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Review Article 

Unraveling mysteries of hydrogen electrooxidation in 

anion exchange membrane fuel cells 

Dario R. Dekel ∗Q1 

Anion exchange membrane fuel cells (AEMFCs) can potentially 1 

revolutionize the energy generation market; however, to be 2 

seriously considered as a real alternative to the mainstream fuel 3 

cell technology, complete removal of previous metal 4 

electrocatalysts needs to be achieved. While in cathode 5 

electrodes platinum can be easily substituted, the 6 

electrochemical hydrogen oxidation reaction (HOR) in the 7 

AEMFC anodes currently involves prohibitive overpotential 8 

losses, making the removal of platinum extremely challenging. 9 

Understanding the HOR in AEMFCs will facilitate the path to 10 

overcome the challenge and finally develop and demonstrate 11 

platinum-free high-performance AEMFC devices. 12 
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Introduction 

There is an increasing worldwide interest in anion ex-
change membrane fuel cells (AEMFCs), as the technol-
ogy promises significant reduction in costs by avoiding
the use of platinum as electrocatalysts [1 

••–4] . Very re-
cently, extensive research in hydrogen AEMFCs led to
significant progress in cell performance of this technology
[5 

••–10] , and to an important increasing in the un-
derstanding of the main current challenges – mem-
brane degradation/performance stability [11–16 

•] and
CO 2 effect on AEMFC performance [17–24] . This recent
progress and the numerous achievements reached in the
past years in the technology, suggest that AEMFC can
now be considered as a serious alternative to the coun-
terpart proton exchange membrane fuel cells (PEMFCs),
www.sciencedirect.com 
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but potentially without expensive electrocatalysts in their
cells. In this front however, while for oxygen reduction
reaction there are already several potentially good non-
precious metal electrocatalyst alternatives under study
[25–29] , for the hydrogen oxidation reaction (HOR) at the
anode of AEMFCs it seems that the challenge is consid-
erably higher, and the way to achieve high anode per-
formance based on low cost, non-PGM catalysts is still
very long [30 

••] . The ability to understand and resolve
the challenge of hydrogen electrooxidation in AEMFC,
in order to develop electrocatalysts highly active towards
HOR, is crucial for the future of the AEMFC technology
[5 

••,30 

••,31] . 

About the challenging HOR in AEMFC alkaline
environment 
The electrochemical reactions of hydrogen oxidation dif-
fer, depending on the medium, as shown below. In acidic
and alkaline environment, the HOR is given by: 

H 2 → 2H 

+ + 2e 

– [acidic medium in PEMFCs] (1)

H 2 + 2OH 

–→ 2H 2 O + 2e 

– [alkaline medium in
AEMFCs] (2)

The HOR in the acidic medium ( Eq uation ( 1 ) ) has
been well studied, as this electrochemical reaction is of
fundamental importance in electrochemistry and electro-
chemical devices, including PEMFCs. Numerous studies
showing different aspects of this reaction have been
published [32–34] . Researchers found that the kinetic
rates and activities of different electrocatalytic materials
towards HOR in acidic medium, are strongly correlated
to the hydrogen energy bonding (HEB) of the adsorbed
hydrogen (H ad ) onto the catalyst surface [33–35] . 

In contrast, the HOR in alkaline medium ( Equation
(2 )), although also a reaction of central importance in the
electrochemical field, has been scarcely studied. A recent
comprehensive review of the current understanding of
HOR electrocatalysis in basic medium describes in de-
tails the research studies done in this field, highlighting
the challenges involved in developing new materials with
high activity in this medium [30 

••] . In their review, the au-
thors also focused on the kinetics and the reaction mech-
Current Opinion in Electrochemistry 2018, 000 :xxx–xxx 
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Figure 1 

Measured polarization curves for pH = 1 –13 for (a) Au(111), (a), Pt(111) (b) and Ir-poly. Adopted from [39 ••] . 
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tudies have shown that the kinetics of the HOR in alka-
ine media is much slower than in acidic solutions [36,37 

•] .
or instance, the HOR activity of carbon-supported no- 
le metals (Pt, Pd and Ir) decreases by around two
rders of magnitude when transitioning from low to high 

H [38] . The HOR kinetics changes with the pH of
he medium were clearly shown by Strmcnik et al. [39 

••] .
he authors presented a series of experimental measured 

olarization curves for the HOR on different catalytic 
aterials in a wide range of pH (1 < pH < 13), as shown

n Figure 1 . Clear differences between the measured 

urrent densities at pH < 3 and pH > 11 can be seen. 

he authors also performed a simulation of the po- 
arization curves using a simple set of electrochemical 
quations, confirming the experimental results shown in 

igure 1 . Results revealed that in strong acidic medium
pH < 3, corresponding to acidic environment of PEM- 
Cs) the HOR proceeds through the direct oxidation of 
ydrogen to H 

+ ( Eq uation ( 1 ) ); while in strong alkaline
edium (pH > 13, corresponding to acidic environment 

f AEMFCs), pure diffusion-limiting currents are also ob- 
erved. As mentioned by the authors, this suggests that in
lkaline medium, the supply for both hydrogen and hy- 
roxide anions (both reactants in the HOR in AEMFCs,
ee Eq uation ( 2 ) ) are sufficient to maximize the electro-
hemical oxidation of hydrogen to water. We can then also
ay that as the pH in the environment is increased, an
ncrease in the diffusion-limiting currents is obtained. In 

ther words, as the OH 

– concentration in the fuel cell is
igher, purer diffusion-limiting currents will be observed,

ndicating then that the OH 

– plays an important role in
he HOR for AEMFCs. What is the best way to quantify
his role of the OH 

– is not yet clear. 

s HBE descriptor good enough to evaluate 

OR catalyst for AEMFCs? 

s shown in Eq uation ( 2 ) , in AEMFCs the electro-
hemical oxidation of hydrogen involves two reactants –
urrent Opinion in Electrochemistry 2018, 000 :xxx–xxx 
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ydrogen and hydroxide anions – instead of only one reac-
ant for the acidic counterpart ( Eq uation ( 1 ) ) – hydrogen.
s hydrogen is a reactant for both acidic and alkaline fuel
ells, the differences in the kinetics rates for the HOR on
ifferent electrocatalysts in both systems are sometimes 
ttempted to be explained by the variation in HBE val-
es [40] . Although differences in HBE mostly succeed to
xplain kinetics variations for PEMFCs, in the alkaline 

ounterpart the situation seems to be more complex [37 

•] .

he best catalysts for HOR in acidic PEMFCs are those
ith an optimal interaction between the catalytic sub-

trate and the H ad species, that usually is quantified by
he HBE. Similarly, it was proposed that the role of the
H 

– in the HOR in alkaline medium can be related to
he OH ad properties of the catalyst [39 

••] . In other words,
t was suggested that fine-tuning of the adsorption en-
rgy of OH ad could be a new way to quantify HOR in
EMFC systems [39 

••] . To quantify this energy, Davy-
ova et al. [30 

••] proposed to calculate a new descriptor
alled OHBE – OH ad binding energy – and compare it to
he HBE for each electrocatalyst system. Similar to what
as been suggested by Koper [41] , for some electrocat-
lytic systems , both HBE and OHBE are expected to be
nterconnected, as the presence of OH ad is probable to
mprove the reactivity of the adsorbed hydrogen inter-

ediated H ad , enhancing the overall reactivity of HOR,
nd vice versa. In other words, if this basic idea is correct,
t means that the best electrocatalysts for HOR in alka-
ine AEMFCs are those with an optimal interaction be-
ween the catalytic substrate and both the H ad and OH ad 

pecies, evaluated by the HBE and OHBE descriptors, re-
pectively. What exactly is the relationship between HBE 

nd OHBE, and how close they are interconnected each
ther, is currently an unknown. 

ery recently, Davydova et al. [42] first attempted to eval-
ate both HBE and OHBE descriptors on their HOR
lectrocatalysts for AEMFCs (see Figure 2 ). The authors
www.sciencedirect.com 
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Figure 2 

Correlation between the experimentally measured exchange current 
density values of the Ni and Ni-metal catalysts, with the theoretically 
predicated HBE and OHBE values for (111) and (200) facets (Adopted 
from [42] ). 
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 209 
used density functional theory to calculate the HBE and
OHBE values for bare Ni and Ni-metal catalysts, for a few
metals (Cu, Co, Fe), and suggested that the dopant metal
onto Ni electrocatalyst have a significant effect onto the
HBE and OHBE values, showing that these can be use-
ful descriptors to evaluate different catalysts and eventu-
ally, relate these values to the exchange current densities.
However, this is a first attempt, while this idea is waiting
for further exploration, to finally unravel the full role of
the hydroxide anions in the HOR. 
www.sciencedirect.com 
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Ideally, to find the best HOR electrocatalysts for AEM-
FCs we should then evaluate both HBE and OHBE and
correlate the interaction between them and the exchange
current densities. This ideal situation is schematically il-
lustrated by a ‘volcano plot’, where both HBE and OHBE
descriptors are simultaneously plotted for different elec-
trocatalysts, as shown in Figure 3 . The interaction be-
tween the electrocatalytic substrate and the H ad species,
quantified by the HBE, is for instance, illustrated for a
series of electrocatalysts with different OHBE values by
a series of yellow curves. Similarly, interaction between
the electrocatalytic substrate and the OH ad species, quan-
tified by the OHBE, for electrocatalysts with different
HBE values is shown by the green curves in Figure 3 .
The optimal fine-tuning of the adsorption energy of H ad 

and OH ad , which may lead to the optimal HOR electro-
catalysts can then be represented by a combination and
simultaneous optimization of both HBE and OHBE de-
scriptors. In that case, different fine-tuned HBE/OHBE
combinations can lead to electrocatalysts highly active to-
wards HOR for AEMFCs. 

Does water play a role in the AEMFC HOR? 

During operation of an AEMFC, the higher overpoten-
tial of the HOR at high pH anode electrode is also aggra-
vated by the fact that water needs to be quickly removed
from the catalyst layer. In contrast to the acidic counter-
part, AEMFC operation involves generation of water as a
product of the electrochemical HOR. Figure 4 (a) shows a
schematic diagram of an anode catalyst layer of AEMFCs.
The porous of the anode catalyst layer needs not only
to allow the hydrogen transport through the entire layer
thickness, but also to ‘accommodate’ the water generated
and allow its efficient removal. Two water molecules per
reactant hydrogen molecule are generated (see Eq uation
( 2 ) ), in absolute contrast to the HOR in acidic PEMFCs,
where water is not taken direct part in the electrochem-
ical reaction. This is a significant amount of water that is
generated at the AEMFC anode, twice as much as wa-
ter generated in the cathode of PEMFCs, per hydrogen
molecule (or per electron produced), during the reduction
of oxygen. In addition to that, in practical fuel cell systems
running under standard gas stoichs, the volumetric flow
of hydrogen is around 5 to 10 times lower than that of air.
Therefore, with these extreme low hydrogen flows and
the high amount of water generated by the HOR, water
removal from AEMFC anodes is extremely challenging. 

The accumulation of water in the AEMFC anode itself
represents also a challenge for the supply of the reac-
tants that as previously discussed, are sufficient to max-
imize the electrochemical HOR in the cell. Due to this
fact, the electrolyte/electrode interface of AEMFCs can
behave very differently from other similar electrochem-
ical devices. The characterization of interfacial structure
and understanding of fundamental characteristics of the
AEMFC electrode/electrolyte interface may help shed
Current Opinion in Electrochemistry 2018, 000 :xxx–xxx 

xidation in anion exchange membrane fuel cells, Current Opinion in 

Original text:
Original text:
.

Original text:
Original text:
,

https://doi.org/10.1016/j.coelec.2018.11.013


4 Fuel Cells and Electrolyzers 

ARTICLE IN PRESS 

JID: COELEC [mNS; November 22, 2018;23:30 ] 

Figure 3 

Schematic representation of an ideal simultaneous optimization of HBE and OHBE to evaluate and select electrocatalysts highly active towards HOR 

for AEMFCs. 
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ight on designing and developing highly active non- 
recious metal HOR electrocatalysts. 

igure 4 (b) shows a schematic comparison of the triple-
hase boundary (TPB) for the electrooxidation of hydro- 
en for both acidic and alkaline fuel cell environments. As
entioned above, for AEMFCs the supply of hydrogen as 
ell as the supply of OH 

– reactants to the TPB are critical
or the HOR. Two OH 

– anions (of larger ion radius as com-
ared with the H 

+ cation radius in the acidic counterpart)
hould be transported through the solid anion- conducting 

lectrolyte to react with the hydrogen in the TPB. In ad-
ition, as HOR occurs, water is generated in the surround-

ngs of the catalyst. If water is not quickly removed from
he TPB, a thin film of water will eventually cover the
atalyst surface, creating additional resistance to the dif- 
usive transport of the hydrogen to the TPB (see bottom
igure 4 (b)). As previously discussed, removal of this wa-

er film from the fuel electrode is challenging, therefore 

e expect this film to be of significant thickness, affecting

hen the overall HOR kinetics. We can also assume that A 249 

urrent Opinion in Electrochemistry 2018, 000 :xxx–xxx 
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his water film affects the properties of the catalyst, for
nstance, affecting the HEB and maybe the OHBE and
n turn, the HOR activity. Moreover, as the current den-
ity in the AEMFC device increases, the amount of water
ccumulated on the catalyst surrounding increases, gen- 
rating thicker water films around the catalysts, which in
urn are translated to increased resistance of the hydrogen
ransport through the water film. Taken into account all
hese effects water has onto the HOR electrocatalysis and
EMFC anodes, would provide a better understanding 

f the requirements for designing better hydrogen elec- 
rooxidation electrocatalysts for this technology. 

oncluding comments 

he field of AEMFCs has never been more active than
n the past couple of years. However, to become a real
lternative to the counterpart acidic fuel cells, AEMFCs 
hould be able to equal PEMFC performance while 

ased on affordable PGM-free electrocatalysts. In this 
ork, we have remarked the challenges of HOR in
EMFCs. We highlighted the prohibitive overpotential 
www.sciencedirect.com 
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Figure 4 

Schematic diagrams of the (a) AEMFC anode catalyst layer; and (b) a zoom-in into the triple-phase boundary of HOR, showing the differences 
between acidic and alkaline fuel cell environments. 
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of standard electrocatalysts towards HOR, the need to
have two descriptors to achieve a better understanding
of this reaction, and the importance and challenge of
water in the AEMFC anodes. It is crucial to understand
all these relations in order to develop highly active HOR
PGM-free electrocatalysts for AEMFCs. In particular,
increasing the understanding of the mechanism of reac-
tion as well as the relationship between the HOR current
density and the descriptors HBE and OHBE, will be
of significant help in solving this major barrier in the
technology, aiming for cells based completely on precious
metal-free AEMFC electrodes. 
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