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Abstract-In this paper, two adaptive methods which permit the control of the parameters of a finite 
element computation for time-dependent material models are proposed. These methods use a global error 
measure in the constitutive relation based on Drucker’s inequality. This error includes the accuracy of 
both the finite element model and the algorithm being used, over the studied time interval. In order to 
master the mesh element size and the time increments length, an error estimator, which permits the 
estimation of the errors due to the time discretization, is proposed. Various examples show the reliability 
of these procedures. 0 1997 Civil-Comp Ltd and Elsevier Science Ltd. 

1. INTRODUCTION 

Today, the construction and numerical simulation 
of models is, more than ever, a major activity in the 
field of mechanias. A constant concern in both 
industrial and research environments has been the 
control of these models, which nowadays can reach 
very high levels of complexity. A new factor, 
introduced over the past 15 years, has been the 
development of truly quantitative tools for testing the 
quality of FE models (see e.g. Refs [l-3]). This 
has made it possible to optimize the FE parameters 
for a prescribed quality level. Of course, the reference 
remains the original “continuum mechanics” model. 

One important research topic is the mastering of 
finite element computations for non-linear analyses. 
Few studies have dealt with this question in spite 
of its practical importance [4-141. The a posteriori 

error estimate method developed at Cachan, which is 
based on the concept of error on constitutive relation 
and on explicit telzhniques for the construction of 
admissible stress and displacement fields, offers a 
suitable framework for the study of non-linear and 
time-dependent me:chanical models. 

The purpose of the present study is to show how 
it is possible to extend this error estimate method to 
most cases of non-linearity encountered in structural 
mechanics for small displacement problems and for 
quasi-static loading. We focus on the construction of 
basic tools, namely the error or error indicators, 
which are capable of evaluating the accuracy of both 
the FE mode1 (parameters: h, p) and the numerical 
solution process being used (parameters: increments, 
iterations) over titne interval [0, T]. An important 
part of the work concerns the application of these 

tools to optimize calculation parameters, that is, to 
control the time-space parameters (mesh and 
increment length). In elasto-plasticity, the quality of 
the finite element solution at the instant t does not 
only depend on the quality of the mesh, but also on 
the quality of the time discretization used from the 
beginning of the loading. To master a non-linear 
computation, it is necessary to build error measures 
that allow taking all the errors of discretization into 
account over the entire time interval [0, T]: errors due 
to the mesh, errors due to the incremental method 
(including the errors introduced by the use of 
Newton’s method on each time increment). Related 
to the study 1151, we propose new examples to show 
the possibilities of our approach. These examples 
involve complex loadings as we11 as significant plastic 
zones. 

The error 6 used in this work has been proposed by 
Ladeveze [ 161. This error measure in constitutive 
relation is based on Drucker’s inequality [17], which 
is satisfied by most of the elasto-plastic and 
visco-plastic material models. This error simul- 
taneously takes into account the errors due to the 
space discretization and the errors due to the 
incremental method. 

In order to control the computation parameters, it 
is necessary to separate the contribution due to the 
incremental method from the contribution due to the 
mesh. Hence techniques based on the concept of error 
in constitutive relation have been elaborated in order 
to control the quality of the time discretization. We 
use these techniques to optimize the time discretiza- 
tion and the space discretization separately, as 
well as to optimize all the computation parameters 
simultaneously. 
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2. NOTATION 

For the sake of simplicity, let us consider the 
problem of the analysis of a structure in two-dimen- 
sional elasto-plasticity (plane stress or plane strain). 
Let [0, T] be the time interval. Let us suppose that 
the structure is a domain R. On a part &R of 
the boundary 80, we suppose that the imposed 
displacement field is U(t, M) = U,(t, M). On the 
complementary part &C& a density of forces Fd(t, M) 
is imposed. Moreover, R is subjected to a density of 
body forces fd(t, M). 

The elasto-plastic problem can be formulated in 
the following manner. Find a displacement field U 
and a stress field cr defined on [0, T] x R such that: 

(1) U satisfies the kinematic constraints 

U(t, M) = U,(t, M) on &fi VtE[O, T], (la) 

(2) D satisfies the equilibrium equations 

VU* such that U* =0 on &R Vto[O, T], (lb) 

(3) Q and the strain E(U) satisfy the constitutive 
relation 

a(t, M) = A[c(U)(t’, M), t’ < t] in R Vto[O, 7’1, 

(lc) 

where A is an operator characteristic of the material. 
The problem eqn (l), is the reference problem 
and it is solved in an approximate manner by 
using the incremental method and a finite element 
discretization. 

Assuming that the history of the displacements and 
of the stresses is known until t,, the problem is then 
to compute this history on the increment [ti, ti+ ,]. 
Numerous algorithms, presented in the bibliography, 
permit the solution of this problem [18, 191. 

At the end of each time increment t,, ,, these 
algorithms give: 

a finite element displacement field that satisfies the 
kinematic constraints 

uh(t,+I, W = WfMti+ I), (2) 

where N(M) denotes the matrix of the shape 
functions and q(ti+ ,) the vector of the nodal 
displacements at ti + , ; 
a stress field a,,(t,+ r, M) which satisfies the 
equilibrium equation for the finite element 
problem at t,+ ,: 

ah(ti + I, M)T~(~h* dQ 

M)TN(M)q* dR 

+ c Fd(tr+,r M)W(M)q* dS 

VU,* = N(M)q* such that 

r/h* = 0 on a,i2, 

(3) 

where B(M)q* is the strain associated with the field 
CJ? = N(M)q*. 

Remark: the stress field given by the finite element 
solver is very often the field a,(t, + , , M) obtained from 
c(U,) by integrating the constitutive relation 

&(ti+,, M) = &(W(T, M), T < t,+,). (4) 

It must be noted that this stress field satisfies eqn (3) 
in an approximate manner. 

3. ERROR IN CONSTITUTIVE RELATION FOR LINEAR 
COMPUTATIONS 

Let us simplify the problem eqn (1) by taking A as 
a linear constitutive relation: 

where K is the Hooke’s tensor in elasticity. 
Let (UK,,, as,,) be a displacement-stress pair, where 

UKA is a kinematically admissible displacement field 
eqn (la) and osA satisfies the equilibrium eqn (lb). 
Generally, this pair does not satisfy the constitutive 
relation. The pair (UKA, asa) is the exact solution of 
the problem, if and only if it satisfies the constitutive 
relation 

CSA - K,c(U,cA) = 0. (5) 

If that equality is not satisfied, then the pair is only 
an approximate solution of the problem and the 
quantity 

OSA - &(UKA), (6) 

which is referred to as the error in constitutive 
relation [l], chosen to evaluate the quality of the pair 
(UKA, asA). In elasticity, we use the energy norm over 
the whole structure to evaluate this error: 

e = II USA - &(UKA) IIn, (7) 
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where 

Associated with this global error, a relative error is 
defined: 

and the contribution to the global error of an element 
E of R 

IleA - K4k4)IIE 
” == 11 OSA + f&(&A) IlC2’ 

Then we obtain 

t2 = 1 t;. 
E 

(9) 

(10) 

The contribution of each element of the mesh to the 
global error is a local measure of the solution quality. 

4. ERROR IN CONSTITUTIVE RELATION FOR 
NON-LINEAR COMPUTATIONS 

4.1. Global error 

Let ( UKA, usA) be a displacement-stress pair, which 
is zero at t = 0. UKA is a kinematically admissible 
displacement field eqn (la), and bsA satisfies the 
equilibrium eqn s( 1 b). Generally, this pair does not 
satisfy the constitutive relation (1~). Thus ( UKA, usA) 
is an approximate solution of the problem eqn (1). 

The strain field eKA = c(&,) can be related to a 
stress field OKA through the constitutive relation. In 
the same way, the stress @A can be related to a strain 
field tsA through the inverse of the constitutive 
relation. 

We define the quantity ~(t, M) as follows: 

rl(t, M) = (USA - UKA)~(&A - ~KA) dr. (11) 

For a material which strictly satisfies Drucker’s 
inequality [17,20]1, n(t, M) is greater than or equal to 
zero, and the pair (UK*, as_,) is the exact solution of 
the problem eqn (1), if and only if 

q(t,M) = 0 Vtc[O, r] and VM&. (12) 

Most constitutive laws used in plasticity and in 
visco-plasticity strictly satisfy Drucker’s inequality, 
as do, for instance, Prandtl-Reuss’s model which will 
be used for the examples. 

To estimate the quality of (I&, oSA) as an 
approximate solution to the problem eqn (1), the 
previous relations lead us to define the following 
error measure: 

so that 

e = 0 * (UKA, USA) 

is the exact solution of problem eqn (1). 

e is called the error in constitutive relation associated 
with the admissible pair (UK,, &A) 

Associated with this absolute global error, a 
relative global error can be defined: 

c=e 
D’ 

where 

’ (&,A + &&A) dr dCJ 1 I”. 

Remark: if we consider a monotonous loading and 
suppose that the whole structure remains elastic, then 
it can be shown [15] that the error in the constitutive 
relation defined in eqn (13) is equal to the energy 
errors classically used, see eqn (7) [4,21]. 

4.2. Time error indicator 

The error measure in the constitutive relation c is 
global in space and in time. It simultaneously takes 
into account the errors due to the space discretization 
and the errors due to the incremental method. To 
develop efficient adaptivity techniques for non-linear 
problems, it is generally insufficient to control only 
the size of the mesh elements; it is also necessary to 
control the size of the time steps. To achieve this goal, 
it is essential to be able to separate, in the global error 
L, the part of the error due to the spatial discretization 
from the part of the error due to the time 
discretization. We propose herein a very simple time 
error indicator which allows us to estimate the part 
of the error due to the time discretization. 

Let us consider the pair (I&.+,, uh) where UKA is a 
kinematically admissible field that satisfies eqn (la), 
and where CT,, is the stress field defined by 

uh(t, M) = o&i, M) + s, 
,+I I 

x [uh(fi+,, M) - uh(ti, M)] Vt~[ti, ti+,l, (15) 
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where the fields bh(fi+ , , M) satisfy the equilibrium (((UK,), cKA) are equal, that is if and only if the 
equation of the finite element model, eqn (3), at the pair (UKA, B,,) is the exact solution to the problem 
end of each increment. eqn (16). 

Let us consider the problem eqn (16) obtained from 
the reference problem eqn (1) by a finite element 
spatial discretization. Find r/,(t, M) = N(M)q(t) and 
a,,([, M) such that: 

Hence, for a given spatial discretization, i,,,, 
estimates the errors due to the time discretization: the 
incremental method and Newton’s algorithm. The 
absolute error i,,,, can be associated, as for e, to a 
relative error: 

(1) Uh satisfies the kinematic constraints 

(2) oh satisfies the equilibrium equations of the 
finite element model 

s u,,(t, IV)~B(M)~* dR 
n 

fl(t, kQTN(M)q* dR 

+ c Fd(t, M)TN(M)q* dS 

Vr~[0, r] VUX(M) = N(M)q* 

such that W = 0 on dJ-2, (16b) 

(3) eh and the strain c(K) satisfy the constitutive 
relation 

ah(t, M) = A[c(&)(t’, M), t’ < t] in R 

VCE[O, Z-j. (16~) 

The pair (UK,, Q,,) thus constructed satisfies all of 
problem eqns (16), except the constitutive relation 
(16~). The quality of this pair as an approximate 
solution to the problem eqn (16) may be estimated by 
an error measure built on Drucker’s inequality. 

Let Lo be a strain field computed from oh by an 
integration of the constitutive law. Then the pairs 
(ch, oh) and [c( UK,), a,,] satisfy the constitutive law. 
The associated error in constitutive law is defined by 

where 

q(t, M) = 
s 

’ (ah - ~k,J(i,, - i(U,,)) dr. (18) 
0 

For a material which strictly satisfies Drucker’s 
inequality, i,,,, = 0 if and only if the pairs (o,, ch) and 

ke, 
bne = D Wne (19) 

with 

’ (U&KA + u:i(Uh)) dr dR 1 
I/2 . 

Hence iti, estimates the quality of the approximate 
solution computed as an approximate solution to the 
problem eqn (16). In practice, we will use i,i,, or 
the relative quantity iti,, as an error indicator to 
evaluate the part of the error due to the time 
discretization. 

4.3. Application to jnite element computation 

The displacement fields CJ,(f,, M) obtained by a 
finite element computation satisfy the kinematic 
constraints. Under the assumption, which is not very 
restrictive in practice, that the displacement field 
u,(t, M) given on d,R is linear on each time 
increment [t,, ti+ ,I, the field UK,, can be chosen for 
te[ti, ti+,] equal to 

&A(f, kf) = uh(ti> M, 

M) - uh(ti, M)). (20) 

On the other hand, the calculated stress oh is not 
statically admissible. So, it is necessary to build, with 
a post-processor of the finite element analysis, a stress 
field crSA that satisfies the equilibrium equations over 
the interval [0, i’J. 

Over the past several years we have developed 
techniques for constructing admissible fields for the 
evaluation of the errors in linear analysis. These 
techniques are completely independent of the 
constitutive relation. They will be used herein to build 
a stress field rSA(ti + ,) at the end of each time step r, + , 
that satisfies the equilibrium eqn (lb) [4,21]. The 
main lines of the construction are summarized in the 
Section 4.4. Then, if we define for tE[ti, t,+ ,] 

+ J+ [a&+ I, M) - us*tti, M)l, 
t/+1 I 

(21) 
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and under the assumption that the loading is 
linear on each time increment (an assumption that is 
not very restrictive in practice) we obtain a field uSA 
which satisfies the equilibrium eqn (I b) at each 
moment. 

Remark: the procedure of constructing crSA(f,+ , , M) 
uses the equilibrium equation of the finite element 
model, eqn (3), wh:ich is verified by oh(ti+, , M). If the 
finite element software gives the field bh(ti+ ,, M) 
defined by eqn (4) which satisfies eqn (3) only 
approximately, it is necessary to build a field 
ah(t, + ,, M) which satisfies exactly eqn (3). Such a field 
can easily be computed in a post-processor by 
partially completing an additional iteration of 
Newton’s method. 

4.4. Construction of an admissible field 

We would like to highlight herein the main aspects 
of the construction of an admissible stress field. For 
a non-linear model, this construction occurs at each 
instant ti of the time discretization. 

The problem is to find a stress field asA such 
that 

VU* such that U* = 0 on a,R 

s a&, M)Tc(C’*) dR = fd(t,, M)W* dR 
R s n 

+ c &(t,, M)TU* dS. (22) 

Hence 

diva&, M) +fd(ti, M) = 0 on R, 
as&,, kf)n = fi(ti, M) on a2s2, (23) 

where n denotes the unitary normal outside vector. 
Moreover, we impose asa to be linked to ah(h) 

by the following condition: 

s [6&, M) - ah@, ~)IT~(h,) dE = 0, (24) 
E 

which must be satisfied for all functions of basis $1 
associated with the finite element discretization. 

In an initial step, we determine on the edges of each 
element the force distributions r&t,, M) that 
equilibrate the boldy forces fd(ti, M). qE = f 1 and 
is constant on each edge of E. Moreover, on the 
edge common to two elements E and E’, we have 
VE + nE. = 0. 

In a following step, the stress field asA(ti, M) is 
built on each elemsent E from the force distributions 

~&(ti, M), by determining a simple solution to the 
equilibrium equations: 

( 

div aw(ti, M) +fd(ti, M) = 0 in E, 
oSA(fi, M)n = &(ti, M) on aE. (25) 

5. ADAIWVITY OF COMPUTATIONS 

In order to control the parameters of an 
elasto-plastic computation, it is necessary to separate 
in the global error the part due to the time 
discretization from the part due to the space 
discretization. 

5.1. Evolutions of the errors as a function of h and At 

The error e takes into account the errors due to 
both the mesh and the time discretization. To 
separate these contributions, we suppose that the 
global error e may be split into two parts: 

e* = I& + IL (26) 

where I,,,, denotes the contribution of the errors due 
to the spatial discretization and Iti,, the contribution 
of the errors of discretization over time. 

Based on numerical experiments [I$ we have 
assumed that the time indicator iti,, eqn (17), is a 
good estimate of I,,,,. Thus, the part of the error due 
to space may be defined by 

ILEe = Sup{e* - i&, 0). (27) 

Remark: for each example studied, we have always 
noted the inequality e* > iL,. If this inequality holds, 
we have I&, = e* - if,,. Nevertheless, as the inequal- 
ity 3 > ii,, has not been proved, the definition from 
eqn (27) insures that I&= is greater than or equal to 
zero. 

To predict a new mesh from I,, and a new time 
discretization from Ii,,,,, we must know the behaviour 
of these errors as functions of both the element size 
h and the time increment size At. As far as we know, 
theoretical results on this subject do not exist, so we 
have estimated these types of behaviour with 
numerical tests. 

To evaluate the behaviour of Ii,,, we need in fact 
to evaluate the behaviour of &,, as a function of the 
time step size At. The numerical tests that have been 
conducted show that 

iti,, = O(At). (28) 

As an example, let us consider the frame beam shown 
in Fig. la. The mesh used (447 three-node triangular 
elements) is given in Fig. 1 b, and the loading is 
monotonous. The analysis is conducted for various 
values of the number of time steps. The evolution of 
ilime as a function of the number of time steps is shown 
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in Fig. lc, and the size of the plastic zone is given in to the spatia1 discretization I,, evolves, relatively to 
Fig. Id. It can be noticed that the evolution of&i,, as the size of the elements, much in the same way as the 
a function of the number of time steps is consistent error in elasticity: 
with the condition from eqn (28). 

Numerical tests [15] have shown that it is 
reasonable to consider that the part of the error due 

W 

I 

1 10 100 1000 

Number of time Increment 

(4 

240.0 

344.2 

448.4 

761.0 

Fig. 1. (a) Mechanical problem; (b) mesh-447 three-node triangular elements - 270 nodes; (c) evolution 
of i,i,; (d) size. of the plastic zoneinitial threshold 240MPa. 
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where q depends on the type of elements used, but 
equally on the regularity of the solution. 

5.2. Adaptation qf the space parameters 

The first procedure consists of using sufficiently 
fine time discretization in order to neglect the part of 
the error due to ti.me as compared with the error due 
to the space discretization. This procedure may be 
described in the following way. Let co be the 
prescribed accuracy: 

(1) An initial analysis over the time interval [0, r] 
is performed on a mesh T. (previously optimized in 
elasticity) for a time discretization A. Then the global 
error c and the indicator in time i,i,. are computed. 

(2) If it,,, < ko, then it is considered that the errors 
due to the time discretization may be neglected. The 
characteristics of the optimal mesh T* are determined 
by using the procedure developed in elasticity [4,21]. 

(3) If illmc > f3co, then a new time discretization A* 
is determined in the part of [0, rJ where the loading 
leads to a plastic behaviour, with the aim of satisfying 
i&, < 0~~. The size At* of the time steps is computed 
by using eqn (28): 

At* = 5 At, 
rr1mc (29) 

where At is the size of the time steps during the initial 
computation. 

A new analysis is performed with A* on the initial 
mesh T,. In one step, this procedure generally leads 
to the obtention of the desired inequality and step (2) 
above is then applied. In this procedure, 0 is a 
parameter. The different examples computed have led 
us to choose 0 approximately equal to l/3. To 
illustrate this procedure, we have chosen two 
examples. 

Firstly, let us consider the mechanical problem 
shown in Fig. 2a. The loading is non-monotonous 
and is shown in Fig. 2b. The initial mesh used 
(Fig. 2c) has 278 six-node triangular elements. The 
prescribed accuracy is co = 5%. The errors computed 
are (Fig. 2d) L q : 11.4% and iti, = 0.53%. In this 
initial analysis, itin,, can be neglected, as iti, < ;E~, and 
step (2) described above may be applied. The 
optimized mesh thus determined is shown in Fig. 2e, 
and the errors computed are (Fig. 2d) c* = 5.2% and 
itt,, = 0.43%. 

To control the: optimality of the mesh, a simple 
method consists of determining again, neglecting the 
errors due to the time discretization, a map of optimal 
sizes for a prescribed accuracy equal to the obtained 
accuracy c*. If th.e built mesh is correctly optimized, 
the procedure lmust for each element yield a 
coefficient of modification of size rb close to 1. In 
practice, a mesh is correctly optimized if, for the 
majority of the elements, 0.75 d rE < 1.5. Figure 2f 
shows that the mesh T* is very well optimized. 

Secondly, let us consider a frame beam subjected to 
two loadings (Fig. 3a). The evolution of these 
loadings is shown in Fig. 3b. The initial mesh used 
(Fig. 3c) has 387 six-node triangular elements, and 
the time discretization has 34 time steps. The 
prescribed accuracy is co = 5%. The errors computed 
are (Fig. 3d) c = 15.6% and iti,, = 0.87%. iti,, may 
again be neglected and step (2) may be applied. The 
optimized mesh thus determined is shown in Fig. 3e, 
and the errors computed are (Fig. 3d) t* = 5.5% and 
i&,, = 0.79%. The optimahty map is shown in Fig. 3f, 
and the plastic zone size at the end of the loading is 
shown on the optimized mesh in Fig. 3g. 

These examples demonstrate the efficiency of this 
simple procedure. Yet it is clear that the main 
drawback of this technique is to neglect the 
possibilities of optimizing the time discretization. 

5.3. Adaptation of the space-time parameters 

The idea is to use the decomposition 
e2 = I& + Ifi,, introduced in eqn (26) more 
completely. Let us recall that evaluating I,,,, with i,i,, 
results in the following evaluation for I,,: 

~~Wc = sup{e* - if,,,, O}. 

These quantities may be associated to relative 
quantities by dividing them by D, the denominator 
defined in eqn (14): 

~ = 2 I, _ !I& Ispace -- 
D lime - D 

I 
%pace - 

D’ 

Then, for a prescribed global error of co, the following 
procedure may be defined: 

(1) An initial analysis over the time interval [0, r] 
is performed on a mesh T. (previously optimized in 
elasticity) for a time discretization A. Then the global 
error E and the indicator in time ilime are computed. 

(2) A new mesh T* and a new time discretization 
A* are determined in order to satisfy 

where a is a parameter such that 0 < a < 1. 
Firstly, the time discretization A* is computed in 

order that c,, = a$ So the length of the time step is 
uniformly determined by 

At* =++A,. 
t,me 

Obviously, this modification of the time step is not 
performed on the first elastic increments. 

Secondly, the mesh T* is built [4,21] for a 
prescribed spatial error Z&a= = (1 - a)& 



152 

Kinematic time 

.oo 

cl 
-75 

1.50 

2.25 

3.00 

Fig. 2. (a) Mechanical pmblem; (b) luading; (c) initial mesll-278 six-node triangular ekmenlr 6.43 
nodes; error 11.4%-time error indicator 0.53%; (d) c~nlribut~~ns C[O,,I and itsm,i~.,l, initial mesh and 
optimized mesh; (e) optimized mesh423 six-node triangular elements - 950 nodes, error 5.2%~time 

error indicator 0.43% prescribed error 5.0%: (0 optimality map. 
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(4 Second loading 

First 
. . . . . . 

. . . . . . 

. . .._. 

. . . . . . 

. . . . . . 

- Emor 

-x- Time en-or (hi) 

- Elmf (W 

Kinematic time 

Fig. 3. (a) Mechanical problem; (b) evolution of the loadings as a function of time; (c) initial mesh-387 
six-node triangular elements-890 nodes, error 15.6%-time error indicator 0.87%; (d) contributions tr,,.,r 
and h,,.ro.,r, initial mesh and optimized mesh; (e) optimized mesh-824 six-node triangular elements - 1827 
nodes, error 5.5% - time error indicator 0.79%, prescribed error 5.0%; (f) optimality map; (g) size of 

the plastic zone: initial threshold IOOMPa. (Continued ouerleqf’.) 
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(f) 

227.8 

355.6 

611.2 

739.0 

Fig. 3-Continued 

Remarks: (1) a limit At,,, is necessarily fixed to the (2) 0: is a parameter which can be adjusted in order 
length of At* in order to correctly represent the to reduce the cost of the analysis to the maximum 
history of the loading on each time step. If this extent possible. 
maximum length is reached, then tl must be chosen Let us examine the example shown in Fig. 4a. The 
as loading is monotonous, and the initial analysis is 

c( < At,,, I,,,, -- 
[ 1 ’ 

conducted with a 129 six-node element mesh (Fig. 4b) 

’ At ~0 ’ 
and a sharp time discretization (30 time-steps). The 
prescribed error is 2%. In this example, we choose 
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a = 0.5, which means that we fix beforehand 
I Epace = Itime. The initial analysis leads to 6 = 5.4% and 

&i,, = 0.67%. The simultaneous adaptivity procedure 
leads to the use of a 15-increment time discretization 
with a 324-element optimized mesh, as shown in 
Fig. 4c. The errors computed are then C* = 2.5% and 
izrne = 1.2%. Figure 4d shows the evolution of the 
contributions E[,,,,~ and itime,p,rl on the initial and 
optimized mesh. The plastic zone at the end of 

the loading is shown on the optimized mesh in 
Fig. 4e. 

In this example, it can be seen that the adaptation 
of the time discretization leads to a coarser time 
discretization than the one used in the initial analysis. 
This second procedure shows that the initial time 
discretization was overly sharp. Moreover, on HP 
735, the computer processing time is 296 s for the 
initial computation which leads to a precision of 

(4 

2,43.0 

256.7 

266.6 

274.4 

262.3 

VIVU w v v I u 

(d) 6 i - Error (ini) 

5 -x - Time error (hi) B 

0 25 50 75 100 12.5 

Kinematic time 

Fig. 4. (a) Mechanical problem; (b) initial mesh-129 six-node triangular elements - 294 nodes, error 
5.4%-time error indicator 0.67%; (c) optimized mesh-324 six-node triangular elements - 705 nodes, 
error 2.5%-time error indicator 1.2%, prescribed error 2.0%; (d) contributions qo,,t and bi,.to,,t, initial 
mesh: 30 increments, optimized mesh: 15 increments; (e) size of the plastic zone: initial threshold 243MPa. 
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5.4%, and 243 s for the final computation which leads 
to a precision of 2.5%. Hence, in this example, 
we obtain a better approximation with a lower 
computation time. 

6. CONCLUSION 

An error measure which allows one to take into 
account all the errors due to the discretization (errors 
due to the spatial discretization, errors due to the 
incremental method) has been implemented in 
elasto-plasticity. 

A time error indicator based on the concept of 
error in constitutive relation has been proposed. This 
indicator permits the separation of the contribution 
to the error due to the spatial discretization from the 
contribution due to the incremental method. It has 
been used to develop two simple procedures of 
adaptivity of the time-space parameters for a finite 
element non-linear computation. 

The first one imposes the use of sufficiently fine 
time-discretization in order to neglect the associated 
contribution when compared to the error due to the 
spatial discretization. In this case, the adaptivity of 
the computation is confined to the adaptivity of 
the mesh. The second one is a first example of a 
procedure that permits the simultaneous adaptation 
of the mesh and of the length of the time increments. 
The examples presented prove the efficiency of the 
two procedures. 

As an initial step these procedures have been 
implemented for space discretizations that use three- 
or six-node elements in two-dimensional or axisym- 
metric analysis, and for Prandtl-Reuss’s constitutive 
relation in elasto-plasticity. 
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