yi|Y i−1
1 ) 6

supx∈Λ γ
?(Yi − x)

b(Yi)/‖b‖1
6 ‖b‖1 .

[Aergodic] and [Atail] follow for the same reason and because α > 1/n2 in the construction of SM,D,n.
Finally, [Aentropy] and [Agrowth] follow from H5.

Note that our penalty has a dimension term of the form (D+M2) instead of (DM +M2). This comes
from the fact that there is a single emission density instead of M densities. A careful reading of the proof
shows that [Lehéricy, 2018, Theorem 8] holds with this penalty in our setting. Therefore, Theorem 8 implies
that almost surely

K(PK?,γ?‖PK̂n,γ̂n) −→
n→∞

0 (40)

as soon as there exists an approximating sequence (mt, Qt, γt)t>1 in
⋃
M,D,n SM,D,n such that K(PK?,γ?‖PKmt,Qt ,γt) −→t→+∞

0. Let us assume for now that it exists, then almost surely for all k > 1,

dTV

(
P(k)
K?,γ? ,P

(k)

K̂n,γ̂n

)
−→

n→+∞
0. (41)

Therefore, all limits (K, γ) of convergent subsequences of (K̂n, γ̂n)n satisfy P(2)
K?,γ? = P(2)

K,γ , which means
thatRK? = RK and γ = γ? by Corollary 1 using assumption H2, the fact thatRK? andRK are inM1 since
their support is in the compact set Λ2 and the fact that the translation parameter is fixed by the centering
condition on the densities. Therefore, using the continuity of K and K?, it follows that K(x, ·) = K?(x, ·)
for all x ∈ Supp(λ?). Since the set of parameters is compact, Theorem 4 follows.

Existence of an approximating sequence. Assume that there exists a sequence (Kt)t>1 in ΩCω of kernels
of the form Kmt,Qt with (mt, Qt,−) ∈

⋃
M,D,n SM,D,n such that Kt −→ K?. Let (δt)t>1 be a sequence

with values in (0, 1] such that δt −→ 0 and let γt = δt
b
‖b‖1 + (1 − δt)γ? for all t > 1 (note that we may

replace γ? by a sequence with values in
⋃
D GD that converges to γ? without changing the following proof).

Then by Equations (32) and (33), there exists a sequence (kt)t>1 such that kt −→∞, k2
t δt log 1

δt
−→ 0 and

such that for all t large enough,

dTV(P
(kt)
K?,γ? , P

(kt)
Kt,γt

) 6 3ktδt . (42)

Lemma 3 of [Douc et al., 2004] implies that for all k > 1 and for all t > 1,

K(PK?,γ?‖PKt,γt) 6 EKL(PYk|Y1,...,Yk−1,K?,γ?‖PYk|Y0,...,Yk−1,Kt,γt) + C2

(
1− 1

C2

)k−2

,

6 KL(P(k)
K?,γ?‖P

(k)
Kt,γt

) + C2

(
1− 1

C2

)k−2

(43)
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by the entropy chain rule. Since for all y ∈ Rd,

inf
x∈Λ

γt(y − x) > δt inf
x∈Λ

b(y − x)/‖b‖1 > δt sup
x′∈Λ

γ?(y − x′)/‖b‖1 ,

for all (y1, . . . , yk) ∈ (Rd)k,

pKt,γt(y1, . . . , yk) >

(
δt
‖b‖1

)k
pK?,γ?(y1, . . . , yk) ,

so that Lemma 4 of [Shen et al., 2013] entails

KL(P(k)
K?,γ?‖P

(k)
Kt,γt

) 6

(
1 + 2k log

‖b‖1
δt

)
h2(P(k)

K?,γ? ,P
(k)
Kt,γt

) ,

6 2

(
1 + 2k log

‖b‖1
δt

)
dTV(P

(k)
K?,γ? , P

(k)
Kn,γn

) ,

using that the square of the Hellinger distance is upper bounded by the L1 distance, that is twice the total
variation distance. Together with Equations (42) and (43) and for the sequence (kt)t>1 of Equation (42),
this implies that for t large enough,

K(PK?,γ?‖PKt,γt) 6 16k2
t δt log

‖b‖1
δt

+ C2

(
1− 1

C2

)kt−2

which tends to zero by construction of (kt)t>1. The last step is to prove that there exists a sequence (Kt)t>1

of kernels in
⋃
M,D,n SM,D,n that converge to K?.

Lemma 2. Let λ be a probability measure on a compact set of Rd which is absolutely continuous with
respect to the Lebesgue measure. Then there exists a sequence of integers (Mt)t>1 −→ +∞ and a sequence
((Ati)16i6Mt

)t>1 of measurable partitions of the support of λ such thatDt := sup
16i6Mt

diam(Ati) −→t→+∞
0 ,

∀t > 1, ∀1 6 i 6Mt, λ(Ati) ∈
[

1
2Mt

, 2
Mt

]
.

(44)

To address the case where λ? is not absolutely continuous with respect to the Lebesgue measure, we
consider convolutions of the kernels. For all ε ∈ (0, 1], let Uε be the uniform measure on [−ε, ε]d. For all
probability measure λ on Rd, write λ ∗ Uε the convolution of λ and Uε, and for all transition kernel K on
Rd, write K ∗ Uε the transition kernel defined by (K ∗ Uε)(x, ·) = K(x, ·) ∗ Uε. Then K? ∗ Uε admit the
modulus of continuity ω for all ε > 0 (since W1(µ ∗ Uε, ν ∗ Uε) = W1(µ, ν) for all probability measures
µ, ν) and K? ∗ Uε admits a density taking values in [2/C,C/2] with respect to the measure λ? ∗ Uε (which
is absolutely continuous with respect to the Lebesgue measure), so that it belongs to ΩCω (up to enlarging
Λ). Moreover, K? ∗ Uε −→ K? in ΩCω as ε −→ 0. Therefore, it remains to show that for all ε > 0, the
kernel K? ∗ Uε can be approximated by kernels in ΩCω with finite support. Equivalently, we assume that λ?

is absolutely continuous with respect to the Lebesgue measure and construct a sequence approximating K?.
Let (Mt)t>1 and ((Ati)16i6Mt

)t>1 be the sequences obtained by applying Lemma 2 to λ?. For all t > 1
and i ∈ {1, . . . ,Mt}, let mt

i be an element of Ati. For all t > 1, the elements of the vector mt are distinct
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because (Ati)16i6Mt
is a partition of Supp(λ?). Let (ηt)t>1 −→ 0 be a sequence of positive numbers. Let

K̃t be the transition kernel from Λ ∩ (ηtZd) to {mt
i}16i6Mt

defined by

∀x ∈ Λ ∩ (ηtZd), ∀i ∈ {1, . . . ,Mt}, K̃t(x,mi) = K?(x,Ati). (45)

Note that by the Lemma and assumption H4, K̃t(x,mi) ∈ [ 1
CMt

, CMt
] for all x and i. Moreover, for all

x, x′ ∈ Λ ∩ (ηtZd),

W1(K̃t(x, ·), K̃t(x
′, ·)) 6W1(K?(x, ·),K?(x′, ·)) + 2 sup

16i6Mt

diam(Ati) ,

6
ω(|x− x′|)

2
+ 2

Dt

ηt
|x− x′| ,

6 ω(|x− x′|) ,

by taking ηt > 4Dt/ infu∈(0,diam(Λ)] ω(u)/u, which is finite since ω is concave, nondecreasing and not equal
to zero, so that there exists an extension Kt ∈ ΩCω of K̃t such that the support of Kt(x, ·) is {mt

i}16i6Mt

for all x ∈ Λ. Let Qt be the matrix defined by Qt(i, j) = Kt(m
t
i,m

t
j) and let us show that Kmt,Qt

approximates K?.
Note that all kernels considered here (K?, K̃t,Kt andKmt,Qt ) are kernels on the compact set Supp(λ?).

Therefore, we only need to show that Kmt,Qt −→ K in the subset Ω̃Cω of kernels on Supp(λ?) in ΩCω to
show that it is an approximating sequence, that is

sup
x∈Supp(λ?)

W1(Kmt,Qt(x, ·),K?(x, ·)) −→
t→+∞

0 . (46)

For all x ∈ Supp(λ?), let X(x) (resp. m(x)) be one of the elements of Λ ∩ (ηtZd) (resp. {mt
i}16i6Mt

)
closest to x. Then supx∈Supp(λ?) |x−m(x)| 6 Dt and supx∈Supp(λ?) |x−X(x)| 6 ηt (with the supremum
norm on Rd) and for all x ∈ Supp(λ?),

W1(Kmt,Qt(x, ·),K?(x, ·)) 6W1(Kmt,Qt(x, ·),Kmt,Qt(m(x), ·)) (47)
+W1(Kmt,Qt(m(x), ·),Kt(m(x), ·)) (48)
+W1(Kt(m(x), ·),Kt(X(m(x)), ·))
+W1(Kt(X(m(x)), ·),K?(X(m(x)), ·)) (49)
+W1(K?(X(m(x)), ·),K?(x, ·)) .

Note that (48) = (49) = 0 by definition of the kernels. Thus, the regularity assumptions on the kernels
ensure that for all x ∈ Supp(λ?),

W1(Kmt,Qt(x, ·),K?(x, ·)) 6 ω(Dt) + ω(ηt) + ω(Dt + ηt)/2 ,

which proves Equation (46).

D Further examples
This section highlights some other common models for which the assumptions of Theorem 1 hold.
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D.1 Deconvolution with repeated measurements
The model is given by X1 = X2. Then, ΦR(z1, z2) = ΦR(z1 + z2, 0) = ΦR(0, z1 + z2). Assumption
(A2) holds as soon as X1 is not deterministic and its distribution is in Mρ for ρ < 2, which holds for
instance when it has bounded (unknown) support. Therefore, by Theorem 1, deconvolution with at least two
repetitions is identifiable without any assumption on the noise distribution, under the mild assumption that
the distribution of the variable of interest has light tails. The model may also contain outliers with unknown
probability and still be identifiable.

Identifiability of the model whereX1 = X2 has been proved in this strict submodel by [Li and Vuong, 1998]
under the assumption that the characteristic functions of X1 and of the noise are not vanishing everywhere.
Kernel estimators where proved in [Delaigle et al., 2008] equivalent to those for deconvolution with known
noise distribution when X1 has a real characteristic function and for ordinary smooth errors and signal.

D.2 Errors in variable regression models
The model is given by X2 = g(X1) where g : Rd1 → Rd2 . Note first that if the distribution of (X1, X2) is
identified, then its support is identified. The support of (X1, X2) is the graph of the function g so that g is
identified on the support of the distribution ofX1. Assume that the distributions ofX1 andX2 are inMρ for
some ρ < 2, which is the case if they are bounded. Assume now that the supports of X1 and X2 = g(X1)
have a nonempty interior, which is the case if for instance g is assumed continuous.

If (A1) does not hold, then either there exists z0 ∈ Cd1 such that for all z ∈ Cd2 , E[ez
T
0 X1+zT g(X1)] = 0,

or there exists z0 ∈ Cd2 such that for all z ∈ Cd1 , E[ez
TX1+zT0 g(X1)] = 0. In the last case, since the support

of X1 has a nonempty interior, this is equivalent to E[ez
T
0 g(X1)|X1] = 0, which means that ez

T
0 g(X1) = 0,

which is impossible. Thus, since the support of g(X1) has a nonempty interior, (A1) does not hold if and
only if for some z0, E

[
ez
T
0 X1

∣∣∣g(X1)
]

= 0. Thus, under the assumption that g is continuous and the support
of X1 has a nonempty interior, the error in variables regression model is identifiable without knowing the
distribution of the noise as soon as for all z0,

E
[
ez
T
0 X1

∣∣∣g(X1)
]
6= 0 . (50)

In particular, if g is one-to-one on a subset of the support of X1 with nonempty interior, then for all z0, (50)
is verified and the model is identifiable. See [Schennach and Hu, 2013].

D.3 Nonparametric hidden regression variables
The model is given by Xi = g(Zi) where g : Rd1 → Rd2 and (Zi)i>1 is a sequence of hidden variables, see
[Dumont and Le Corff, 2017a, Dumont and Le Corff, 2017b] for nonparametric hidden regression models.
In these papers, the counterpart of the nonparametric modeling of the hidden process is the use of partly
parametric modeling for the emission densities. Under the assumption that g is one-to-one, if (Zi)i>1 is
a Markov chain, then (Xi)i>1 is also a Markov chain. Then, when (A1) holds, Theorem 1 extends the
identification results of [Dumont and Le Corff, 2017a, Dumont and Le Corff, 2017b] to the cases where the
distribution of the additive noise is unknown.
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