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Supporting Information

All sections, figures and references in the supporting information are distinguished from the main

text by a preceding S.

S1.Supplementary experimental characterization

S1.1 Sample fabrication

An example for the mass selection of silver clusters in the gas phase is shown in Figure S1.1. Cluster
ions with less than 20 and more than 38 atoms in this case are efficiently removed from the beam.
These spectra were acquired during the thorough calibration of the quadrupole mass spectrometer
(QMS, Extrel CMS, USA) transmission with the time-of-flight mass spectrometer (TOF-MS) mounted
behind the QMS. Changing the control parameters of the QMS electronics (mass command, AM and
ARes) allows adjusting the transmission window mean and width over a large size range, the low cut-

off being limited to ~200 Ag atoms.
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Figure S1.1 TOF-MS spectra with and without mass selection of the QMS.

The absence of coalescence in the samples for optical spectroscopy was verified using conventional
TEM of thin films of silica of ~20 nm thickness with embedded silver nanoparticles. Figure S1.2 shows
an example image for a sample prepared at two times higher concentration (1 vol.%) than in the
sample used for optical experiments. The lower panel shows a typical mass spectrum obtained parallel
to the sample fabrication together with the size limits imposed by the QMS (n = 180-400 atoms

corresponding to 1.8-2.3 nm diameter) and the diameter histogram from electron microscopy.
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Figure S1.2 top: Example TEM overview image of a thin film sample prepared under identical
conditions as the ones used for optical spectroscopy (Fig. 1 in main text). The particles are
well separated. Bottom: corresponding Time-of-Flight mass spectrum with the low and high
mass cut-offs as defined by the quadrupole mass spectrometer. Also shown is the diameter

histogram as derived from TEM.



S1.2 Electron spectroscopy
In this section of the Supporting Information we show more examples for nanoparticle
characterization and the effect of electron dose on the particle morphology and on the plasmon

resonance.

A particle of ~5nm inside the silica matrix has been observed over a certain time period. Several
HAADF images were taken in order to observe the evolution of the particle during the electron

irradiation.

Figure S1.3: Silver particle of ~5 nm diameter at different irradiation doses. From low to high
irradiation doses we observe: a) an oxide layer at surface at the beginning of the series. b)
The cleaned interface due to the electron irradiation. c) and d) show icosahedral structures

at different angles [S1], i.e. the particle rotates under the beam.



In the beginning, most of the particles have an amorphous interface layer which is attributed to

oxidation. With increasing accumulated electron dose this shell disappears.

Figure S1.4: Silver particle of 8.7 nm diameter before and after a stack acquisition of 11
spectral images. The acquisition parameters do not allow for atomic-scale imaging. The
initially observed amorphous layer around the particle is removed under the electron beam
irradiation. The spherical silver particle then no longer changes in size or shape if the electron

dose is kept minimal.



In order to evidence the plasmon peak and increase the signal to noise ratio, we sum numerous
spectra for beam positions close to the nanoparticle surface, as extracted from a spectrum image and
shown in figure S1.5. The signal increases by typically three orders of magnitude, making the signal to

noise ratio much larger than 30.
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Figure S1.5: Comparison of the spectrum extracted from one pixel (red box and red spectrum)
and the spectrum resulting from the sum of the spectra contained in a large number of pixels
(region of interest between blue circles; blue spectrum) of a 2.7 nm diameter particle. The

plasmon peak is observed only after summing.



One of the difficulties of this experiment is the low plasmon signal of sub-10 nm silver particles, on
top of a background due to the zero-loss peak (ZLP). This latter is of comparable intensity — of the order
of 1073 of the ZLP maximum, see figure S1.6. A CCD camera with a large dynamic range is needed in
order to measure the ZLP (necessary for the energy calibration of the spectrum) and a weak plasmon

peak in the same spectrum.
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Figure S1.6: EELS signal from the surface of a 3 nm particle, compared to the EELS signal from
only the silica matrix on top of the carbon substrate. Note the logarithmic scale for the EELS
intensity. In the spectral region of interest the ZLP tail intensity is of the order of 103 with

respect to the ZLP maximum.



As shown in figure S1.7, the surface plasmon energy

position was obtained by a least square fitting

method. First a ZLP taken on the substrate (covered by silica) is fitted with several Gaussians and the

fitting parameters are then used to model the ZLP background on a plasmon signal. The plasmon peak

is fitted with a Gaussian peak.
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Figure S1.7: Procedure for obtaining the LSPR energy. a) A ZLP taken on the substrate

(covered by silica) is fitted with several Gaussians

used to model the ZLP background of the plasmon

. b) The fitting parameters of the ZLP are

signal. c) The modeled ZLP background is

then subtracted in order to obtain the LSPR signal. d) A Gaussian fit is used to extract the

LSPR energy.



Figure S1.8 presents typical blue shifts of the surface plasmon energy, observed at increasing electron
dose for all particle sizes. In most of the cases, there is a large shift at low dose followed by an
asymptotic behavior, although saturation is not reached for every nanoparticle. Note that in the
smallest particles, the electron dose used was lower in order to avoid particle damage. This is the
reason why in some of the smallest particles the LSPR blue shift saturation is not always reached. The
steeper rise with electron dose for smaller particles agrees well with the theoretical results as shown
in Fig. S2.8, where the same thickness of vacuum layer dn, results in a large shift for small R and a

smaller one for bigger R.

a) b)
E E E 332 F LN R LR W
§ 3.20 . * = 5328 ® ....'l..-l -
- c . -
g o 8324 . -
g310 7T £320 . .
c . | e o3 .
g 3.00 4 2 e « particle 6.5 nm.
o A @ 312 -
- particle 7.2 nm = i
>2.90 4 2308 ~
8 { &304 2
32_30 e b 53'00 IIIIIIlIlII-
% 5 10 15 20 ° 20 30
6 2

Electron dose (10 e-/A") Electron dose (10° e-/A”)
c)
E 3-50 LILJ I LELELEL] I LELELEL] l LELELEL] I LELELEL] I LELELEL
§3.40 B i i g M particle 2.7 nm :
ﬂ, E L ] * —
3 °
g 3.30 » o = -
S 3.20 - - o B
E L - *
8310 particle 3nm - . -
D- B —
8 3.00f -
& L * 1 -
32-90||I|||||||||I|||||||||I|||| :320
@ 2.0 4.0 60 ” 25 50 75

Electron dose (1 OGe-IAz) Electron dose (106 e-IAz)

Figure S1.8. Examples of blue shifts of the surface plasmon energy with electron dose for
silica-embedded silver particles with diameters of a) 7.2 nm; b) 6.5 nm (same as figure 6a of
the main text); ¢) 3.0 nm; d) 2.7 nm. The shaded area corresponds to doses where no LSPR
signal could unambiguously be detected in EEL spectra. At these low doses most particles do

not show a LSPR signal due to oxidation.

Note that we have no evidence for changes in matrix stoichiometry. This is reasonable, bearing in
mind that light Si and O atoms have, in distinction to heavy Ag, comparable probabilities for being
removed from the matrix through knock-on collisions. Furthermore, the LSPR for silver particles of
comparable size and embedded in under-stoichiometric silicon oxide matrices has been evidenced at

much lower energies than what we observed [S2].



The evolution of the plasmonic response under electron beam irradiation as demonstrated for a large
particle in figure 3 of the main text has consistently been observed for all sizes. Another example for a

particle of small diameter is shown in figure S1.9.
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Figure S1.9: Example of electron dose activation of the LSPR in a small particle. a) STEM-
HAADF images of a 2.7 nm silver particle diameter embedded in silica at low and high electron
dose. The diameter of the particle remains the same. b) Surface plasmon evolution with the
electron dose. The surface plasmon is not clear at low electron dose but increases and blue
shifts with increasing electron dose. There is also a decrease of line width with increasing
electron dose due to a change of environment, consistent with [S2]. The EEL spectra are
genuine EELS data with just a ZLP alighnment and a sum of pixels around the particle surface.
They have been shifted vertically with respect to each other for clarity. The ZLP tails of regions
far from the particles are presented in dotted color lines to indicate the zero line for each

spectrum.
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S2.Supplementary theory

S2.1 Model for electronic spectroscopy of a homogeneous sphere
In order to directly compare LSPR data obtained with optical and electronic spectroscopy, we need
to demonstrate the theoretical equivalence between the two methods in our experiments and show

the limits of this equivalence. Sl units are used throughout this section.

$2.1.1 Non retarded Approximations

In this work, we use the non-retarded approximation.

As noted in [S3], the validity of the non-retarded approximation in EELS relies on several aspects. If
one considers the particle itself, the finiteness of the speed of light cisimportant when the propagation
time of an electromagnetic wave through the characteristic wavelength (d) of the electron cloud

oscillation is comparable to its period of oscillation. This condition is obtained when a)(d/c)>1. Ina
sphere of radius R, the characteristic wavelength isd ~ R/f , where / is the mode order. Therefore,
retardation becomes significant when a)(R/c) > [ [S3]. The particle diameters studied in this article

are between 10 and 2 nm, and the resonance energies between 2.7 and 3.7 eV. Thus, a)(R/c) ranges

from 0.019 to 0.068, which is less than 7 % of ¢/ =1 (dipolar mode) and even smaller for higher orders.

This result allows us to neglect retardation effects due to the small size of particles.

Another retardation effect affects the propagation of the electromagnetic field from the electron and
back to it, an effect that has to be taken into account in EELS because it enters into the calculation of
the work the electron undergoes against the field it induces by polarizing the nanoparticle (see below).
The typical distances from the electron beam in the plane of the nanoparticles to any point of the
nanoparticle being much less than the typical free space wavelength of the plasmon, this effect can be

neglected.

Finally, a last effect concerns the Lorentz contraction. It can be neglected if ¥ :]/«/1— (V/C)2 ~1.
[S3] In the present EELS experiment the electrons are accelerated to 60 kV (~ 0.45 c) and the Lorentz
gamma factor is ¥ ~1.12 . Although small, the resulting effect is not completely negligible. However,
for small spherical metallic particles, the Lorentz contraction factor intervenes only in the probe
position dependent function [S4]. Otherwise speaking, it renormalizes the impact factor (here, by ~
12%), therefore changing the absolute intensity of the simulated EELS spectra. As in the present work

we do not consider the absolute intensity of the spectra, this effect is irrelevant for our discussion.

11



52.1.2 Energy loss probability in a sphere

This section compiles results from refs [S3-S7].

The energy loss by a fast electron passing near a sample with constant velocity V along a straight

line r, (t) can be related to the force exerted by the induced electric field E;, acting back on the

electron [S5]:
AE = —e [ dtv-E (1, (0)2). (2.1.1)

The energy loss can be expressed in term of the energy loss probability per unit of frequency I'(w):

AE = jha)da)l“(a)). (2.1.2)
0

Applying the inverse Fourier transform on Eind(re(t),a)) and using the property

Eing (r, w)= [Eind (r,—a))]* we find:

Iw)= —% Tdt Re{v-E,y(r, o)™}, (2.1.3)

I'w)= % Tdt Re{v-VV,,(r, o)} (2.1.4)

To determine de(re,a)) we consider a sphere of radius R embedded in a medium and a point

electron moving at a constant velocity V =—Ve, along the trajectoryr, (t) = (xo ,O,z(t)), where x; is

the impact parameter andz = —V¢. In order to facilitate calculations, we will work in a spherical
reference system with the center placed in the center of the sphere (see figure S2.1). Then the

coordinates of the electron will be expressed in the reference system of the sphere. In this spherical
12
system 7, = (xg + 22)1 and COS(He)z z/r, = —Vt/r, . The potential of the electron at a position r

where r, > ris [S6, S7]:

e
virt)=—————, .
(r t) 472'808,”‘1' - re\ (2.1.5)
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Figure S2.1. Schematics of a sphere embedded in a medium and excited by a fast electron.

which, expressed in a multipole expansion centered on the sphere, writes:

V.(r,t)=

e

iiN [ J(P’” (cos(8))P" (cos(8, ))cos(me),  (2.1.6)

4”50 /=0 m=0

where

_(2-8,, [t —m)
New = (I +m)

and P are the associated Legendre polynomials. J,,,, is unity if m =0 and is zero otherwise.

Applying a Fourier transformation to Ve(r,t) we get:

V(r,a)

e

ZZN 1, ' P"(cos(@))cos(mg) (2.1.7)

47[505 =0 m=0

2i'™ ‘a)/v\[ K, Qa)xo/V\Xa)/\w\)Z_m

V(¢ —m)! '

Ik‘,m (a)! Xy ) = Jdl‘ I"e_(“l)P;" (COS(@Q ))eiwt _

where K is the modified Bessel function of second kind.

The induced potentials outside the particle V, , (I’, a)) and inside the particle V., (r, a)) are:

o/
Vidou . @)=>.>"a,, (2= 5, \R/r) " P" (cos(0))cos(m¢), (2.1.8)
=0 m=0
Vian(r @)= iZan , N#/R) P"(cos(6))cos(me). (2.1.9)
(=0 m=0

Writing V,(r, @) and V, (I’,a)) in the form:

ind ,out
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V(rw)=3" 3 P (cos(@))cos(me)y, . (2.1.10)

with i = eorind,out one can define the multipolar polarizabilities as

.
a,,(0)=—dre,e, R¥H-lowtn) (2.1.11)

\%
elim r=R

The multipolar polarizability is the response of the particle to a multipolar excitation of order (ﬁ,m).

We assume now that the sphere is made up of a metal of relative permittivity g(a)) embedded in a
non-absorbing medium of relative permittivity ¢ | (a)) We will not take into account non-local effects;

therefore, the Q dependency of the dielectric constants is neglected. In the classical limit for the
description of the particle response, one can deduce the expression of the multipolar polarizability by

using the boundary conditions.

Indeed, the total potential inside or outside the particle, when the electron is outside the particle, is:

Vn/out (r’ C()) =V, (r a))+ Vnd Jinfout (r' (0) (2112)

The coefficients a, ,,, and by ,,, of equations 2.1.8 and 2.1.9 can be obtained by the conditions:

v

out

(r=Rwo)=V,(r=R ), (2.1.13)

m

& al/out(r = R,CO) = aI/in(}/' = R,C())
" or - or '

(2.1.14)

Finally, the induced potential V, , ., (r, a)) is

Vind,()ut (r’ 0)) =

iiN I, ﬂP/”(cos(&’))cos(m;zﬁ) e ~c.) . (2.1.15)
Areye,, @ mo bt (f8+(f +1)8m)

The term ¢ =0 does not contribute to the energy loss and is therefore neglected. In the following

V.

ind ,out

(I’,a)) is just written ¥, , (r,a)). The product of Vv and VI, (r, a)) evaluatedat r =r_ is:

o/ 20+1
V- V I/[na/ (Ve’ Z Z N(,m]( m I; /0 (f + 1 m)B{L (COS( )) Z(g ‘ )

4;:50 R (te+(0+2),)
(2.1.16)

e

Introducing equation 2.1.16 in equation 2.1.4 we get:

(=1 m=0

le-s,)
I R RN, Lyl g, (0 +1— m e
(0)) 472'27;10)80 e{zzv {,m /+l,m( + m{(f&'—l— (f +l)(5‘m ):|} (2 1 17)
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'R &L wx, (R le—¢,)
Mo)=— 2SSy, |k [P5] [25) n N
(a)) T*hvie,e ;Z‘) /”m{ m( v ﬂ( % J m{(€5+(€+1)5m) ' (21.18)

where

_ (2_50177)
Mon = oemy

From equation 2.1.11 we obtain (similar to equation 32 in [S4] except for a prefactor due to a slight

difference in the definition of the polarizability):

é(e—em)

) — 4 R24+l—
Feom (a)) G le+ (ﬁ +1)gm

(2.1.19)

We note that in the classical limit the multipolar polarizabilities depend only on ¢ and we can simplify

the notation to ¢, (a))

Finally we can write:

2 20
wx R a (a))
r M 0 — | Im——— |, (2.1
()= 2hv £,& m;,; ”{ ( Vv ﬂ( Vv ) mLﬂgOngz”l} (2.1.20)

ZZZM,/{ [wxoﬂz(w)ylm[aé/(w)]. (2.1.21)

472'3hV (80 /=1 m=0 \Y \Y

I(w)=

These same expressions can be found in [S4, S6] but in a different unit system. Equation (2.1.21) is

valid in the local dielectric continuum approximation. However, provided «, is replaced by «,, and

defined as per equation (2.1.11), it can be extended to any other approximation, as discussed later.

52.1.3 Optical excitation.

As detailed below in section S2.3, the optical absorption cross section is:

oom(w)= # Im[a(0)] (2.1.22)
0 m

where the dipolar polarizability is given by the ratio between the dipolar moment and the incident

electric field of a plane wave in the medium.

a(w)=4dne,e RS% (2.1.23)
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52.1.4 Relation between EELS and optical response

From equation 2.1.19:

aézl(a)) =4re,e, R E b a(a)). (2.1.24)
e+2¢,

The dipolar EELS and optical polarizabilities are therefore equal. The EELS response of a sphere is
essentially dipolar when either the impact parameter is large with respect to the sphere diameter
and/or the particle diameter is small compared to the free space wavelength of the plasmon. In this

case, EELS reads:

F[_l(a)):mlm[a(a))] {KO(W\T‘J ﬂz {K{w\fo HZ . (2.1.25)

We can obtain a direct relation with the optical absorption cross section:

2 2 2
ce w ot X X
Fg:l(a)):mﬂags (0)) |:KO( Voj:| +|:Kl( Voj:| . (2.1.26)
0“m

This equation can in principle also be derived from equation 34 in [S4]. If one only considers the

dipolar EELS response of a spherical particle in a non-dispersive material, it is directly proportional to
the optical absorption cross section. The energy dependencies of EELS and optical absorption are

therefore almost identical close to the resonance (except for an @ prefactor). We also note that the

absorption cross section is proportional to the volume of the particle, and if one keeps x, constant,

both the EELS and absorption cross-sections scale as the volume of the particle.

However, in practical experiments, one does not keep x, constant, but rather tries to bring the

electron probe as close as possible to the surface of the particle. At small impact parameters and low

frequencies (which is the case of small silver nanoparticles embedded in a matrix):

[Kl(a’xo/v)]2 >> [Ko(a’xo/v)]zf

ce®  om()
3/2 2

F((() z 3 2
Ar°hvieye,”” wx,

(2.1.27)

Therefore, in practical EELS experiments, where we set the impact parameter very close to the

surface of the particle x, = R, we get:

2 opt
MNo)x——= o (). (2.1.28)

4r*ivieye,”? @R

Since the optical absorption scales as R® , the EELS probability depends linearly on the radius.
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Figure S2.2: Comparison between the Optical absorption cross section from equation 2.1.22
and the EELS dipolar mode ¢ =1 from equation 2.1.21. The permittivity of the medium is

assumed constant and the permittivity of silver is from the Drude-Lorentz model of Ref. [S8].

$2.1.5 Higher order modes
With equation 2.1.21 we can calculate the EELS probability for higher order modes. After some
approximations for the modified Bessel functions of second kind and introducing

aEELS — ((g—gm)

) m we obtain:

2p3
e’R EELS]
Iy = 27 2 zlm[aél ’
TV Eyx,
2p5
e‘R
r,~— im0,
3w hveg,x,
8 e’R’ EELS
=3 Im[a( 3 ]'

45 7’1V g, X,

Ts o33 R? Im|a 5
I =M 2 Im EELS |’
-1 X Ay
Tis o417 R* Imla /5
I = 4 m aEELS
=1 X e

Considering the Drude-Lorentz model in [S8] we obtain Im[ai’i”]/lm[afj”]~ 0.86 and
Im[agm]/lm[aﬁ“]—' 0.81 at the resonance conditions. Therefore, at x, ~ R (electron beam near

the particle surface) we get:
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Ly ~0.28 and s ~0.14

=1 =1

The modes ¢ =2 and ¢ =3 are much less intense than the dipolar mode close to the surface. With

the impact parameter increasing the mode ¢ = 2 decreases as ]/x04 and the mode ¢ =3 decreases

6 . . . - .
as ]/xo . It means that, at large impact parameters, only the dipolar mode is efficiently excited and

the electric field felt by the particle is similar to a plane wave like in optical experiments, as already

discussed in the literature [S9].
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Figure S2.3: EELS signal from equation 2.1.21 for the first 3 modes as a function of the impact
parameter. The permittivity of the medium is assumed constant and the permittivity of silver

is from the Drude-Lorentz model of Ref. [S8].

As explained in the main text, we suppose that a porous layer around the particle is created by the
electron beam irradiation. We have observed experimentally that the EELS signal for impact
parameters inside the vacuum layer exhibits a plasmon resonance at the same energy as for larger
impact parameters away from the vacuum layer. This means that the contribution to the electron
energy loss of the electrons that pass through the vacuum layer can be neglected. The reason is that
the force acting back on the electron is essentially perpendicular to the electron velocity when the
electron is close to the x-y plane. In consequence the EELS spectrum does not depend critically on the

exact value of the impact parameter beyond the particle radius.
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S2.2 Link between the dipolar contribution to EELS and the optical absorption

In the preceding Section we have shown that, in the simple case of a matrix-embedded homogeneous
sphere, the dipolar electron energy loss probability is proportional to the dipolar optical absorption
cross-section. In this Section we will prove that equations (2.1.25) and (2.1.26) in the preceding Section
are quite general and actually hold for any spherical systems consisting of an arbitrary number of
concentric homogeneous linear media (dielectric or metallic). Moreover, these equations are valid also
in the frame of more complex models and/or theoretical approaches, for example when the
conduction electrons of the metallic media are described through explicit charge distributions, and

when their responses is computed in the frame of a quantum formalism, as the classical/quantum
model described hereafter (DFT-TDLDA calculations). We indicate with R, ., the overall radius of the
system. For a layered system, R, is the radius of the outermost dielectric interface (including the
one related to the layer of reduced matrix refractive index, mimicking the local porosity, if present). In
the classical/quantum model used in this work R, =max(R+d,,R+J,,) where & _, is the

thickness of the electron spillout tail in the ground state (on the order of 2-3 ap, where ag is the Bohr
radius). In the following we will define the Fourier transform and its inverse as (to be consistent with

the choice made in the previous Section)

f(r,t)= L Tda) f(r,w)e™ f(r,o)= Tdt f(r,0)e™ (2.2.1)
2r 2, c

The dipolar component of the potential created by the incident electron in the EELS experiment in

the radial region 7 < x,, (X, is the impact parameter), Vf:l(r, t), expresses as

Ve"'l(r,t)zzllj dw Zl“ A, (@) rP, (cos()) cos(mg)e ™, (2.2.2)

m=0

with (1, , (w) and N, , (@) have been defined in the preceding Section):

=1,m

e
Are,e

m

A4, (@) =~ Noadiam (o). (2.2.3)

Let us consider the following electric field

() = % [doo (E*(0)e. + E*(@)e, )™ (2.2.4)

The scalar potential corresponding to this field (E(¢) = -V Vo (r,z) ) writes as

v, .(ro) =% [do (- 2E° (0) = xE* (@)™, (2.2.5)

—00
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Vo (1,2) —ZLT do Zl: A", (@) rP (cos(8)) cos(mg)e ™, (2.2.6)
v
with A (@) =—E*(w) and 4, (0) =—E*(w). (2.2.7)

. =1
The Fourier transforms of ¥, = (r,) and V, (r,¢) are

VAT ) =Y A (@) P (cos(0)) cosmd), 2238)
V, (o) = Z AL () PP (cos(0)) cos(mg) (229)

The above equations (2.2.8-9) clearly evidence the close relationship that is expected between EELS
and optics, at least for the dipolar term, since the response of any system subject to a given applied

potential will not depend on the nature of the source of excitation. Each Fourier component of the

induced potential, V,,(r,®), inside and outside the system, will be the same in both contexts (EELS

and optics), except for a mere multiplicative factor (linear response), that is, 4, (@) (EELS) or

=1,m
A;’fl’m(w) (optics). In particular, outside the system (in the radial region »>R_ ), each Fourier
component of the induced potential satisfies the homogeneous Laplace equation Ade(l’,a)) =0,

whatever the complexity of the system and the theoretical approach (note that in a classical dielectric

description AV, ,(r, @) =0 holds also in the radial region » < R__). Outside the system, each Fourier

component V, ,(r,®) expresses thus as
i) =3 P eos(o)costing), (2.2.10)

with D/,:l,m (C!)) = DI/.:l,m (a))A(’:l,m (CU) (EELS) or DZ:l,m (a)) = Dlézl,m (a))A/prm(a)) (OptiCS),

where the coefficient D' (@) depends only on the system, but not on the physical context.

(=1,m

In the context of optics equation (2.2.10) thus writes as

1 opt
)=y, Den O8O b cos(y) cosimg). 211

-0

3

The dipolar optical polarizability aH(a)) (m-independent because of the spherical symmetry of the

system) is defined through the relationship linking the Fourier m-components of the induced dipole

P(¢) and applied electric field E(¢) :

Pram (0)=0c,,(0) (_Azopltm (w)) (2.2.12)

20



(the z- and x-components of the Fourier component P(@) correspond to m = 0 and m = 1,

respectively).

From the well-known expression of the dipolar potential created by a dipole p, namely

V(r)=(1/4zre,e,)p-rlr’, the Fourier component of the induced potential can be expressed as

1 21: azzl(a))(;ffffm(a))) P (cos(8))cos(mg). (2.2.13)

From equations (2.2.11) and (2.2.13) one obtains the general equation linking D', (w) and

o, (o)
a, (o
D'y, (@)= -2 (2.2.14)
o 4rs,e,,
| 3 &y 5(50)
In the case of a homogeneous sphere we have D', (@) =R (2.2.15)

s(w)+2¢,

Let us recall that the EELS theory reported in the preceding section requires: (i) the suitability of the

V. (r,t) expression, given in equation (2.1.6), which is valid only in the radial zone 7, > 7, and (ii) the

condition x, > R, (R.., = R for a homogeneous sphere). As a consequence, the force acting back

max max

on the electron depends only on the induced potential in the radial zone r > R, [equation (2.2.11)

with 4;”, (@) replaced by 4,,,(®)], and thus only the coefficient D', (w) is necessarily

involved in the expression for /(). This allows the dipolar contribution to the energy loss probability

I'(w) (equation (2.1.18)) to be expressed as

I',(w)= ¢ z M, (K, (a)xo))za)

— Im(-D' (0] 2.2.16
sy (D' (@) (2216)

Using the general relationship equation (2.2.14), one finally obtains (M ,_,, =1)

2 le (Km(a)xo))2 Im(et, 4 (@) - (2.2.17)

ﬂ'l m=0

F,’: (a)) =
= 47z3h v“ g

Equations (2.1.25) and (2.1.26) in the preceding section are thus quite general, suitable for any

spherically symmetric system, provided thatx, > R, .,
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S2.3 Theoretical model for optical spectroscopy

In order to interpret the experimental findings, absorption spectra of free and silica-embedded silver
particles have been computed in the framework of a mixed classical/quantal jellium-type model of
concentric nested dielectric background media and over a large size range (up to 5000 atoms in the
present work, corresponding to a diameter of 5.5 nm). The limits of applicability of the method and its
relation with other approaches are discussed at the end of this section. The main focus is on the
interpretation of the size evolution of the spectral location of the LSPR band (energy hw,,), which, in
the studied size range, reflects to a large extent quantum finite-size effects. In particular, these
investigations aim at explaining the different size dependencies that are observed in the absorption
spectroscopy and EELS experiments. This model was successfully applied in previous works to alumina-
embedded noble metal nanoclusters, allowing the observed size evolutions for Ag, Au and Cu to be
rationalized in a common theoretical framework [S10-512]. In fact, for matrix-embedded noble metal
clusters, the size evolution of the LSPR frequency was found to be determined by the competition
between opposite trends, namely the red- and blue-shifts induced by, respectively, (i) the spill-out
effect, and (ii) the surface layer of ineffective ion-core polarizability, as well as by the local porosity at
the metal/matrix interface. Indeed, this subtle competition explains probably the success of classical
Mie theory in the small-size range (quasistatic limit) for these species, especially for silver, as compared

to free small alkali clusters, for which the spillout-induced quantum size effect is not compensated.

The calculations are based on (i) the time-dependent local-density-approximation formalism (TDLDA)
for computing the optical response, and, (ii) the density functional theory (DFT) for computing the
ground-state. As compared to pioneering formalisms, suitable for free alkali jellium spheres [S13], the
present model includes phenomenologically (but self-consistently) the absorption/screening
properties of the ionic core background (effects related to the bulk interband-transitions contribution)
and the screening properties of the surrounding transparent matrix [S14, S15]. In particular, the model
describes self-consistently the mutual interplay between the optical excitations and induced fields in
the various media. As compared to simple free-electron metals, such as alkalis, the optical properties
of noble metal clusters are more complex because interband transitions occur in the visible-near UV
spectral range. These transitions correspond to electronic excitations from fully-occupied d-valence
electron bands, located close below the Fermi energy Er (4d bands for Ag), to unoccupied s-p levels

above Eg, and are responsible for the large signal increase in the absorption spectra above 4 eV (see
e.g. Fig. 1 in the main text). The interband threshold 7£2,, for silver is of the order of 3.9 eV (A = 320
nm) and consequently the d-bands act essentially through dynamical screening effects in the LSPR
spectral range (7€, > h®,, ) without inducing concomitant LSPR broadening, contrary to gold and
copper (h€2, =2 eV).This screening, induced by the ionic-core polarization, reduces the strength of the
bare Coulomb interaction, in particular the restoring force by the positively-charged jellium, and leads
to a strong spectral shift towards lower energies of the LSPR frequency (for large free silver clusters,

the collective oscillation of the conduction s-p electron gas would occur at @,, ~5.2 eV in the absence

of d-band-induced screening).
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Regarding the metal particle, the conduction electrons, corresponding to the bulk s-p band,
responsible for the collective surface plasmon excitation and underlying most of the (quantum) finite-
size effects, are quantum mechanically treated, whereas the ionic background is phenomenologically

described by both: (i) a step-walled homogeneous spherical positively-charged distribution (jellium) of
radius R = I’SNll‘?’(rS is the Wigner-Seitz (WS) radius per conduction electron in the bulk and N the
number of electrons), and, (ii) a homogeneous polarizable/absorbing dielectric medium [frequency-
dependent relative complex dielectric function &,(®) (dimensionless input data of the model),

corresponding to the interband transitions, assumed to be bulk-like] extending up to R; = R-d, where

d is the skin thickness of ineffective ion polarizability (cf. Fig. 5 in the main text).

This last ingredient needed, which is of main importance for explaining the finite-size effects in noble
metal clusters, as compared to alkali elements, deserves to be commented on. This skin of vanishing
polarizability was introduced by Liebsch [S16] in the context of electron energy loss at metal surfaces,
and applied early to rare-gas matrix-embedded Agn-clusters within a classical approach involving
concentric nested dielectric media [S17]. This surface property, subsequently discussed by several
authors [S10, S18, S19], is thought to be related to both the spatial localization of the d-electron
wavefunctions relative to the Wigner-Seitz radius [S18] and the change of the effective polarizability
of the ionic-cores depending on the embedding medium or local environment [S19]. Strictly speaking,
the thickness d has to be considered as a free phenomenological parameter. In view of the
approximation consisting in replacing the discrete ionic structure by homogeneous step-walled jellium
and dielectric medium, a rigorous prescription for setting its value cannot be defined. In this work the
value has been set in order to reproduce the experimental finite-size effects observed in free Agn*
clusters [S10, S20]. This procedure leads to the value d ~ 3.5 ag (ag is the Bohr radius), on the order of
the WS radius per conduction electron in bulk silver. This value was systematically used in our previous
works [S10-512].

The relative complex dielectric function &, (w) has been carefully extracted from the experimental
complex dielectric function (&, (®) = ¢, (@) + &, (@) —1) of bulk silver [S21] by a Kramers-Kronig

analysis after subtracting the conduction-electron contribution &, (w), parametrized by a Drude-
Sommerfeld formula (see ref. [S11] for the details of the procedure). Briefly, the imaginary component
Im(e, (w)) is first extracted from the imaginary component of the experimental bulk dielectric
function, which exhibits a steep rising edge at the interband threshold. The real component is then
calculated using to the Kramers-Kronig relation linking both components. For this extraction the

interband threshold 72, = 3.85 eV has been assumed (extrapolation to zero of the low-energy rising

edge of Im(g,, (®)) ). The following bulk parameters for r; and m (effective optical electron mass),

exp
: : I 2 :

entering the conduction electron contribution &,(®)=1-}, /(w (@+iy)), have been used

[, = (3¢° /47[50733m)1/2 is the bulk plasma frequency]: rs = 3.02 bohr [S22] and m = m, (free electron

mass) [S23]. The damping factors y have been estimated in fitting Im(e,,,(®)) with Im(e,(®)) in

exp
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the spectral range belowiQ, . It should be emphasized that the interband contribution &, (@)

obtained through this procedure depends only very slightly on the selected Drude-parameters,

because above the interband threshold 7€, , the largest part of Im(e,,(@)) is exhausted by

Im(e,,(@)) . Therefore, the accuracy depends essentially on the reliability of the experimental data.

As far as the dielectric function &, (@) of the transparent embedding matrix is concerned, all
calculations have been carried out by using the tabulated bulk-silica data [S21]. In the visible spectral
range &, (@) varies only slightly and is on the order of 2.16 around 3 eV. Previous works on composite

films involving noble metal clusters embedded in alumina have shown that the matrix porosity,
especially in the close vicinity of the metal particles, has a strong impact on the optical properties [S10,
S$12]. An additional and noticeable blue-shift of the LSPR frequency, relative to the prediction obtained
by using the bulk refractive index of alumina, was clearly evidenced. More specifically, the local
porosity at the metal/matrix interface (surface roughness, contact defects, different chemical nature
of the constituents, etc...), that results in a lowering of the local effective matrix polarizability, has a
very strong influence. As stated in the experimental section, the time-evolution of the single-particle
EELS spectra as well as the STEM-HAADF images suggest that, due to damage induced by the electron
beam, a continuous removal of matter occurs during the irradiation, creating a porous silica layer of
reduced refractive index around the particle. As in previous works, a vacuum shell of thickness dnm is
introduced in the model in order to mimic phenomenologically the spherically-averaged local porosity.
Obviously, for ensuring a given LSPR blue-shift, a larger dn,-value would be necessary if a larger relative

refractive index (> 1) was assumed for characterizing this very porous silica shell.

The mixed classical/quantal model thus involves three nested spherical interfaces (see Fig. 5 in the
main text), located at ¥ =R =R—d, r=R and r =R, =R+d,, but two background dielectric
interfaces separating three homogeneous background media (&, () = ¢, (@) for r <R, ¢,(®) =1
for R, <r<R, and &,(@)=¢, (@) for r>R,).

The computations have been carried out using a home-written computer code based on the TDLDA
formalism including phenomenologically, but self-consistently, the absorption and polarization
properties of the underlying backgrounds (core d-electrons and surrounding matrix) through
macroscopic dielectric functions [S14, S15]. A brief description of the mixed classical/quantal model is

provided hereafter (Sl units are used; convenient units, namely eV and nm, are, however, also used for

displaying the results).

The first step consists in determining the ground state of the system, namely in solving iteratively the

Kohn-Sham (KS) equations

h2
{—EVZ +V, (o, r)}gp,.(r) =gp(r). (2.3.1)
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The single-electron effective KS potential V. (p,T) is a functional of the electron density p(r) and
includes the interactions with the homogeneous charge distribution p, (r) of the jellium sphere
(p,(r)=qp,, H(R—7r) where p,, =3/(4m’), H(x) the Heaviside step-function and g the

elementary charge) and with the conduction electron charge density — gp(r) (the so-called classical

Coulomb term), as well as the exchange-correlation contribution

Vi (p0) =V a0+ V(o) + 7, (p(1), (232)
with
Vo) V) = 1) (o) = p. () (233)
&,
and
V.(p(r) = %((g)- (2.3.4)

Ineq (2.3.3) (¢° /(4re,))V.(r,r') is the effective Coulomb interaction between two free elementary
charges, located at r and r’, in the presence of the polarizable background-dielectric media. I{,(r, r')
depends on the parameter set {Rl, R,, Eib,gm} (V.(r,r', o) :ZI/|I’ - r'| in the absence of underlying

dielectric media). Different V_(r,r") -expressions prevail, depending on the values of r and r’ relative
to the dielectric interface radii Ri. The analytical formulas for one and two concentric dielectric
interfaces can be found in ref [S11]. Note that, in this first step (determination of the ground-state),

the static values &,(@ = 0) are involved.

As in our previous studies, in particular refs. [S14, S15], the local Gunnarsson-Lundqvist exchange-
correlation energy functional £ .(p) [S24], of widespread use in the cluster physics literature [S13,

S25], has been used throughout the present work. It is worthwhile noting that this functional was also
used by Toscano et al. in the frame of a sophisticated hydrodynamic model [S26], allowing the self-

consistent TDLDA results reported hereafter to be compared with those of the hydrodynamic model.

Typical results are shown in Figure S2.4. This Figure displays the normalized ground-state electron

density p, (r)/ p,, and the effective KS potential V,, (p,,,7) for the parameter set [N =832 (R= 1.5

nm), d = 3.5 ap and dn, = 2 ag]. Clearly visible are the diffuse surface profiles of the electron density and
of the confining finite-depth potential. These quantum finite-size features contrast dramatically with
those assumed, often implicitly, within oversimplified quantum/classical models (mostly, an infinite
potential barrier model, and/or an electron density matching perfectly the homogeneous step-walled
jellium, are used), explaining why these latter may lead to incorrect size trends [S27, S28]. It should be

emphasized that these unphysical models may, fortuitously, reproduce the experimental results,
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because the net size trend observed in a real experiment often results from the competition between
opposite size trends, as stated previously. Nonetheless no physical insight is gained from these

unrealistic models. These points will be illustrated in the following.

124 silica-embedded Ag, cluster

N = 832 electrons

041d=35a,

normalized density p(r)/p,,

Vi (1) (€V)

T
0 5 10 15 20 25 30 35 40 45

r (bohr)

Figure S2.4: Results of the ground-state calculation for silica-embedded Aggs> cluster (size
N = 832; R = 28.4 ap), with d = 3.5 ap and dm = 2 ao, computed within the Kohn-Sham DFT

formalism. Upper panel: Self-consistent ground-state electron density normalized to the

jellium density p,, = 3/(4727;3) . Lower panel: Kohn-Sham confining potential.

The second step consists in computing the optical response within the TDLDA formalism. In response

—iwt

to an applied monochromatic field of frequency o, E,(f) = E,e "e_, the “matrix-embedded

particle” is polarized, giving rise to a total dipole p(z) = a(@)E, (¢), and -in particular- a time-varying
electronic density op(r, a))efm” is induced inside the metal sphere (conduction electron density). The
electron density is thus o(r,) = p, (r) + Sp(r,m)e ™™ . The above terminology “matrix-embedded

particle” is intentionally used to keep in mind that the metal particle (the conduction electrons and the

polarizable ionic cores) and the matrix underlie the induced dipolar field. To this applied external field

corresponds, in the non-retarded quasistatic limit, the electron potential energy V" (r, @)e ™" , with

ext

Vb“’e(l’, ®) = qzE, (usually referred to as the “external, or applied, potential energy” in the standard

ext
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opt
abs

TDLDA formalism). The absorption cross-section o (w) is related to the imaginary component of

the overall complex dynamical polarizability (@) via the equation

@

cgg €, (@)

Due to the linearity of Maxwell’s equations in the presence of dielectric media, the polarizability of

O_()p[ (a)) —

abs

Im[a(w)]. (2.3.5)

the “matrix-embedded particle” is the sum of two contributions, that is a(®)=«a, (0)+a,(®),
corresponding, respectively, to the two “time-varying free charge sources” involved in the
electromagnetic problem. The first one, o, (w), is associated with the (implicit) free charge source
giving rise to the applied field E,(#). @ (@), which results from the surface polarization charge
densities on the dielectric interfaces that are directly induced by E, (), is nothing else but the dynamic

polarizability of the classical problem (quasistatic limit) in the absence of the conduction electron gas.
Its expression is straightforwardly obtained in solving the Poisson equation taking into account the

boundary equations at both dielectric interfaces R (continuity of the electrostatic potential and of the

normal component of the electric displacement) and at large distance ( E(r,£) > E,(¢) for r >0
). The (rather involved) «, (w) -expression depends on the input model parameters

{Rl, R,, &,(w), &, (a))} To this classical problem corresponds the electrostatic potential ¢.(r, )

(different expressions result for each nested concentric dielectric medium).

The second contribution, &, (@), is associated with the induced time-varying free charge density

op(r,) . The corresponding dipolar field is sustained by both dp(r,w) and the directly §p-induced

polarization charges inside the backgrounds and at the dielectric interfaces. In the presence of

dielectric media, the potential energy associated with the classical electromagnetic problem [i.e.

V. .(r,o)=—q¢.(r,w)] plays the role of the effective external potential energy for the electron gas
[S14, S15]. V, (r,®) has therefore to be substituted for the applied external potential energy

Vb‘”e(l’,a))=qu0 in the standard TDLDA equations (established in the absence of underlying

ext

background dielectric media), which relate the induced electron density Jp(r,w) and the

polarizability o, () to the external potential. One has therefore
Sp(r,w) = j z(r,r o)V, (r', w)dr (2.3.6)

and

o (@) = —% [on(r, @)V, (r, @)dr = —% [ r 0V, (r. o)V, (F @)drdr, (237)
0 0
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where y(r,r',®) is the non-local many-body correlation function. Note that the spatial non-locality is
an intrinsic feature of the TDLDA formalism since the electron density change at r depends on the
perturbation applied at any other point r’ of the system. Within TDLDA, it is assumed that the response
of the interacting electronic system can be calculated as in the independent-particle case on condition

that the induced variation of the ground-state KS potential energy V off (pgv,r) thatis

) = I[ Vo lp.T') 1, 0p(r', ®) (2.3.8)

€f/‘ 0 ( ) Pg

SV, (r) = %ﬁm) S5p(r). (23.9)

gs

is added to the external one V.

ext

(r,®) in eq (2.3.6). The induced electron density dp(r,®) is thus

the solution of an implicit equation, from which is derived the integral equation relating y(r,r',m) to

the independent-electron correlation function ;(O (r, r',a)) , hamely
2(r,rw)=2°(r,r', o)+ ”;(O(r, r, @)K (1,1, @) x(r,, ', 0)drdr, (2.3.10)

where the kernel K(r,,r,,®) writes as

K(rl,rz):élfc(rl,rzﬂ 6[/(0(;)] o(r,—r,). (2.3.11)

8s

Finally, ;(0 (r,r',®) can be expressed in terms of the occupied KS orbitals and of the retarded single-

particle Green’s functions G(r,r',®) of the ground-state KS-Hamiltonian, namely
2 o)=Y [0, (Ne(rG(r,r,s +ho) + ¢,(Ne, (MG (r,r's -ho)]  (23.12)

with

G(r,r' E)=(r|[E +ins - H]'|r), (2.3.13)

where H is the single-particle KS ground-state Hamiltonian and ¢ is an infinitesimal positive real

parameter. In eq. 2.3.12 the index i runs over the occupied ground-state KS-orbitals ¢, of energies &;

(a temperature of T=0 K is assumed).
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Figure S2.5: Absorption cross-section of silica-embedded Agisi14 cluster, for d = 3.5 ap and
dm=0, computed by using two different §-values in the Green’s functions [hd=5 meV (black
curve) and ho= 60 meV (blue curve, multiplied by a factor of 5 for easier comparison)]. The

grey dashed curve is a Lorentzian-shaped curve fit of the blue-curve.

The last relevant free parameter of the model, i.e. in eq. (2.3.13), deserves to be discussed. In the
TDLDA formalism, the evaluation of the Green's functions requires substituting a finite value for the
infinitesimal o~-parameter. Actually d acts as an effective numerical smoothing parameter, which may
be used to mimic phenomenologically line broadening arising from physical effects that are
disregarded in most models, as for example the dynamical coupling with the vibrations of the ionic

lattice, as well as the removal of the 2(2¢ +1) KS electron level-degeneracy resulting from the discrete

ionic structure, the surface roughness, thermal shape fluctuations or crystal defects (loss of the perfect
spherical symmetry). In the present model, this amounts — in a rough picture — to attributing an
intrinsic width 2hdto each bound-bound one-electron excitation line (Lorentzian-shaped curve peak).
Therefore, in the absence of Landau damping (see hereafter), the minimum plasmon band width is

equal to 2h 4. For silver the LSPR band is located below the interband-transitions threshold 7€, and

this “asymptotic” value is actually reached for very large sizes.

Throughout this work, free and silica-embedded silver particles, for various d- and dn-values, have
been investigated over the size range [N = 8 — N = 5000]. It should be emphasized that the modeling
could be applied in a broader size range. The maximum size that is selected in the present work is
however sufficient to clearly evidence both the red- as well as the blue-shift trends in the size evolution
of the LSPR frequency, which, for each parameter set (d, dn), follow the expected 1/R scaling law.
Figure S2.5 displays typical absorption spectra computed from eq. (2.3.5), in using two very different
6-parameters [ho=5 meV (black curve) and hd = 60 meV (blue curve)]. In the frame of self-consistent
guantum-mechanical models, the decay of the coherent plasmon excitation was attributed for a long
time to its coupling, via the particle surface, to one-electron excitations (single particle-hole (p-h)

transitions), a mechanism referred to as the “Landau damping mechanism (LDM)” in cluster physics
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[$13, S25]. This mechanism is indeed the main dissipative decay mechanism in the small size range. In
a Hamiltonian approach the LDM-induced LSPR broadening can be straightforwardly interpreted in
terms of “a discrete state coupled to a continuum” [S29, S30]. The broadening results from the surface-
induced coupling of the center-of-mass (CM) coordinate, that is, the dynamical variable corresponding
to the collective dipolar excitation, to the intrinsic electronic motions within the CM (the dense p-h
excitation spectrum, degenerate with the LSPR energy, contributes to this broadening) [S31, S32]. The
fragmentation of the LSPR band into p-h excitations is clearly evidenced when using a small é-
parameter (black curve in Figure S2.5), but is completely smoothed out when a large 6-value is involved
(blue curve). In order to reduce the computational time, the size evolutions determined for each (d,
dm)-parameter set have been extracted from TDLDA spectra computed with hd = 60 meV [in the
asymptotic large size limit (N > 5000), where the surface effects vanish, the fragmented pattern
reduces to a quasi-perfect Lorentzian-shaped curve with a full width at half-maximum close to 2hd =
120 meV]. It should be mentioned that the asymptotic LSPR bandwidth is not strictly equal 2hd due to
dielectric effects (see eq. 3 in ref. [S31]). Figure S2.6 illustrates the size evolution of the absorption
spectra for the parameter set d = 3.5 ap and dn = 6 ao. Except for the lowermost panel, which
corresponds to the largest size investigated in this work (N = 5000), the LSPR band exhibits a size-
dependent, asymmetric pattern and shoulders due to the underlying LDM-induced fragmentation.
Nevertheless, without the need of consecutive data analysis, a clear blue-shift of the LSPR band with
decreasing size is observed for this specific parameter set. In order to avoid a biased analysis that could
occur because of the size-dependence of the LSPR band asymmetry, the locations of the LSPR maxima
have been systematically determined through a Lorentzian least-squares fit of the overall LSPR pattern
(see Figure S2.5; grey curve) for any size and parameter set. It should be pointed out that for very small
sizes (typically N < 100), which show only a very small number of LDM-induced “fragments”, a much
better estimation would consist in determining the centroid of the fragmented pattern. The reason is
that the Lorentzian-curve least-squares fit often privileges too much the largest peak in a sparsely

fragmented pattern.
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Figure S2.6: Size evolution of the absorption cross-section of silica-embedded Agy clusters
(N =92, 832, 1314 and 5000), for d = 3.5 ap, dm = 6 ap and ho = 60 meV. The short vertical
bars, at 3.03 eV, indicate the location of the classical surface plasmon frequency (quasistatic

limit).
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Figure S2.7: Size evolution of the LSPR maxima for free silver clusters. d is the thickness of
the inner shell of vanishing d-electron polarizability in bohr. The square at 1/R = 0 indicates
the value of the classical prediction. The light blue triangles are theoretical TD-DFT results
[S33], the open squares represent experimental values taken from [S20] and [S34],

respectively.

Figure S2.7 shows the results for free Agn clusters, for d = 0 (black squares), d = 3.5 ap (red squares)
and d = 1.89 ao (1 A) (blue circles) for an extended size range with respect to [S10]. For each d value,
the size-evolution of the LSPR maximum follows an average 1/R scaling law. Actually, all finite size- and
surface-induced effects, either of quantum or of classical nature, are expected to follow such a generic
scaling law, which reflects the surface to volume ratio [S35, S36]. The relative size-dependent
differences of most physical/optical quantities, relative to their bulk counterparts (values obtained in
the asymptotic large radius limit), scale as ANe/Ne, where N, is the number of conduction electrons and
AN, the “number of electrons” probing the surface region. The extent of spill-out at the surface or the
thickness of the layer with reduced ion core polarizability do not depend on the particle size, their
relative impact thus varies as 1/R. The three sets of data clearly converge towards the classical

asymptotic value 3.41 eV (1/R - 0). This value is the classical LSPR energy (quasistatic limit) obtained
in using the silver dielectric function ¢, (@) = &,(®) + £, (@) —1, with the Drude parameters r; =

3.02 ap, m = me and hy =120 meV. The convergence towards this asymptotic value proves the

accuracy of our TDLDA calculations. For small sizes the large scatter of the results on both sides of the
mean 1/R scaling law is due to the small number of electrons in the system. Few transitions are then
dispersed over a comparably large spectral area and our procedure for determining the LSPR
maximum, as pointed out above, leads to relative variations. Note that in the smallest size regime
(<100 atoms) the charge of the particle has to be considered as it can lead to systematic blue shifts of

the LSPR [S10]. Here, however, we limit our discussion to neutral particles.
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For d = 0 a red-shift trend with decreasing size is obtained, whereas a very slight and a noticeable
blue-shift trend are obtained for d = 1.89 ap and d = 3.5 ao, respectively. The conspicuous red-shift
trend, observed when no shell of vanishing d-electron polarizability is included in the model, strongly
challenges the reliability of recent hydrodynamic approaches, developed to introduce the non-locality
in the optical response of metal particles [S37-540]. In fact, these non-self-consistent, simplistic models
always predict a blue-shift with decreasing size, the positive 1/R finite-size correction being
proportional to the hydrodynamic velocity (~ Fermi velocity) of plasma pressure waves in the metal. In
fact, if applied to alkali clusters, a blue-shift trend would also be predicted, in strong disagreement
with the numerous pioneering experiments and self-consistent calculations which evidence a red-shift
trend instead [S35, S36, S41, S42]. As stated above, the net size trends result from the competition
between several factors inducing opposite trends. The present computations, as well as those reported
in our previous works [$10, S12], which all involve more realistic ground-state electron densities, show
that non-locality by itself is unable to compensate the red-shift trend induced by the spilling out of the
conduction electron gas beyond the ionic background radius. For free noble metal clusters the skin of
vanishing d-electron polarizability [S16-5S19] is responsible for the blue-shift trend observed in
absorption spectra as well as in EELS experiments [S20, S28, S37]. As emphasized by Haberland [S43],
it is astonishing that nearly three decades of research in cluster science were overlooked in recently
published works. To the best of our knowledge, only the improved hydrodynamic model developed by
Toscano et al. [S26] gathers all the factors that are relevant for dealing with free silver clusters within
the quasi-static approximation, namely: (1) the non-locality which is included through a non-local
kinetic energy functional (the Thomas-Fermi-von-Weizsacker functional is used by these authors), (2)
the electron spill-out and (3) the skin of vanishing d-electron polarizability (the value d = 1.89 ap was
used). Unfortunately, only the size evolution of LSPR frequencies for silver nanowires, which exhibits
a slight blue-shift trend, is provided in their paper, preventing their model predictions for spheres to

be compared to ours (blue circles in Figure S2.7).

Figure S2.8 displays the results for silica-embedded Agy clusters, for d = 3.5 ao, for various thicknesses
of the outer vacuum shell (the color code is indicated in the Figure). The results for the parameter set
d =dm=0are also shown (black squares). For each parameter set (d, dm), the size-evolution of the LSPR
maximum follows an average 1/R scaling converging towards the classical asymptotic value 3.03 eV
(1/R - O). This Figure allows providing reasonable semi-quantitative explanations of our experimental
findings, in particular those regarding the size trend and time-evolution of the LSPR maxima in the

single-particle EELS spectra.
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Figure S2.8: Size evolution of the LSPR maxima for silica-embedded silver clusters. d (in bohr)
is the thickness of the inner shell of vanishing d-electron polarizability. dn (in bohr) is the
thickness of the outer surface shell of vanishing matrix polarizability, simulating the local
porosity. The black square at 1/R = 0 indicates the value for the classical prediction. The open

circles represent experimental values taken from [S44] and [S45], respectively.

As stated in the experimental section, the optical absorption spectrum is stable over at least hours,
proving that the thickness of the composite Agn/silica samples for optics is sufficiently large for
ensuring an efficient protection of most particles against oxidation. Keeping in mind that the d-value
is a phenomenological parameter, Figure S2.8 suggests nevertheless that the local porosity at the
particle surfaces in these films is very small. The fact that we obtain reasonable quantitative agreement
with the same value for d but without the previously necessary phenomenological parameter d, for
the local porosity [S10] strongly supports our model description. One can note that the measured
experimental LSPR frequency, 2.95 eV, is slightly lower than the model prediction 3.03 eV. A tiny
underestimation of the effective mass (see the Figure 7 in ref. [S23]), as well as that of the T =300 K

Wigner-Seitz radius rs, could explain this slight discrepancy.
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Figure S2.9: Evolution of the absorption spectrum of silica-embedded Agsooo clusters for
increasing value of the thickness dm (in bohr, noted in the figure) of the vacuum-shell
simulating the local matrix porosity. The thickness of the inner shell of vanishing d-electron

polarizability is d = 3.5 ap. The blue dashed spectrum corresponds to free Agsooo clusters.

In the case of thin samples, surface oxidation of the silver particles prevents the LSPR band to be
observed at the beginning of the electron irradiation, especially for smaller sizes. Under irradiation,
the subsequent and progressive removal of light atoms around the particles steadily increases the
porosity of the silica shell. This results in a concomitant blue-shift of the LSPR frequency, all the larger
the smaller is the particle size, as illustrated in Figure S2.8. In order to estimate the vacuum shell
thickness that is required in our modelling for ensuring a blue-shift consistent with the EELS
experiments, calculations over an extended dn-range have been carried out for the largest investigated
size N = 5000 (R = 2.73 nm). The results, plotted in Figures $2.9 and 6b of the main text, show the
initially very fast and then slower convergence of the absorption spectrum and LSPR maximum towards
that of a free Agsono cluster (the leftmost red square in Figure S2.7). A thickness of about 10 ap (= 0.5
nm) is found to be sufficient to reproduce a blue-shift comparable to those observed in the STEM-EELS
experiments. This small effective value is indeed quite reasonable when compared to the oxide layer

thicknesses estimated to ~1 nm.
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Finally, we want to comment on the limits of applicability of our model. The most stringent
approximation used is the description of the ionic background by a spherical homogeneous polarizable
medium (jellium), thereby neglecting all atomic structure. While this assumption certainly reflects the
reality for our largest particles very well, it has been shown that below a size of ~100 atoms the atomic
structure becomes more and more important [S46-549]. State-of-the-art calculations demonstrate
that different structures lead to different optical responses [S50]. Therefore, the importance of
atomistic structure needs to be carefully evaluated. We show in the following that an atomistic

description is not necessary for the conclusions we draw in this work.
Three size regimes can —very roughly— be distinguished:

In large particles of several hundred (or more) of atoms, the atomic structure does not play a
significant role. Here the particle size is bigger than the Fermi wavelength of the electrons and the
particle surface can be considered simply a supplementary scatterer. Effects from crystalline structure
or facets are effectively washed out by the wave character of the electrons. Quantum corrections from
spill-out or reduced ion-core polarizability, if at all relevant, scale with the surface to volume ratio and
result in a general 1/R dependency. An effective modelling using a jellium description for the ionic

background is adequate.

Very small clusters, by contrast, must rather be considered molecule-like and the exact atomic
structure and the charge state can have significant effects [S48, S50]. Multiply fragmented optical
spectra and strong, non-monotonous variations of physical and chemical properties are observed.
Many of the very small clusters have low-symmetry ground state structures. The correct description
thus requires an extended structural optimization. Ab-initio methods are needed for a proper
description, but the influence of different corrections and extensions to the functionals used is still
highly debated [S47]. Therefore, it is not ensured that the computed optical response strictly reflects
the experimental absorption cross-section, which corresponds, in most ensemble experiments, to the
net response averaged over a huge number of isomers or thermally-induced distorted geometries and
shapes. Our jellium description is clearly very approximate for this size range and we only show the

obtained values for the LSPR to demonstrate the general tendency.

In the intermediate size range, ranging from several tens to thousands of atoms, the response in the
fragmented optical spectra concentrates in a more and more narrow spectral range with increasing
size, and eventually forms the well-known LSPR. The transition from molecular to bulk-like behaviour
is not well defined but gradual and remains a topic of intense research. For this intermediate size range

the conceptual definition of a plasmon is (still) highly debated in the recent literature [S51-553].

It is today possible to use ab-initio methods like TDDFT to calculate optical spectra for clusters with
several hundred [S33, S54, S55] and up to >1000 atoms [S56], but most of these calculations have only
been performed for high-symmetry structures, such as perfect icosahedra, and are extremely costly in
computation time. Simple relaxation of a given geometry (as opposed to a full structure optimization)
is possible. The results in the literature, however, differ considerably in the absolute values obtained

for the same sizes, e.g. in references [S33, S54], probably due to differences in the functionals used.
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It should furthermore be noted that all the first principles calculations cited here treat gas phase
clusters and that the inclusion of an embedding medium, other than through an effective dielectric

shift, is very complicated and time-consuming [S57].

Some direct comparison between jellium and atomistic TDDFT in this intermediate size range is
available. For instance, in [S55] atomistic calculations of the optical response of two approximately
spherical sodium clusters of similar sizes have been compared with a jellium calculation for the
corresponding system (icosahedral Naye; vs. fcc-based Nassi) and differences of the order of only 0.1
eV are obtained. A similarly small difference has been found for atomistic calculations of silver clusters,
where the LSPR of icosahedral Agis7 is about 0.1eV higher than that of an fcc-based Agiss [S50]. Only
when at least one of the relevant dimensions is reduced to the nanometer scale or below do crystalline
structure effects become relevant. This concerns e.g. the near field coupling of large nanoparticle
dimers, i.e. across sub-nanometer distances, as used in nanoantennas for field-enhanced spectroscopy

[S55]. In our work, only the far field response is discussed.

Two recent publications based on ab-inito approaches both report, despite the quantitative
differences, a 1/R dependence for the mean LSPR position [S33, S54]. This shows that even in more
elaborate calculations the LSPR evolution in the size range of >100 atoms is dominated by the
surface/volume ratio. Although we can expect different absolute 1/R dependencies e.g. for series of
icosahedra, cuboctahedra or decahedra, as well as a larger spread of individual LSPR energies about
the mean value for decreasing size, the overall trend will be the same. In our experiments many
isomers, of high and low symmetry, are sampled: in the optical experiments over the particle
ensemble, in STEM-EELS over time. We consequently average over all these structures, whose

presence mainly results in a broadening of the resonance.

In conclusion, we show that, at least for the size range between roughly 1-10 nm in diameter, the
size variations of the mean LSPR are dominated by electronic effects such as spill-out and the influence
of d electrons rather than by the crystalline structure of the silver nanoparticles. Structureless jellium-
type model approaches [S13] are quite appropriate and reasonable for investigating mean size trends
over large size ranges, as well as for the comparison between various metallic species. Moreover, only
such an approximate ionic background description allows us to carry out fast calculations over a very
large size range (up to 5000 silver atoms in the present work) for many model parameter sets (e.g.
embedding matrix and layer thicknesses of reduced refractive index). It should be mentioned that the
jellium model, applied extensively at the end of the last century in the cluster physics community,
remains of widespread use in the plasmonics community, and was applied for example for handling
more complex systems, such as spherical concentric core-shell nanoparticles [S58] or metal dimers
[S59, S60].

Another widely used approach to the theoretical description of metal nanoparticles of various sizes,
shapes and materials, especially in the plasmonics community, is a hydrodynamic model, as already
stated above [S37-540]. It should be emphasized that this semi-classical model presents several

significant advantages, namely its intuitive approach, the inclusion of spatial non-locality at different
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levels of sophistication, its comparably easy implementation and lastly its adaptability to more
complex geometries, beyond high-symmetry structures like concentric spheres. Care has, however, to
be taken, when strong simplifying assumptions are used. In particular, in assuming a hard-walled and
stepwise jellium-like ground-state potential with the corresponding electron density forced to zero at
the particle surface, the spill-out is clearly neglected. The corresponding simulations cannot correctly
reproduce the opposite tendencies for alkaline and noble metal particles, i.e. red and blue shifts of the
LSPR with decreasing size. The influence of non-locality on the one hand and reduced ion-core

polarizability on the other need to be distinguished with precaution.
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S2.4 Simulation of the plasmonic response of oxidized core-shell Ag/Ag«0/SiO, nanoparticles

In order to corroborate our interpretation that some of the largest particles investigated by STEM-
EELS show initial LSPR energies below the expected value of 3 eV (cf. Fig. 4) because of oxidation, we
calculated absorption curves within classical Mie theory for concentric core@shell Ag@Ag«O nano-
spheres embedded in a silica matrix [S61]. The absorption cross-sections have been calculated in the
dipolar approximation for various oxidation ratios (OR), defined as the oxide shell to metal core volume
ratio (R”>-R3)/R’® (R. designates the Ag-core radius, and R’ the total radius). For 0% oxidation, the pure
silver radius is R = 5 nm. The calculation of the thickness of the shell for a given level of oxidation by
using the lattice parameters of Ag>0 (a=0.472 nm [S62]) is detailed in ref. [S63]. The increased lattice
parameter of the silver oxide results in an increasing total diameter R’ upon oxidation. The calculations
have been performed with the dielectric function for silver (as described above) and those deduced
from the work of Qiu et al. [S64] for oxidized silver (see ref. [S63] for further details). The matrix

dielectric function used here is extracted from the tabulated bulk-silica data [S21].
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Figure S2.10: Calculated absorption cross-sections within the dipolar approximation in a

silica-embedded core/shell Ag@AgyO spherical geometry for increasing oxidation rates (OR).

The spectral position of the resonance is at 3.03 eV for non-oxidized NPs, as discussed in section S2.3,
and shifts to <2.7 eV for high oxidation rates. These classical calculations do not depend on the size of
the nanoparticles. Only the amplitude of the absorption cross section changes but the oxidation-
dependent shift is the same for all the large particles studied. A degree of oxidation of ~75% thus leads
to a shift of the LSPR of the core/shell particle to ~2.75 eV, where the most red-shifted signals were

detected. The decreasing width of the peak upon progressing reduction is consistent with our EELS
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data (cf. Figs. 3 and S1.9) and with the literature. In reference [S2], figure 3 demonstrates the red shift
accompanied by an increasing width as a function of increasing refractive index of the surrounding

matrix.
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