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Abstract: This paper is devoted to the symmetry and symmetry breaking
properties of a two-dimensional magnetic Schrödinger operator involving an
Aharonov-Bohm magnetic vector potential. We investigate the symmetry prop-
erties of the optimal potential for the corresponding magnetic Keller-Lieb-Thir-
ring inequality. We prove that this potential is radially symmetric if the in-
tensity of the magnetic field is below an explicit threshold, while symmetry is
broken above a second threshold corresponding to a higher magnetic field. The
method relies on the study of the magnetic kinetic energy of the wave function
and amounts to study the symmetry properties of the optimal functions in a
magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of
symmetry by a non-perturbative method. To establish the symmetry breaking
range, we exploit the coupling of the phase and of the modulus and also obtain
a quantitative result.
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1. Introduction and main results

It is a basic question in the calculus of variations whether an optimizer pos-
sesses the same symmetries as the minimized functional. The answer depends
very much on the details of the functional. The only examples where a gen-
eral theory is available are linear variational problems where the optimizers are
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eigenfunctions and hence belong to an irreducible representation of the symme-
try group.

Apart when uniqueness is known, for instance in strictly convex problems, it
is very difficult to determine whether the minimizer of a non-linear functional is
symmetric or whether the symmetry is broken. Symmetry breaking can be shown
by minimizing the functional in the class of symmetric functions and then by
considering the second variation around this state. If the resulting quadratic form
has a negative eigenvalue, then the symmetry is broken. Such a computation can
be a formidable problem since it requires quite a bit of information about the
minimizer in the symmetric class. Thus, at least in principle, there is a systematic
method for proving symmetry breaking. Needless to say, the positivity of the
lowest eigenvalue only indicates the stability of the minimizer in the symmetric
class but has no bearing on the symmetry of the true minimizer. In general, if
the symmetry of the true minimizer is broken, then it does not belong to an
irreducible representation of the symmetry group, although it may be invariant
under a subgroup. It is therefore difficult to describe minimizers whose symmetry
is broken.

It should be clear from these remarks that there is no general theory for
proving symmetry and one has to consider some basic examples. There has
been a number of non-quadratic variational problems such as Sobolev-type and
Hardy-Littlewood-Sobolev inequalities for which this question was successfully
answered [1,26,23,6]. The techniques relied mostly on rearrangement inequalities
that are closely related to the isoperimetric problem. Another interesting class
of examples is furnished by the Caffarelli-Kohn-Nirenberg inequalities which
display optimizers with symmetry or with broken symmetry, depending on the
values of certain parameters [5,24,19]. The method for determining the symme-
try range, however, is entirely different from the above mentioned techniques
and proceeds through a flow method [13,15].

Common to all these problems is that these are functionals acting on scalar,
possibly positive functions. A class of problems that does not fit this mould in-
volve external magnetic fields. In this case the wave function, out of necessity,
is truly complex valued and hence the Euler-Lagrange equations form a system
of partial differential equations. There has been a number of results for con-
stant magnetic fields. L. Erdös in [17] proved symmetry in a Faber-Krahn type
inequality and in [2] D. Bonheure, M. Nys and J. Van Schaftingen proved sym-
metry for some non-linear problems involving small, constant magnetic fields,
albeit in a perturbative sense. Some estimates in [11] suggest that symmetry
can also be expected in non-perturbative regimes as well. Likewise the ground
state of a quantum particle confined to a circle with a non-zero magnetic flux
is treated in [12] and optimal results for symmetry and symmetry breaking are
given there.

In this paper we treat a non-linear problem related to a Hardy inequality due
to A. Laptev and T. Weidl. Let us consider an Aharonov-Bohm vector potential

A(x) =
a

|x|2
(x2,−x1) , x = (x1, x2) ∈ R2 \ {0} (1)



Symmetry and Aharonov-Bohm magnetic fields 3

corresponding to a singular magnetic field of intensity proportional to a ∈ R. It
was shown in [21] that
ˆ
R2

|∇Aψ|2 dx ≥ min
k∈Z

(a− k)2

ˆ
R2

|ψ|2

|x|2
dx , where ∇Aψ := ∇ψ+ iAψ , (2)

and that there is no function for which there is equality. The interesting point is
that there is no Hardy inequality in two dimensions without magnetic field and
a non-trivial magnetic field is therefore crucial for the Hardy inequality to hold.

The main result of this paper is concerned with a generalization of (2) to the
magnetic interpolation inequality

ˆ
R2

|∇Aψ|2 dx+ λ

ˆ
R2

|ψ|2

|x|2
dx ≥ µ(λ)

(ˆ
R2

|ψ|p

|x|2
dx

)2/p

. (3)

We shall give a range for the parameters a, λ and p for which the minimizer is
symmetric and compute the minimizer explicitly. We emphasize that this range
is quantitative and is not based on perturbation theory. Moreover, we give also
a quantitative range for the parameters for which the symmetry is broken, see
Theorem 2. In the definition of the vector potential A, the constant a could
be replaced by a function a(θ), where θ is the angle in polar coordinates. See
Section 2.1.

As mentioned before, the main difficulty is that the function ψ is complex
valued, i.e., at least when ψ 6= 0, it can be written in the form ψ = |ψ| eiS where
the phase S(x) is non-trivial. In such a context, standard techniques such as
symmetrization have shown to be successful only in very particular situations,
see e.g. [17] and [3,22]. To explain some of the ideas involved, we use polar
coordinates and, when ψ does not vanish, writeˆ

R2

|∇Aψ|2 dx =

ˆ
R2

[
(∂r |ψ|)2 + (∂rS)2 |ψ|2 +

1

r2
(∂θS +A)2 |ψ|2

]
dx .

By dropping the term involving ∂rS the inequality effectively reduces to a prob-
lem in which the phase S depends only on the polar angle. By optimizing over
the phase using ideas from [12] the problem is then brought into a form that
is a particular class of Caffarelli-Kohn-Nirenberg inequalities for which detailed
results are known [13]. The symmetry breaking part is more complicated. The
chief reason for this is that the term involving ∂rS has to be taken into account.
This leads to a rather involved computation yielding a region for symmetry
breaking that, however, is surprisingly close to the complement of the region
where symmetry holds. Good control of the interplay between the phase of ψ
and its modulus is a key point to obtaining good estimates for the parameter
where symmetry breaking occurs.

There are some interesting consequences of this result. The first is a magnetic
version of the Keller-Lieb-Thirring inequalities. Let q ∈ (1,+∞) and define the
weighted norm

|||φ|||q :=

(ˆ
R2

|φ|q |x|2 (q−1) dx

)1/q

.

We denote by Lq?(R2) the space of measurable functions such that |||φ|||q is finite.
Our first result is an estimate on the ground state energy λ1 of the magnetic
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Schrödinger operator −∆A−φ on R2 and a symmetry result of the corresponding
optimal potential φ. The magnetic Schrödinger energy is

EA[ψ] :=

ˆ
R2

(
|∇Aψ|2 − φ |ψ|2

)
dx where ∇Aψ := ∇ψ + iAψ

and λ1(−∆A−φ) is defined as the infimum of EA[ψ] on all ψ ∈ H(R2) such that´
R2 |ψ|2 |x|−2 dx = 1, where H(R2) denotes the homogeneous H1 space, i.e.,

H(R2) =
{
u ∈ L1

loc(R2 \ {0},C) : |x|−1 u ∈ L2(R2,C), ∇u ∈ L2(R2,C2)
}
.

Theorem 1 (A magnetic Keller-Lieb-Thirring estimate). Let a ∈ R, q ∈
(1,∞) and φ ∈ Lq?(R2). Then there is a convex monotone increasing function
µ 7→ λ(µ) on R+ such that limµ→0+ λ(µ) = −mink∈Z(a− k)2 and

λ1(−∆A − φ) ≥ −λ
(
|||φ|||q

)
. (4)

For a ∈ (0, 1/2), there is an explicit value µ? = µ?(a) > 0 such that the potential

φ(x) =
(
|x|α + |x|−α

)−2 ∀x ∈ R2 , with α =
p− 2

2

√
λ(µ) + a2 ,

is optimal for any µ ≤ µ?. On the contrary, for all a ∈ (0, 1/2] equality in (4) is
achieved only by non-radial functions if µ > µ• for some explicit µ• > µ?.

Notice that the definition of λ1(−∆A − φ) uses a weighted L2 norm. Using the
transformations a 7→ a − k, k ∈ Z, and a 7→ − a that will be discussed in
Section 2.1, the case a ∈ R \ [0, 1/2] can be reduced to the range 0 ≤ a ≤ 1/2.
For a = 1/2, we shall see that µ• = µ? = −1/4. Further details on µ? and µ•
will be given later. Let λ 7→ µ(λ) be the inverse of µ 7→ λ(µ) and define

h(λ) :=
p

2
(2π)1− 2

p
(
λ+ a2

) 1
2 + 1

p

(
2
√
π Γ
(

p
p−2

)
(p− 2)Γ

(
p
p−2 + 1

2

))1− 2
p

. (5)

On the interval (0, µ?], the expression of λ(µ) is explicit and it will be established
in Section 3.1 that λ(µ) = h−1(µ) in this case while the computation of the
function h can be found in Appendix A. If a ∈ [0, 1/2), the constant µ? is given
by µ? = h (λ?) where λ? solves(

λ? + a2
) (
p2 − 4

)
= 4

(
1− 4 a2

)
. (6)

The constant µ• arises from the analysis of the symmetry breaking phe-
nomenon obtained by considering the linear instability of the radial optimal
function. It is similar to the analysis performed by V. Felli and M. Schneider
in [19] for the Caffarelli-Kohn-Nirenberg inequality without magnetic fields (see
also [5] for earlier results). The corresponding range with magnetic fields is a
range of higher magnetic fields. The symmetry range of the parameters corre-
sponds to a weak magnetic field in which the equality case is achieved by radial
potentials. The expression of µ• = h−1(λ•) with h defined by (5) is also explicit
in terms of λ• given below in Theorem 2. We refer to Appendix A.2 for details.

Theorem 1 has a dual counterpart which is a statement on the magnetic
interpolation inequality (3).
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Theorem 2 (A magnetic Hardy-Sobolev inequality). Let a ∈ [0, 1/2] and
p > 2. For any λ > − a2, there is an optimal function λ 7→ µ(λ) which is
monotone increasing and concave such that (3) holds for any ψ ∈ H. With the
notation of (6), if a ∈ (0, 1/2) and λ ≤ λ? equality in (3) is achieved by

ψ(x) =
(
|x|α + |x|−α

)− 2
p−2 ∀x ∈ R2 , with α =

p− 2

2

√
λ+ a2 .

Conversely, if a ∈ (0, 1/2] and λ > λ• with

λ• :=
8
(√

p4−a2 (p−2)2 (p+2) (3 p−2)+2
)
−4 p (p+4)

(p−2)3 (p+2) − a2 , (7)

there is symmetry breaking, that is, the optimal functions are not radially sym-
metric.

The existence of an optimal function in (3) follows from a concentration-com-
pactness argument as in [5] after an Emden-Fowler transformation that will be
introduced in Section 2.3. Section 3.1 is devoted to the proof of Theorem 1.
Theorem 1 and Theorem 2 are equivalent as we shall see in Section 3.2. The
exponents p and q are such that p = 2 q/(q− 1). The value of λ• is computed in
Appendix A.3. Various other computational issues are dealt with in Appendix A,
as well as two figures which summarize the ranges of symmetry and symmetry
breaking.

2. Preliminary results

2.1. Considerations on the Aharonov-Bohm magnetic field. The magnetic field
B = ∂x1

A2 − ∂x2
A1, where A(x) is given by (1), is equal to 2π a δ in the

sense of distributions, where δ denotes Dirac’s distribution at x = 0. Let us
consider polar coordinates (r, θ) ∈ [0,+∞)×S1, so that r = |x|, ∂rψ = ∇ψ ·x/r,
∂θψ = (−x2, x1)·∇ψ and therefore |∇ψ|2 = |∂rψ|2+r−2 |∂θψ|2. On S1 ≈ [0, 2π),
we consider the uniform probability measure

dσ = (2π)−1 dθ .

We observe that for more general Aharonov-Bohm magnetic fields, a could de-
pend on θ. However, by the change of gauge

ψ(r, θ) 7→ ei
´ θ
0

(a−ā) dθ ψ(r, θ) =: χ(r, θ)

where ā :=
´
S1 a dσ is the magnetic flux, we notice that

|∇Aψ|2 = |∂rψ|2 +
1

r2
| (∂θ − i a)ψ|2 = |∂rχ|2 +

1

r2
| (∂θ − i ā)χ|2 .

In this paper we shall therefore always assume that a is a constant function
without loss of generality.

For any k ∈ Z, if ψ(r, θ) = ei k θ χ(r, θ), then

| (∂θ − i a)ψ|2 = |∂θχ+ i (k − a)χ|2 .

Similarly, if χ(r, θ) = e− i θ ψ(r, θ), we find that

| (∂θ − i a) ψ̄|2 = |∂θχ+ i (1− a)χ|2 ,
It is therefore enough to consider the case a ∈ [0, 1/2]. The general case is
obtained by replacing a2 with mink∈Z (a− k)2 in all estimates.
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2.2. Magnetic kinetic energy: some estimates. Note that when we consider func-
tions depending only on θ ∈ S1, all integrals on S1 are computed with respect
to the probability measure dσ = (2π)−1 dθ. Our first result is inspired by [12,
Lemma III.2].

Lemma 1. Assume that a ∈ [0, 1/2] and ψ ∈ C1 ∩ H(R2) is such that |ψ| > 0.
Then we have

ˆ
R2

|∇Aψ|2 dx ≥
ˆ
R2

(
|∂ru|2 +

1

r2
|∂θu|2 +

1

r2

a2´
S1 u
−2 dσ

)
dx (8)

where ψ = u eiS. Equality holds if and only if ∂rS ≡ 0 and

∂θS = a− a

u2

1´
S1 u
−2 dσ

.

In the special case when u does not depend on θ, equality in (8) is achieved if
and only if S is constant.

Proof. Let S be such that ψ = u ei S . We compute

|∇Aψ|2 = |∂rψ|2 +
1

r2
| (∂θ − i a)ψ|2

= |∂ru|2 +
1

r2
|∂θu|2 + |u|2

(
|∂rS|2 +

1

r2
|∂θS − a|2

)
.

After dropping the term |∂rS|2, we can optimize

ˆ
R2

(
|∂ru|2 +

1

r2
|∂θu|2 +

1

r2
|u|2 |∂θS − a|2

)
dx

over the phase S using the corresponding Euler-Lagrange equation

∂θ
(
(∂θS − a)u2

)
= 0 .

This means that ∂θS = a + c/u2 for some c = c(r). We integrate this identity
over S1 and take into account the periodicity of S: for some k ∈ Z, we have

c(r) =
k − a´

S1 u
−2 dσ

=
k − a

‖u−1‖2L2(S1,dσ)

.

In order to minimize the magnetic kinetic energy, we have to choose the best
possible k ∈ Z and obtain

ˆ
S1
|∂θS − a|2 u2 dσ =

ˆ
S1

c2

u2
dσ = min

k∈Z

(k − a)2

‖u−1‖2L2(S1,dσ)

=
a2´

S1 u
−2 dσ

.

As a consequence, the expression of c is given by k = 0 in the equality case in (8)
and ∂θS ≡ 0 if u does not depend on θ. On the other hand, equality in (8) is
achieved if and only if ∂rS ≡ 0. ut
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Lemma 2. For all a ∈ [0, 1/2] and ψ ∈ H1(S1) with u = |ψ|, we have
ˆ
S1
|∂θψ − i a ψ|2 dσ ≥

(
1− 4 a2

) ˆ
S1
|∂θu|2 dσ + a2

ˆ
S1
u2 dσ .

Proof. First assume that u = |ψ| is strictly positive in S1. With ψ = u ei S , we
can write ˆ

S1
|∂θψ − i a ψ|2 dσ =

ˆ
S1

(
|∂θu|2 + |∂θS − a|2 u2

)
dσ .

We use the same arguments as in the proof of Lemma 1 and the inequality

‖∂θu‖2L2(S1,dσ) +
1

4
‖u−1‖−2

L2(S1,dσ) ≥
1

4
‖u‖2L2(S1,dσ)

proved by P. Exner, E. Harrell and M. Loss in [18, Section IV] to write
ˆ
S1
|∂θψ − i a ψ|2 dσ

≥
(
1− 4 a2

)ˆ
S1
|∂θu|2 dσ + 4 a2

(
‖∂θu‖2L2(S1,dσ) +

1

4
‖u−1‖−2

L2(S1,dσ)

)
≥
(
1− 4 a2

)ˆ
S1
|∂θu|2 dσ + a2

ˆ
S1
u2 dσ .

Next let us consider the case when ψ is equal to 0 at some point of S1. Without
loss of generality we can assume that ψ(0) = ψ(2π) = 0 and use the diamagnetic
inequality and Poincaré’s inequality applied to u = |ψ| in order to obtain
ˆ
S1
|(∂θ − i a)ψ|2 dσ ≥

ˆ
S1
|∂θu|2 dσ =

(
1− 4 a2

)̂
S1
|∂θu|2 dσ + 4 a2̂

S1
|∂θu|2 dσ

≥
(
1− 4 a2

)̂
S1
|∂θu|2 dσ + a2̂

S1
u2 dσ .

ut

2.3. Magnetic Hardy and non-magnetic Hardy-Sobolev inequalities.
In dimension d = 2, the magnetic Hardy inequality (2) holds, as was proved

in [21]. When a ∈ [0, 1/2], we notice that min
k∈Z

(a− k)2 = a2.

The weighted interpolation inequality

ˆ
R2

|∇v|2

|x|2A
dx ≥ CA

(ˆ
R2

|v|p

|x|B p
dx

)2/p

∀ v ∈ D(R2) (9)

is known in the literature as the Caffarelli-Kohn-Nirenberg inequality according
to [4] but was apparently discovered earlier by V.P. Il’in, see [20]. The exponent
B = A + 2/p is determined by the scaling invariance, the inequality can be
extended by density to a space larger than the space D(R2) of smooth functions
with compact support, and as p varies in (2,∞), the parameters A and B are
such that

A < B ≤ A + 1 and A < 0 .
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Moreover, it is also possible to consider the case A > 0 in an appropriate
functional space after a Kelvin-type transformation: see [5,16], but we will
not consider this case here. As noticed for instance in [16], by considering
v(x) = |x|A u(x), Ineq. (9) is equivalent to the Hardy-Sobolev inequality

ˆ
R2

|∇u|2 dx+ A2

ˆ
R2

|u|2

|x|2
dx ≥ CA

(ˆ
R2

|u|p

|x|2
dx

)2/p

∀u ∈ D(R2) . (10)

By linear instability, see [19], the optimal functions for (9) are not radially sym-

metric if B < BFS(A) := A − A/
√

1 + A2. The main ingredient of the proof is
reproduced in Appendix A.2, in the two-dimensional case. On the contrary, if
BFS(A) ≤ B ≤ A + 1, we learn from [13] that equality in (9) is achieved by

v?(x) =
(

1 + |x|−(p−2) A
)− 2

p−2 ∀x ∈ Rd (11)

up to a scaling and a multiplication by a constant. In the range BFS(A) ≤ B ≤
A + 1, this provides us with the value of the optimal constant, namely CA = C?A
where the expression of C?A is given in Appendix A.1. We observe that for any
given B ∈ (0, 1), we have that limA→0− C?A = +∞, so that the inequality does
not make sense for A = 0. Using polar coordinates (r, θ), the Emden-Fowler
transformation

u(r, θ) = w(s, θ) , s = − log r (12)

turns Ineq. (10) into

¨
R×S1

(
w2
s + w2

θ + A2 w2
)
ds dσ ≥ KA

(¨
R×S1

|w|p ds dσ
)2/p

∀w ∈ H1(R×S1)

(13)

with KA := (2π)
2
p−1 CA. We refer to [14] for a more detailed review on the

Caffarelli-Kohn-Nirenberg inequality. For any given p > 2, we define

K?A := (2π)
2
p−1 C?A and k?(λ) = K?√

a2+λ
(14)

so that K?A is the optimal constant in (13) restricted to symmetric functions, that
is, functions depending only on s. See Appendix A.1 for the explicit expression
of K?A. For our purpose, we have to consider a slightly more general problem.
For any w ∈ H1(R× S1), let us define

Fκ,ν [w] :=

¨
R×S1

(
w2
s + ν w2

θ + κw2
)
ds dσ − K?√κ

(¨
R×S1

|w|p ds dσ
)2/p

.

(15)

Lemma 3. Let p > 2, κ > 0 and ν > 0. Then Fκ,ν has a minimizer w ∈
H1(R× S1) such that ‖w‖Lp(R×S1) = 1 and w depends only on s if and only if

κ (p2 − 4) ≤ 4 ν .
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Proof. The existence of a minimizer is obtained as in the standard case corre-
sponding to ν = 1 and we refer to [8] for the details. The function w?(s, θ) =
v? (e−s, θ), where v? is defined by (11), is a critical point of Fκ,ν such that
Fκ,ν [w?] = 0 and w? is linearly instable if and only if κ (p2 − 4) > 4 ν (see
Appendix A.2). By adapting [13, Corollary 1.3], the minimizer of Fκ,ν is inde-
pendent of the angular variable θ if and only if κ (p2− 4) ≤ 4 ν. In that case, we
have w(s) = w?(s− s0) for some s0 ∈ R. ut

3. Proofs

3.1. Magnetic interpolation inequalities. We prove Theorem 2. For more read-
ability, we split the proof into three steps.

Step 1 – Ineq. (3) without the optimal constant. Let t ∈ [0, 1]. From the diamag-
netic inequality, we get

‖∇Aψ‖L2(R2) ≥ ‖∇u‖L2(R2)

where u = |ψ|, and therefore,

ˆ
R2

|∇Aψ|2 dx+ λ

ˆ
R2

|ψ|2

|x|2
dx ≥ t

(
‖∇Aψ‖2L2(R2) − a2

ˆ
R2

u2

|x|2
dx

)
+ (1− t)

(
‖∇u‖2L2(R2) +

λ+ a2 t

1− t

ˆ
R2

u2

|x|2
dx

)
.

Using (2) and (10) applied with A2 = λ+a2 t
1−t , t ∈ (0, 1) such that λ+a2 t > 0, this

estimate proves the existence of a positive constant µ(λ) in (3). As an infimum
on H of affine non-decreasing functions of λ, the function λ 7→ µ(λ) is concave
and non-decreasing.

Step 2 – Optimal estimate in the symmetry range. With a ∈ [0, 1/2], ψ ∈ H(R2)
and u = |ψ|, we know from Lemma 2 that

ˆ
R2

|∇Aψ|2 dx ≥
ˆ
R2

|∂ru|2 dx+
(
1− 4 a2

) ˆ
R2

1

r2
|∂θu|2 dx+ a2

ˆ
R2

1

r2
u2 dx .

We can estimate the optimal constant µ(λ) in (3) by the optimal constant µrel(λ)
in the relaxed inequality

ˆ
R2

(
|∂ru|2 + 1− 4 a2

r2 |∂θu|2
)
dx+

(
λ+ a2

) ˆ
R2

|u|2

|x|2
dx ≥ µrel(λ)

(ˆ
R2

|u|p

|x|2
dx

) 2
p

.

Using the Emden-Fowler transformation (12), this inequality can be rewritten
on the cylinder R× S1 as
¨

R×S1

(
|∂sw|2 +

(
1− 4 a2

)
|∂θw|2

)
ds dσ +

(
λ+ a2

)¨
R×S1

|w|2 ds dσ

≥ (2π)
2
p−1 µrel(λ)

(¨
R×S1

|w|p ds dσ
) 2
p

.
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By Lemma 3 applied with ν = 1− 4 a2 and κ = λ+ a2, the optimal function for
the above inequality is independent of the angular variable θ if and only if(

λ+ a2
) (
p2 − 4

)
≤ 4

(
1− 4 a2

)
,

that is, λ ≤ λ? with λ? defined by the equality case, i.e., by (6). If a = 1/2, note
that there is no λ such that − a2 < λ ≤ λ?. With a ∈ (0, 1/2) and λ? defined
by (6), this amounts to λ ≤ λ?. In that case the optimal function is

w?(s) :=

(
cosh

(
p− 2

2

√
λ+ a2 s

))− 2
p−2

∀ s ∈ R

up to a multiplication by a constant and a translation (in the s variable). This
determines the value of µrel(λ). By construction, we know that µ(λ) ≥ µrel(λ),
but using (r, θ) 7→ w?(− log r) as a test function in (3), we find that µ(λ) =
µrel(λ) if λ ≤ λ?. See Appendix A.2 for details on the computation of λ?.

Step 3 – The symmetry breaking range. This range is the set of λ and a for which
the optimal functions are not symmetric functions. Let

Ea,λ[ψ] :=

ˆ
R2

|∇Aψ|2 dx+ λ

ˆ
R2

|ψ|2

|x|2
dx− µ(λ)

(ˆ
R2

|ψ|p

|x|2
dx

)2/p

.

We produce a direction of instability for Ea,λ by perturbing the phase and the
modulus of ψ(x) = w?(− log |x|) simultaneously. Let us start by some prelim-
inary computations. Define cω(s) = cosh(ω s), sω(s) = sinh(ω s) and Iα :=´
R c
−α
ω ds. An integration by parts shows that

Jα+2 :=

ˆ
R
s2
ω c
−(α+2)
ω ds = − 1

α+ 1

1

ω

ˆ
R
sω

(
c−(α+1)
ω

)′
ds

=
1

α+ 1

ˆ
R
c−αω ds =

Iα
α+ 1

.

On the other hand, using the identity c2ω − s2
ω = 1, we obtain that

Iα+2 =

ˆ
R

(
c2ω − s2

ω

)
c−(α+2)
ω ds =

(
1− 1

α+ 1

)
Iα =

α

α+ 1
Iα .

With the choice µ =
(

2π
˜

R×S1 |w?|
p ds dσ

)1−2/p

corresponding to the optimal

constant achieved by the symmetric function w?, with s = − log r, by consid-
ering ψε(r, θ) :=

(
w?(s) + εϕ(s, θ)

)
exp

(
i ε χ(s, θ)

)
, at order ε2 we obtain that

Ea,λ[ψε] = ε2Q[ϕ, χ] + o(ε2) where Q is the quadratic form defined by

Q[ϕ, χ] =

¨
R×S1

w2
?

(
|∂sχ|2 + |∂θχ− a|2 − a2

)
ds dσ − 4 a

¨
R×S1

w? ϕ∂θχds dσ

+

¨
R×S1

(
|∂sϕ|2 + |∂θϕ|2 +

(
λ+ a2

)
ϕ2
)
ds dσ

− (p− 1)

¨
R×S1

|w?|p−2 |ϕ|2 ds dσ
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and

w?(s) = ζ?
(
cω(s)

)− 2
p−2 with ζ? =

(p
2

(
λ+ a2

)) 1
p−2

and ω =
p− 2

2

√
λ+ a2 .

With the ansatz

ϕ(s, θ) =
(
cω(s)

)− p
p−2 cos θ and χ(s, θ) =

ζ

ζ?

(
cω(s)

)−1
sin θ (16)

where ζ is a parameter to be fixed later, we obtain that

Q[ϕ, χ] = ζ2
(
ω2 Jα+2 + Iα

)
− 4 ζ a Iα

+

(
pω

p− 2

)2

Jα+2 +
(
1 + λ+ a2

)
Iα − (p− 1) ζp−2

? Iα+2

with α = 2 p/(p − 2). We minimize the expression of Q[ϕ, χ] with respect to
ζ ∈ R, that is, we take

ζ =
2 a Iα

ω2 Jα+2 + Iα
.

After replacing α, ζ, ζ?, and ω by their values in terms of a, p and λ, we find
that the infimum of the admissible parameters λ > − a2 for which Q[ϕ, χ] < 0
is given by (7). Hence we know that there is symmetry breaking for any λ > λ•.
This concludes the proof of Theorem 2. ut
Remark 1. The function ψε used in Step 3 of the proof of Theorem 2 to produce
a negative direction of variation of Ea,λ is only a test function which couples the
modulus and the phase. To get an optimal range with this method, one should
identify the lowest eigenvalue in the system associated with the variation of Q:
see Section A.4 for details. This is so far an open question as the corresponding
eigenfunctions are not identified yet.

One may wonder if a better result could be achieved by varying only the
modulus using the function ψε(r, θ) := w?(− log r)+εϕ(− log r, θ) and choosing
the optimal ϕ. In that case, the instability is reduced to the instability of Fκ,ν
as defined by (15) with κ = λ+a2 and ν = 1, which is the classical computation
of [19] (also see Appendix A.2): here instability occurs if

λ > λFS(a) :=
4
(
1 + a2

)
− a2 p2

p2 − 4
. (17)

Elementary considerations show that λ• < λFS and that the threshold given
by λ• is by far better (see Fig. 1).

3.2. Spectral estimates. The proof of Theorem 1 is a simple consequence of the
estimate

EA[ψ] =

ˆ
R2

(
|∇Aψ|2 − φ |ψ|2

)
dx ≥

ˆ
R2

|∇Aψ|2 dx− |||φ|||q

(ˆ
R2

|ψ|p

|x|2
dx

)2/p

by Hölder’s inequality, with q = p/(p− 2). With the notation µ = |||φ|||q, Eq. (4)

is a consequence of Eq. (3) in Theorem 2: the right-hand side is bounded from
below by −λ(µ) ‖|x|−1 ψ‖22.

Reciprocally Theorem 2 follows from Theorem 1 with φ = |x|−2 |ψ|p−2, which
corresponds to the equality case in the above Hölder inequality. ut
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A. Appendix

A.1. Optimal constants in the symmetric case. It is known from [25] that

K?A =
p

2
|A|1+ 2

p

(
2
√
π Γ
(

p
p−2

)
(p− 2)Γ

(
p
p−2 + 1

2

))1− 2
p

is the optimal constant in the inequality

ˆ
R
|w′|2 ds+ A2

ˆ
R
|w|2 ds ≥ K?A

(ˆ
R
|w|p ds

)2/p

∀w ∈ H1(R) .

For any given p > 2, the optimal constant in (13) is also K?A in the particular case
of symmetric functions, because dσ is the uniform probability measure on S1.
See for instance [7] for details.

The optimal constants in (10) and (13) are related by (14). In the symmetry

range, we have KA = K?A = (2π)
2
p−1 C?A = (2π)

2
p−1 CA, where

C?A =
p

2
(2π)1− 2

p |A|1+ 2
p

(
2
√
π Γ
(

p
p−2

)
(p− 2)Γ

(
p
p−2 + 1

2

))1− 2
p

.

This expression can be recovered by writing that the equality case in (10) is
achieved by the function v?. Indeed, with the change of variables (r, θ) 7→ (s, θ)
with s = r−A (p−2)/2 and n = 2 p/(p−2) as in [13, Section 3.1], and f?(s) = v?(r),
this means that

C?A = (2π)1− 2
p

(
A

2
(p− 2)

)1+ 2
p

´ +∞
0
|f ′?|2 sn−1 ds(´ +∞

0
|f?|p sn−1 ds

)2/p

where f? is the Aubin-Talenti function f?(s) =
(
1 + s2

)−(n−2)/2
.

A.2. Ground state eigenvalues of the quadratic form.

• Linearization and eigenvalues: the one-dimensional case. Let us summarize
some classical results on the linearization of the Gagliardo-Nirenberg inequalities
in the one-dimensional case, based on [9, Appendix A.2]. According, e.g., to [10],

the function w(s) = (cosh s)−
2
p−2 is the unique positive solution of

− (p− 2)2 w′′ + 4w − 2 pwp−1 = 0

on R, up to translations. The function w(s) := αw(β s) solves

−w′′ + 4β2

(p− 2)2
w − 2 p β2

(p− 2)2
α2−p wp−1 = 0 .

With β = p−2
2

√
κ and α = (p2 κ)

1
p−2 , w = αw? is given by

w(s) =
(p

2
κ
) 1
p−2

[
cosh

(
p− 2

2

√
κ s

)]− 2
p−2

∀ s ∈ R
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and solves
−w′′ + κw = |w|p−2 w .

The ground state energy λ1(Hκ) of the Pöschl-Teller operator

Hκ := − d2

ds2
+ κ− (p− 1)wp−2

is characterized as follows. The function

ϕ1(s) := α
p
2

(
cosh(β s)

)− p
p−2 = w

p
2

solves

−ϕ′′1 +
1

4
κ p2 ϕ1 − (p− 1)wp−2 ϕ1 = 0

and therefore provides the principal eigenvalue of Hκ,

λ1(Hκ) = − κ

4

(
p2 − 4

)
.

The Sturm-Liouville theory guarantees that ϕ1 generates the ground state.

• The lowest non-radial mode on the cylinder. Let us consider the operator

Hκ,ν := − ∂2

∂s2
− ν

∂2

∂θ2
+ κ− (p− 1)wp−2

on the cylinder R × S1 3 (s, θ). By separation of variables, the lowest non-
symmetric eigenvalue is associated with the function ϕ(s, θ) = ϕ1(s) cos θ, so
that the ground state of Hκ,ν is

λ1(Hκ,ν) = ν − κ

4

(
p2 − 4

)
.

• Lowest eigenvalues and threshold for the linear instability. Whenever the op-
timal function in (3) is radially symmetric, we get that µ(λ) = C?A with A =√
a2 + λ, i.e., µ(λ) = (2π)1− 2

p k?(λ), or

µ(λ) =
p

2
(2π)1− 2

p
(
λ+ a2

) 1
2 + 1

p

(
2
√
π Γ
(

p
p−2

)
(p− 2)Γ

(
p
p−2 + 1

2

))1− 2
p

. (18)

With Fκ,ν defined by (15), let us consider a Taylor expansion of Fκ,ν [wε] with
wε(s, θ) := w?(s) + εϕ(s, θ) at order two with respect to ε. For ε > 0 small
enough, the sign of Fκ,ν [wε] is determined by the sign of the quadratic form

ϕ 7→
¨

R×S1

(
|∂sϕ|2 + ν |∂θϕ|2 + κϕ2

)
ds dσ

− (2π)
2
p−1 (p− 1)µ

(¨
R×S1

wp? ds dσ

) 2
p−1¨

R×S1
wp−2
? |ϕ|2 ds dσ .

Hence Fκ,ν can be made negative by choosing ϕ = ϕ1, which shows that
w? is an instable critical point of Fκ,ν if and only if λ1(Hκ,ν) < 0. Notice
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that Lemma 3 states the reverse result, which is the difficult part of the re-
sult: whenever λ1(Hκ,ν) ≥ 0, the minimum of Fκ,ν is achieved by w? so that
Fκ,ν ≥ Fκ,ν [w?] ≥ 0.

Applied with κ = λ+a2 and ν = 1, we recover the computation of [19], which
determines λFS as in (17). Applied with κ = λ+ a2 and ν = 1− 4 a2, we obtain
that

λ1(Hλ+a2,1)− 4 a2 = 1− 1

4

(
λ+ a2

) (
p2 − 4

)
− 4 a2

and observe that it is negative if and only if

λ?(a) =
4
(
1− 3 a2

)
− a2 p2

p2 − 4
.

Using µ(λ) = (2π)1− 2
p k?(λ) in the symmetry range, we obtain that µ?(a) =

µ
(
λ?(a)

)
with µ given by (18), i.e.,

µ?(a) = 2 p

(
1− 4 a2

p2 − 4

) 1
2 + 1

p

π
3
2−

3
p

(
2Γ
(

p
p−2

)
(p− 2)Γ

(
p
p−2 + 1

2

))1− 2
p

.

A.3. Computation of λ•. Let us give some details on the computation of λ•. An
expansion of Q[ϕ, χ] as defined in Section 3.1 computed with the ansatz (16)
shows that it has the sign of

q(λ) := −λ2 − 2
(

4 p2+4 p−4
(p−2)3 (p+2) + a2

)
λ+ 8

2 (3 p−2)−a2(p3+2 p2+12 p−8)
(p−2)3 (p+2) − a4 .

Since q(λ?) =
(

8 a
p2−4

)2
(1 − 4 a2) is positive for any a ∈ (0, 1/2) and since

limλ→∞ q(λ) = −∞, we know that λ• defined by q(λ•) = 0 is such that
λ• > λ?. Notice that the other root of q(λ) = 0 is in the range (−∞,−a2),
and that the discriminant p4 − a2 (p − 2)2 (p + 2) (3 p − 2) is positive for any
(a, p) ∈ (0, 1/2)× (2,+∞). Additionally, we obtain by direct computation that

λ• − λ? = 8
(p−2)3 (p+2)

(√
p4 − a2 (p− 2)2 (3 p2 + 4 p− 4) + 2 a2 (p− 2)2 − p2

)
is positive for any a ∈ (0, 1/2). Numerically this difference turns out to be very
small: see Figs. 1 and 2.

A.4. The range of linear instability of the magnetic interpolation inequality. The
high level of accuracy shown in Fig. 2 deserves some comments. For any given
(a, p) ∈ (0, 1/2)× (2,+∞), the threshold between the symmetry region and the
symmetry breaking region is in the interval (λ?, λ•). Since λ• is determined by
the choice of (16), one has to understand why this test function gives such a
precise estimate.

Let us consider an ansatz in which only the angular dependence is fixed. With

ϕ(s, θ) = H(z) cos θ and χ(s, θ) = G(z)
sin θ

w?(s)
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0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0.1

0.2

0.3

Fig. 1. Here we assume that a ∈ (0, 1/2) and consider the case p = 4. Left: The region of
symmetry is the dark grey area which lies between the curves a 7→ − a2 and a 7→ λ?(a). The
light grey area above a 7→ λ•(a) is the region of symmetry breaking. The curve a 7→ λFS(a)
is the dashed curve, above which the symmetry breaking is shown by considering only a
perturbation of the modulus. It is a poor estimate away from a neighborhood of a = 0. Right:
An enlargement of the boxed area shows that λ• and λ? do not coincide. Also see Fig. 2.

0.1 0.2 0.3 0.4 0.5

0.001

0.002

0.003

0.004

0.005

Fig. 2. The curve a 7→ λ•(a)− λ?(a) with p = 4 shows that there is a little gap between the
symmetry and the symmetry breaking region, which is to be expected because λ? is determined
by a non-optimal test function.

and the change of variables

z = tanh (ω s) and ω =
p− 2

2

√
λ+ a2 ,

the computation of Q[ϕ, χ] is reduced to the computation of

Q(G,H)

:=
´ +1

−1

(
ω2
(
1− z2

)
|G′|2 +

(
1 + 4ω2

(p−2)2

)
G2

1−z2 −
2 pω2

(p−2)2 G
2 − 4 a

1−z2 GH
)
dz

+
´ +1

−1

(
ω2
(
1− z2

)
|H ′|2 +

(
1 + 4ω2

(p−2)2

)
H2

1−z2 − (p− 1) 2 pω2

(p−2)2 H
2
)
dz

using

dz

ds
= ω

(
1− z2

)
, λ+ a2 =

4ω2

(p− 2)2
and wp−2

? =
2 pω2

(p− 2)2

(
1− z2

)
.

We recover the expression of q(λ) with the choice

G[z] = ζ H[z] and H(z) =
(
1− z2

) p
2 (p−2) ,
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after optimizing on ζ. All computations done, the optimal value of ζ is

ζ =
a (p+ 2) (3 p− 2)

p2 +
√
p4 − a2 (p− 2)2 (p+ 2) (3 p− 2)

,

and we find that q(λ) < 0 for λ in the admissible range if and only if λ > λ•.
A minimization of Q(G,H) under the constraint

ˆ +1

−1

G2 +H2

1− z2
dz = 1

reduces the problem to the identification of the ground state energy Λ in the
eigenvalue problem
−ω2

((
1− z2

)
G′
)′

+
(

1+ 4ω2

(p−2)2

)
G

1−z2 −
2pω

(p−2)2G−
2a

1−z2H = Λ
1−z2G ,

−ω2
((

1− z2
)
H ′
)′

+
(

1+ 4ω2

(p−2)2

)
H

1−z2 − (p− 1) 2pω
(p−2)2H −

2a
1−z2G = Λ

1−z2H .

For given (a, p) ∈ (0, 1/2)× (2,+∞), the linear instability range I is the set of
the parameters λ for which Λ is negative. We know that

(λ•,+∞) ⊂ I ⊂ (λ?,+∞)

but we do not even know whether I is an interval or not. Notice that for a = 1/2,
we find that ζ = 1 and G = H is a good test function for any ω > 0: this means
that there is symmetry breaking for any λ > 1/4.
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