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Abstract 

The development of Pt-free catalyst for anion exchange membrane fuel cells is limited by the sluggish 

hydrogen oxidation reaction (HOR) at the anode. Previously, the use of CeO2 as a catalyst promoter 

facilitated drastic ennoblement of Pd for the HOR kinetics in base media. However, further optimization 

and understanding of the Pd-CeO2 interaction, surface properties, and their influence on HOR are still 

needed. In this work, three types of Pd-CeO2/C catalysts are synthesized by a flame-based process, where 

the Pd-CeO2 interface and the HOR activity are improved as compared to catalysts prepared by wet-

chemistry processes. The correlation between the Pd-CeO2 interaction and the HOR activity is established 

through comparisons of three types of Pd-CeO2/C synthesized catalysts using electrochemical techniques 

and X-ray photoelectron spectroscopy. 
 

Key words: hydrogen oxidation reaction, anion exchange membrane fuel cell, palladium, ceria, reactive 

spray deposition technology 

 

1. Introduction 

Recently, a significant advancement has been achieved in the development of H2-based AEMFCs [1-4]. 

Further advancement in the AEMFC technology has been shown to be limited by carbonation issues 

during fuel cell operation [5-8], and by progress in the development of the key fuel cell components such 

as stable anion exchange membranes [9-12], as well as anode electrocatalysts [13]. In spite of the recent 

interest in Ni-based catalysts [14-17], the most advanced anode electrocatalysts currently available for 

AEMFCs are mainly based on platinum-group metals (PGMs). However, among PGMs, Pd shows the 

lowest catalytic activity for HOR in alkaline media: ca. 0.04-0.09 mA cm
-2

Pd for commercial Pd/C 

nanoparticles [18-20] vs. ca. 0.6 mA cm
-2

Pt for commercial Pt/C catalysts [19-22]. Significant promotion 

of the HOR electrocatalysis on Pd-based materials has been achieved with the use of Pd-coated Cu 

nanowires[23], Pd-decorated Ru nanotubes [24], as well as by doping with Ni [25,26], Ir [27], and CeO2 

[28,29]. Among them, Pd-CeO2 catalyst has shown the highest anode performance so far reported for Pt-

free-based AEMFCs [30]. 

 

Ceria (CeO2) is a well-known catalytic material, sometimes also used as a catalyst support [31]. In 

electrocatalysis, ceria has been employed in direct alcohol fuel cells due to its ability to promote the 

oxidation of the catalyst poisoning carbon monoxide produced in alcohol oxidation reactions [32-35]. It 

has been hypothesized that ceria promotes the formation of Pd-OHad species which facilitates ethanol 

oxidation kinetics [35]. The catalytic activity of Pt nanoparticles towards methanol electrooxidation in 

alkaline media has been demonstrated to be dependent on their interactions with the nanostructured ceria 

support [36]. Strong metal-support interactions between Pt and ceria have been postulated to induce 

preferential oxidation of Pt and consequently decrease the catalytic activity [36]. On the other hand, the 
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use of CeO2 in Pd-based electrocatalysts on the anode of H2-AEMFC has led a 5-fold improvement of 

power density compared to the undoped Pd/C [28]. The catalytic promotion of the HOR kinetics of the 

Pd-CeO2/C composite was ascribed to the OH
-
 donor effect of CeO2 [28]. Furthermore, CeO2 could 

stabilize the surface PdO species [37], which has been shown to promote the HOR kinetics on Pd [38]. In 

any case, the most prominent catalytic promotion might be achieved solely due to the optimal Pd-CeO2 

interface design [35]. Although the positive catalytic effect of ceria on the electrocatalytic activity of the 

metal-ceria composite has clear experimental evidence, the knowledge about the optimal metal-ceria 

interface is still lacking. 

 

In the present work, Pd-CeO2/C composite electrocatalysts are synthesized using three different synthetic 

approaches based on the flame-based reactive spray deposition technology (RSDT) as a flexible technique 

enabling to regulate of the particle sizes and providing more instruments to optimize the Pd-CeO2 

interface. The effect of the synthetic approach on the Pd-CeO2 interaction is studied combining 

microscopic, spectral and electrochemical methods. The role of Pd-CeO2 interaction in the improvement 

of the HOR catalytic activity is discussed and the ways for further advancement are anticipated. 

 

2. Experimental 

 

 
Figure 1. Schematic diagram of RSDT process for the synthesis of Pd-CeO2/C catalysts. 

 

2.1 Catalysts synthesis 

A general schematic diagram of the RSDT process is shown in Figure 1. In this work, three types of Pd-

CeO2/C catalysts were synthesized using RSDT process (Figure 2). For the catalyst Type 1, the mixture of 

Pd precursor (Pd-2, 4-pentanedionate, Colonial Metals, Inc.) and Ce precursor (Cerium (III)-2-

ethylhaxonate, Alfa Aesar) solutions was sprayed through the primary nozzle to form Pd-CeO2 

nanoparticles. The carbon slurry consists of Vulcan XC-72R carbon black (Cabot Corp.)  and Nafion® 

ionomer (5 wt% 1100 EW, Dupont) with an ionomer-to-carbon weight ratio of 0.15 was sprayed from the 

secondary nozzles (Figure 1). For Type 2 and 3 catalysts, Pd precursor is sprayed from the primary nozzle 

to produce Pd nanoparticles in flame. The slurries of commercial CeO2 nanoparticles are introduced from 

the secondary nozzles. For Type 2 the particle size of CeO2 (Sigma Aldrich) is about 25 nm (Figure 2, 

Type 1), whereas for Type 3 the CeO2 (Cerion Advanced Materials, LLC.) has an average diameter of 5 

nm (Figure 2, Type 3). The catalyst particles and support materials are mixed during flight before being 

deposited on the substrate. Detailed description of the RSDT process can be found in the supplementary 

materials and in previous publications [39-44]. The Pd-CeO2/C catalysts were directly deposited onto 
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glassy carbon electrodes (ACE6DC050GC, Pine Instruments) for electrochemical measurements. The 

resulting Pd and Ce loading are summarized in Table S2.  

 

2.2 Physical and electrochemical characterizations: 

The morphology and elemental distribution of the catalysts were characterized with scanning transmission 

electron microscopy (STEM) and X-ray energy-dispersive spectroscopy (XEDS). The TEM specimens 

were prepared by scrapping off the as-deposited thin film from a Teflon substrate. The scrapped-off 

powder was sonicated in ethanol for 30 min and pipetted on to a Cu TEM grid (Pacific grid, Cu-300HD). 

Then, the TEM grid was dried under ambient air at room temperature for 12 h. High-angle annular dark 

field (HAADF) images and elemental mapping are recorded at 200 kV using Talos F200X TEM (Thermo 

Fisher Scientific). The XEDS spectrum and elemental maps are analyzed using Bruker Espirit software.  

 

Catalyst structure and surface oxidation state were characterized by X-ray photoelectron spectroscopy 

(XPS) using a Phi 510 X-ray photoelectron Spectrometer (radiation source: Al Kα, λ = 1486.6 eV). The 

binding energies reported in this study were charge-corrected to obtain the adventitious carbon 1s binding 

energy of 284.8 eV.  

 

 

 
Figure 2. Schematic diagram of three types of Pd-CeO2/C catalysts synthesized using RSDT process.  

 

The catalyst loadings were analyzed with inductively coupled plasma optical emission spectroscopy (ICP-

OES) (Perkin Elmer Optima 7300DV) using a piece of catalyst thin film deposited on polypropylene 

membrane. The membrane was deposited simultaneously with the glassy carbon electrodes and the 

catalyst loading on the membrane was considered the same as that on the electrodes. 
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Electrochemical measurements were conducted using a custom designed Teflon cell (250 mL volume). 

Sodium hydroxide (Sigma Aldrich, 99.99% trace metal grade) at 0.1 M concentration was used as the 

electrolyte and 200 mL of electrolyte was added to the Teflon cell. The potential of the working electrode 

was determined using Hg/HgO reference electrode with a potential of 0.92 V vs. RHE. Pt wire (CH 

Instruments) was used as the counter electrode. The working electrode (glassy carbon electrodes) was 

mounted on an electrode rotator (AFMSRCE, Pine Instruments). A Solartron 1287 potentiostat was used 

for all measurements. All measurements were performed at room temperature (25−30
o
C). Prior to the 

measurement, the working electrode underwent electrochemical cleaning by cycling between 0.0 V and 

1.4 V (vs. RHE) at a scan rate of 200 mV s
-1

 for 40 cycles. Cyclic voltammograms (CVs) were collected 

in N2-purged cell between 0.0 V and 1.4 V (vs. RHE) at a scan rate of 50 mV s
-1

 for 30 cycles until the 

CV was repeatable. The last cycle was reported. The polarization curve for HOR were recorded in H2-

purged 0.1M NaOH from -0.1 V to 1.0 V (vs. RHE) with a rotation speed of 1600 rpm and a scan rate of 

10 mV s
-1

. 

 

3. Results and discussions 

The distribution of Pd, Ce and carbon species in all the three types of catalysts is illustrated using STEM 

and XEDS mapping (Figure 3). The HAADF images in Figure 3 show distinctive Z contrast as Pd and Ce 

have much higher atomic number than carbon. In Type 1, Pd-CeO2 particles appear as small (2-5 nm) and 

highly agglomerated particles distributed on the surface of carbon particles. In the overlapped element 

map (Figure 3), the prevailing red (Pd) and the green (Ce) pixels suggest that the distribution of Pd and 

CeO2 phases in Type 1 catalysts is the most homogeneous, compared to Types 2 and 3. The Type 2 

catalyst shows a different morphology where the CeO2 phase is comprised of large particles (in a broad 

range of 10−100 nm diameters) and are in contact with carbon particles. According to the element 

mapping of Type 2 catalyst (Figure 3), Pd is partially homogeneously distributed on the surface of CeO2 

particles, however due to the lower dispersity of CeO2, Pd tends to segregate in bigger Pd-rich particles 

(red pixels, Figure 3). This must negatively affect the Pd-CeO2 interface and decrease the effective 

interface area. Type 3 catalysts show that CeO2 distribution clearly follows the contours of the carbon 

black, since a small CeO2 nanoparticle (5 nm) is used. However, the surface of carbon is not fully covered 

with CeO2 particles and some of Pd particles are not in contact with CeO2 particles (Figure 3, Type 3). 

Comparing to previous works on Pd-CeO2/C catalysts [28,29], the RSDT process improves the mixing 

and interface between Pd and Ce with all three types of catalysts. It is hypothesized that Type 1 catalysts 

have more homogeneous co-distribution of Pd and CeO2 phases, with smaller particle sizes compared to 

Type 2 and 3. Therefore, in case of Type 1 catalysts, we would expect the most prominent chemical 

interaction between Pd and CeO2 and the highest catalytic activity for HOR. To reveal the possible 

chemical interaction between Pd and CeO2, XPS measurements were carried out. 
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Figure 3. HAADF images and elemental mapping of three types of Pd-CeO2/C catalysts using XEDS. The 

elemental maps correspond to the square region in the HAADF images. 
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Figure 4. (a-c) X-ray photoelectron spectra for Pd 3d region; (d-f) Ce 3d region for three types of Pd-

CeO2/C catalysts. 

 

Figure 4a-c shows the high-resolution Pd 3d photoelectron spectra. Due to spin-orbit coupling, the Pd 3d 

spectra are split into two peaks of 3d5/2 and 3d3/2 core electrons, respectively. Two pairs of peaks are 

fitted to the spectra, representing two Pd species. The pair at lower binding energy can be assigned to 

metallic Pd species, while the pair at higher binding energy can be assigned to Pd (II) species. The 

contribution of metallic Pd and oxidized Pd (II) phases in the catalyst composition is summarized in 

Table 1. It is worth noting that the reported binding energies for Pd species (Table 1) are higher compared 

to bulk Pd or PdO [45]. It has been shown that small nanoparticles result in higher binding energy due to 

the screening effect of core holes and lattice strains [46-48]. Therefore, we assigned the two binding 

energies to metallic Pd and Pd (II) rather than higher valence Pd species. The Pd (II)/Pd (0) ratio is 

significantly higher for Type 1 catalysts (82/18) compared to the Type 2 (59/41) and 3 (47/53) composites. 

This is in a good agreement with the microscopic observations discussed earlier. Type 1 catalyst has more 

homogeneous distribution of Pd and CeO2 which results in more intimate Pd-CeO2 chemical interaction 

(close nanoparticle to nanoparticle interaction) as seen in Figure 3. The high ratio of Pd (0) in Type 2 and 

3 arises from poor homogeneity: Pd segregates on the surface of CeO2 particles and thus the surface of Pd 

shows higher composition of metallic Pd (0). To provide further evidence to the effect of Pd-CeO2 

interaction on Pd (II)/Pd (0) ratio, we analyzed Pd supported on carbon catalyst synthesized with RSDT 
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process in Figure S1 (Supplementary Information). Without CeO2 phase in the catalyst, the composition 

of Pd (0) increased to ~70%, while a 30% of Pd (II) species remains on Pd surface. Although the Pd 

nanoparticles produced from RSDT process exhibit a partially oxidized surface, incorporating the CeO2 

phase in the catalyst increases the Pd (II) composition on the surface, suggesting a change of the Pd 

electronic structure with CeO2 interactions. 

 

The high-resolution Ce 3d photoelectron spectra are shown in Figure 4d-f. Deconvolution of the spectra 

suggests that the Ce (IV) is the predominate species and fitting with additional Ce (III) species did not 

result in a better fitting agreement of the experimental curve. The binding energies labeled v, v'', v''' are 

attributed to spin-orbit coupling of 3d5/2 core electrons and u, u'', u''' are attributed to spin-orbit coupling 

of 3d3/2 core electrons [49,50]. It is noted that the Ce spectra for Type 2 catralyst require an extra peak at 

~880 eV in order for a complete agreement between the fitting envelope and the experimental data. This 

extra peak is verified to be the Auger peak of fluorine (F KL1L1) with a Pd/C sample (Figure S1) without 

CeO2 support and the fluorine stems from the Nafion® binder in the catalyst layer. Ignoring the F KL1L1 

peak does not deteriorate the quality of data fitting. Thus, we conclude that the Ce phase for all three 

types of catalyst are mainly CeO2 species.  

 

Table 1 Compositions and positions of Pd species for three types of Pd-CeO2/C catalysts 

Sample ID 
Palladium 

species 

Percentage, 

% 

5/2 position, 

eV 

3/2 position, 

eV 
Line shape 

FWHM, 

eV 

Type 1: 

Pd-CeO2/C 

Pd (0) 18 336.2 341.4 GL(80) 1.64 

Pd (II) 82 337.6 342.8 GL(80) 1.94 

Type 2: 

Pd-CeO2(25nm)/C 

Pd (0) 41 336.1 341.4 GL(89) 1.38 

Pd (II) 59 337.4 342.7 GL(83) 2.66 

Type 2: 

Pd-CeO2(5nm)/C 

Pd (0) 53 336.1 341.4 GL(80) 1.47 

Pd (II) 47 337.6 342.8 GL(100) 2.65 

 

To further reveal the effect of the microscopic morphology and the surface oxidation state of Pd-CeO2/C 

composites on the HOR kinetics, the electrochemical properties of Pd-CeO2/C catalysts were 

characterized in 0.1 M NaOH electrolyte at room temperature (Figure 5). Cyclic voltammograms (CV) of 

Pd-CeO2/C catalysts are shown in Figure 5a. Noticeably, the CVs on the composite materials significantly 

differ from the ones recorded on metallic Pd in alkaline media [19]. The peak of PdO electroreduction [19] 

is suppressed in Pd-CeO2/C catalysts (Figure 5a), which complicates the electrochemical surface area 

assessment. Broad peaks appear in the potential window of 0.1−0.6 V vs. RHE can be attributed to H 

adsorption/desorption process to which both Pd and CeO2 contribute [28,35]. The H desorption for Pd 

occurs at lower potential than CeO2 [35]. The insert of Figure 5a shows enlarged CV of Type 1 and 2. The 

H desorption for Pd and CeO2 can be distinguished in the CV of Type 1, while Type 2 shows mainly the 

H desorption for Pd. It is noted that the Type 3 catalyst shows a more pronounced anodic peak than the 

other two types of catalysts in this potential region, which is likely due to the small CeO2 particle size and 

high CeO2 loading (Table S2) offering higher surface area than Type 1 and 2.  
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Figure 5. (a) Cyclic voltammograms of three types of Pd-CeO2/C catalysts (N2-purged 0.1 M NaOH at 

room temperature, 50 mV s
-1

). Insert in (a) shows an enlarged figure of Type 1 and 2. (b) Tafel plots of 

the HOR polarization curves for three types of Pd/CeO2/C catalysts (H2-purged 0.1 M NaOH at room 

temperature, 10 mV s
-1

). (c) Micropolarization region to extrapolate the exchange current densities. (d) 

Mass-normalized exchange current densities for three types of RSDT-derived Pd-CeO2/C catalysts 

compared with the state-of-the-art Pd-CeO2/C electrocatalyst. [28]  

 

Tafel plots (Figure 5b) show that Type 1 has higher HOR performance than Type 2 and 3 in the wide 

range of potentials (0.0−0.25 V). Numerically the HOR activity values were compared by the magnitude 

of mass specific exchange current (i0). The exchange current was calculated using the micropolarization 

approach [20,51] where the Butler-Volmer equation is approximated to a linear equation      
  

  
 in a 

narrow overpotential range, where ik is the kinetic current, i0 is the exchange current, η is the 

overpotential, F is the Faraday constant (96485 C mol
-1

), R is the gas constant (8.413 J mol
-1

 K
-1

), and T is 

the temperature (K). Figure 5c compared the HOR polarization curves in the micropolarization range. The 

resulting exchange current density values normalized to the Pd loading are plotted in Figure 5d.  

 

The HOR activity for RSDT-derived catalysts follows the trend of Type 1 > Type 2 > Type 3. This trend 

corroborates well with the degree of Pd oxidation state (Pd (II)/Pd (0) ratio) obtained using XPS (Table 1), 

which in turn is in a good agreement with the elemental maps of Pd and Ce (Figure 3). The Pd-CeO2 

chemical interaction results in partial charge transfer from metallic Pd atoms to CeO2 particles and thus, 
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higher concentration of Pd (II) suggests stronger interaction of Pd and CeO2 [28]. According to the 

current understanding of the HOR kinetics on Pt [52], Ir [52], Pd [19,38] and Ni[53], the rate-determining 

step (RDS) of HOR in alkaline media is the Volmer step[19]: 

      
                                                                                                                              (3) 

A partially oxidized surface enhances the HOR activity by weakening of metal-H bonding which promote 

the RDS step (equation 3) [19,52,54]. For Pd-CeO2/C catalysts, the Pd-CeO2 interactions weakens the Pd-

hydrogen bonding and enhances the OH
-
 transfer from the anion conducting ionomer to the active metal 

surface[29]. Noticeably, the Type 1 and 2 electrocatalysts outperform the state-of-the-art Pd-CeO2/C 

composite reported previously by Miller et al. [28,29] which confirms the improvement of Pd-CeO2 

interface with RSDT synthesis process. Although a high Pd oxide content of 87% is reported in [28] with 

X-ray absorption spectroscopy (XAS), the XPS spectra therein shows a metal-enriched surface. It is likely 

that an oxide-rich surface, like the Type 1 catalyst, exhibits higher enhancement for HOR, albeit further 

structural evidence is need for Type 1 catalyst to verify the bulk oxide content.  

 

Conclusions 
In summary, three different types of Pd-CeO2/C catalysts were synthesized using reactive spray 

deposition technique. The catalysts showed improved chemical interaction between Pd and CeO2 

compared to previous works based on wet chemistry method. The activity of Type 1 and Type 2 

electrocatalysts in HOR in 0.1 M NaOH exceeds that of the state-of-the-art Pd-CeO2/C composites 

reported in the literature. The correlation between the Pd-CeO2 interaction and HOR activity is 

established through comparison of XPS analysis of the three types of Pd-CeO2/C catalysts. Based on the 

experimental results, the Pd-CeO2 chemical interaction leads to partial charge transfer from metallic Pd 

atoms to CeO2 particles resulting in high concentration of Pd (II) on the catalyst surface. This, in turn, 

may weaken the Pd-hydrogen bonding energy which promote the rate determining Volmer step of HOR 

in alkaline media. The RSDT technique has shown its feasibility for the development of Pd-CeO2/C 

composite HOR catalysts. Further implementation of the RSDT process for the optimization of Pd-

CeO2/C catalyst design should concentrate on obtaining homogeneous composites with the lowest particle 

sizes, intimate contact between ceria and Pd, and the optimal Pd-to-Ce ratio. Application of these 

optimized HOR catalysts in AEMFC testing is the subject of ongoing work in our laboratories. The 

combination of experimental techniques such as STEM, XPS and RDE was shown to be a very powerful 

instrument in revealing the optimal synthetic approaches and optimal compositions of Pd-CeO2/C 

composite electrocatalysts. 
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