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Escuela Superior de Ingenierı́a, Universidad de Sevilla

Avda. Descubrimientos s/n, 41092 Seville, Spain
E-mail: ruben@us.es

Vicente Zarzoso
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Abstract—L1-norm criteria have been the subject a flurry

of research in signal processing and machine learning over

the last decade, especially due to their ability to exploit the

sparsity of latent variables and their robustness in the presence of

faulty data. Among such criteria, L1-norm principal component

analysis (L1-PCA) has drawn considerable attention, resulting

in a variety of optimization algorithms and connections with

other data processing techniques such as independent component

analysis. The present contribution takes a step forward in the

characterization of L1-PCA by exploring its linear discrimination

capabilities. A variant of L1-PCA consisting of L1-norm max-

imization subject to an L2-norm constraint is put forward for

unsupervised classification. The discrimination properties of the

proposed L1-PCA variant are demonstrated through a number

of computer experiments.

I. INTRODUCTION

Data analysis techniques based on the L1 norm have be-
come ubiquitous in signal processing and machine learning.
Indeed, L1-norm costs arise as natural criteria for exploiting
the underlying sparsity in many real-world problems and
present increased robustness to faulty data as compared with
traditional L2-norm based techniques such as second-order
principal component analysis (L2-PCA) [1].

A remarkable L1-norm approach is L1-PCA [2], [3]. While
behaving like L2-PCA in many situations, L1-PCA offers
enhanced immunity against outliers as well as an interesting
flexibility in analyzing data patterns. These advantages come
at the expense of numerical complexity, as the absolute value
is difficult to treat mathematically, making the optimization
of L1-norm criteria more computationally demanding than
that of traditional L2-norm criteria. To alleviate this difficulty,
a number of optimal and suboptimal algorithms have been
proposed for computing L1-PCA [2], [3], [4].

Although increasing complexity, the absolute value nonlin-
earity confers great potential to this technique. The nonlin-
earity introduces higher-order statistics in the cost function,
implying, in particular, that L1-PCA can perform independent
component analysis (ICA) in a robust manner under rather
general assumptions [5]. This finding opens interesting pos-
sibilities for the use of L1-PCA in application scenarios for
which it was not originally conceived, as the technique yields
meaningful results under different underlying data models.
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Motivated by the flexibility of this technique, the present
work investigates for the first time L1-PCA in a data classifica-
tion framework. Traditional L2-PCA has been used in unsuper-
vised classification tasks, a fundamental data analysis problem.
Unsupervised classification aims at allocating an observed fea-
ture vector to one of different classes according to a decision
rule based on some proximity criterion. In the fundamental
two-class (or binary) case, projecting the observed samples
in the direction that maximizes the projected data variance,
i.e., applying L2-PCA, can perform unsupervised classification
when the data form two well-separated clusters. As a prime
example, the Eigenfaces method for face recognition is largely
based on this property [6], [7]. Inspired by this result, we move
forward in the characterization of L1-PCA by analyzing its
discrimination capabilities. An L1-PCA variant is proposed
that is able to carry out unsupervised classification, much
like its L2-norm counterpart but with increased discrimination
properties and robustness to outliers. These results are justified
using intuitive arguments and supported by several numerical
experiments.

II. PROBLEM FORMULATION

This section summarizes the main assumptions and math-
ematical notations used throughout the paper. Then L2-PCA
and L1-PCA are recalled, as well as the linear discrimination
properties of the former. These inspire the search for analogous
properties in L1-norm criteria.

A. Assumptions and Notations

The data analysis techniques considered in this paper as-
sume the observation of N samples x

1

,x

2

, . . . ,xN drawn
from a d-dimensional random variable x 2 Rd. For simplicity,
it is assumed that {xn}Nn=1

has zero sample mean. In the
sequel, we use the standard definitions of the L1-norm and the
L2-norm, respectively, of an N -dimensional vector y 2 RN :
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Also, symbol (·)> denotes the matrix transpose operator and
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, . . . , aK) the K⇥K diagonal matrix with diagonal
entries {ak}Kk=1

.
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B. L2-PCA

We first recall the traditional L2-PCA. Its goal is to find a
direction a 2 Rd, kak

2

= 1, such that the projected samples

yn = a

>
xn (2)

have maximum dispersion as measured by variance. This is
also the linear projection best fitting the data in the least-
squares sense [1]. By defining the vector of projected samples
as y = [y

1

, y

2

, . . . , yN ]

>, the problem takes in practice the
following form:

max
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(3)

where we are using the sample variance instead of the pop-
ulation variance to introduce the optimization criterion. By
defining the d⇥N sample matrix as X = [x

1

, . . . ,xN ], we can
write y = X

>
a, and the above criterion accepts the equivalent

matrix formulation:

max

kak2=1

kX>
ak

2

.

Simple algebra shows that this optimization problem is solved
by the eigenvector associated with the largest eigenvalue of
the data sample covariance matrix

C

x

= XX

>
. (4)

C. L1-PCA

A major problem with the above technique is that the
square in (3) tends to overemphasize large outliers and L2-
PCA inherits this sensitivity to faulty data. To overcome this
drawback, the square function can be replaced by the absolute
value, as proposed in [2], thus yielding the following criterion:

max

kak2=1

kyk
1

= max

kak2=1

kX>
ak

1

. (5)

PCA based on criterion (5) is usually referred to as L1-norm
based PCA or, simply, L1-PCA. The absolute value in eqn. (5)
endows L1-PCA with an increased robustness to outliers as
compared to L2-PCA.

The main difficulty with L1-PCA lies in the optimization of
its cost function, which requires the development of specific
algorithms. A cost-effective though suboptimal method is
proposed by Kwak [2], who proves that the following fixed-
point iteration:

1) y = X

>
ai

2) ai+1

=

X sign(y)

kX sign(y)k
2

where ai represents the update of a at the ith iteration,
monotonically increases the L1-norm criterion kyk

1

after
each step, and so the algorithm converges at least to a local
maximum. The most notable feature of this simple method is
that no parameters need to be tuned. Alternatively, one can
use the polynomial time approaches in [8], [9], [10]. L1-PCA
algorithms with guaranteed convergence to a global maximum
have also been proposed, although they come at the expense
of increased computational complexity [3], [11]. In addition,

a simplified and faster, yet suboptimal, version of [3] can be
found in [4].

D. Unsupervised Classification via L2-PCA

We now recall that L2-PCA can perform unsupervised
classification or clustering in the two-class scenario when the
clusters are well separated [6]. To see this, let us assume
a binary data classification framework where each sample
xn belongs to one of two possible classes Ck, k = 1, 2,
characterized by sample means (or centroids) and covariance
matrices:
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L2-PCA searches for the dominant eigenvector of the overall
data covariance matrix C

x

(4). Under our working assump-
tions, this matrix can be expressed up to an irrelevant scale
factor as:
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joining the class means. If the data dispersion in each class is
negligible compared to the distance between the class means,
i.e., kCkkFro ⌧ k�µ
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,where k · k
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denotes the Frobenius
norm, then we can approximate
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Consequently, L2-PCA defines a projection in the direction
�µ

µ

µ joining the class centroids.
To illustrate why this direction may be useful for classi-

fication, Figure 1 represents the scatter plot of a zero-mean
synthetic data set with two clusters (‘green’ and ‘red’), as well
as the data projections (2) along unit vector a in the direction
of the line joining the cluster means. We can see that the
projection yields mostly negative values for the green class
and mostly positive for the red class, thus allowing cluster
discrimination based on these values.

III. L1-NORM BASED DISCRIMINATION

Pursuing these intuitive arguments, we can define an L1-
PCA based criterion for unsupervised clustering as follows.

A. Separating the Projected Class Centroids

In the specific case illustrated in Figure 1, we observe that
the sign of the projection gives us clues about the class label:
a data vector is most likely ‘red’ if its projection is positive,
and ‘green’ otherwise. The better the classes are separated
after the projection, the more accurate the estimation but, in
any case, the sign allows us to eliminate any reference to the
‘colors’ or categories of the data points. This is therefore an
unsupervised approach. Now, the L1 norm recalled in eqn. (1)
is, by definition, the sum of the positively signed projections
minus the sum of the negatively signed ones:
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X
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yn.



Fig. 1: Scatter plot of samples from two classes (‘green’ and
‘red’). The small vertical lines on the horizontal axis represent
the sample projections onto the dashed line joining the class
means Also shown are the histograms and kernel estimates of
the densities of the projected data.

In a situation such as that depicted in Figure 1, we can think
of this difference as an indicator of the distance between the
projected clusters, so that the more separated the clusters,
the larger the L1-norm. Therefore, maximizing criterion (5)
appears as a promising option for classification. There is
an additional interpretation: in many cases, the direction of
maximum variance produces well separated clusters; this is
why traditional PCA has discriminative properties as recalled
in the previous section. Here, we simply reformulate this idea
by substituting the variance with the L1-norm for measuring
the spread of the data. It is implicitly assumed that the clusters
are sufficiently distant in the original d-dimensional space, but
this assumption is reasonable in many classification problems.

In practice, however, it may not be sufficient to just search
for a vector a such that the corresponding projections y in (2)
have a large variance. It is for this reason that L2-PCA fails
when the class dispersion is significant relative to the centroid
distance, even if the clusters are linearly separable [7]. To pre-
vent the overlapping between the projected clusters, the spread
of the projections around their respective centroids should
also be minimized, much like in classical linear discriminant
analysis (LDA) [12].

B. Reducing the Projected Data Dispersion

The scatter can be measured by �
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where Npos and Nneg represent the number of positive and
negative projections, respectively, with Npos +Nneg = N . The
weighted sum Npos�

2

pos + Nneg�
2

neg can be interpreted as an

estimate of the total spread of the projected data. Some algebra
shows that
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For zero-mean data, it also holds that
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Putting it all together, it can be shown that
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C. L1-norm Criterion for Unsupervised Classification

As a result of the above developments, we can state that:
• To maximize the distance between the projected data

centroids, one should maximize kyk
1

.
• To minimize the dispersion around the projected data

centroids, one should maximize kyk
1

while minimizing
kyk

2

or at least keeping it constant.
Accordingly, the following Rayleigh quotient arises as a sen-
sible criterion for unsupervised classification based on the L1
norm:

max

a

J

1

(a) =

kyk
1p

kyk
2

. (6)

The purpose of taking the square root of the L2 norm in the
denominator of (6) is to ensure that the objective function is
dimensionless and invariant to the scale of a, i.e., J

1

(�a) =

J

1

(a), � 2 R\{0}. This criterion is experimentally assessed
next.

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed L1-
norm criterion through several computer experiments.

A. Discriminative Properties

The first experiment randomly draws N = 500 samples
from a mixture of two equiprobable (⇡

1

= ⇡

2

= 0.5) two-
dimensional Gaussian distributions with means µµµ

1

= �[2, 0]

>

and µ

µ

µ

2

= [2, 0]

> and covariance matrices C

1

= C

2

=

diag(1, 3). Figure 2 depicts the proposed criterion J

1

(a),
defined in eqn. (6), as a function of the angle ✓ between
the projection vector a and the x-axis (blue line). The curve
attains its global maximum at approximately ✓ = 0 degrees,
i.e., the optimal direction for this dataset is parallel to the
horizontal axis. For completeness, Figure 2 also represents the
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Fig. 2: Proposed criterion J

1

(✓) defined in eqn. (6) (blue line)
for y = a

>
x with a = [cos(✓), sin(✓)]

>, ✓ 2 [�⇡,⇡]. For
comparison, the L2-PCA objective function (3) is also depicted
(black line). Both curves are normalized with respect to their
maximum values.

variance of the projected data (black line), which corresponds
to criterion (3) maximized by L2-PCA.

The scatter plot of the observations is given in Figure 3,
where data of class 1 and class 2 are represented by circles and
crosses, respectively. The blue line points in the direction max-
imizing J

1

(a). As reported in the previous paragraph, observe
that this line is almost horizontal. Compare with the yellow
line, which is the direction determined by classical LDA [12]:
there is no significant difference between the projections cal-
culated by the two methods, as both lines practically overlap.
Finally, we point out that the black dashed line marked PCA
in Figure 3 points in the direction of maximum variance of
the data. Even though L2-PCA seems to yield an acceptable
result, i.e., the projected data form clusters, this technique
may have poor performance when the data dispersion is large
compared to the distance between the class means. This is
clearly illustrated by Figure 4, which shows the result obtained
by repeating the experiment with class covariance matrices
C

1

= C

2

= diag(1, 10), so that the direction of maximum
variance is now along the x

2

-axis. Obviously, projecting along
this axis does not produce well separated groups. By contrast,
the proposed criterion is essentially unaffected by the change
in experimental conditions.

B. Robustness Against Outliers

Outliers are samples generated by a different mechanism,
or model, than the nominal observations. In this experiment,
we replace 33% of the data in Figure 3 by outliers generated
by raising a Gaussian random variable to the third power.
The mean of the outliers in each class is set to that of the
data they are replacing. Figure 5 represents the scatter plot
of the corrupted dataset. The blue line again points in the
direction maximizing the proposed criterion J

1

, while the
black line represents the direction of maximum variance of the
data. The experiment shows that, as expected, the proposed
L1-norm based method is more robust against outliers than
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Fig. 3: Performance of the proposed algorithm when applied
to classes with almost spherical data point clouds. Results
obtained by using L2-PCA and LDA are also shown for
comparison.
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Fig. 4: Performance of the proposed algorithm when applied to
classes with non-spherical data point clouds. Results obtained
by using L2-PCA and LDA are also shown for comparison.

L2-PCA. Figure 6 plots the estimated probability density
function, computed by a kernel density estimator method, of
the projection of the data onto the direction maximizing J

1

(blue line of Figure 5). The distribution is clearly bimodal,
showing that the sample arises from two different classes.

As a further experiment, we fit a Gaussian mixture model
(GMM) to the corrupted data. GMMs are based on the
assumption that all the observations are drawn from a mixture
of normal distributions, and are very popular for solving
unsupervised classification problems [13]. Roughly speaking,
GMMs generalize the standard k-means clustering algorithm
by incorporating information about the covariance structure
of the data classes. In this experiment, the parameters of
the model are found by using the Expectation-Maximization
(EM) algorithm [13]. Figure 7 plots the data over the es-
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Fig. 5: Performance of the proposed algorithm and L2-PCA
when applied to data corrupted by outliers.
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Fig. 6: Histogram of the projection of the corrupted data onto
the optimal L1-norm based direction, shown by the blue line
of Figure 5.

timated Gaussian mixture model contours. Observe that the
EM algorithm models the dataset as a mixture of two almost-
overlapped Gaussians with a priori probabilities ⇡

1

= 0.94

and ⇡

2

= 0.06. After learning the GMM, a data point is clas-
sified according to the probability of having been generated by
each of the Gaussians. Figure 7 also plots the predicted labels
of the data points: data from class 1 are shown as green dots,
while data from class 2 are shown as red crosses. The resulting
classification is clearly erroneous and, in view of Figure 6, it
can easily be outperformed by the proposed L1-PCA based
approach.

V. CONCLUSIONS

The present contribution has framed L1-PCA in the context
of data classification. An L1-PCA variant has been derived
that can perform unsupervised linear discrimination in the two-
class setting. The variant consists of the L1-norm of the vector
of projected data samples normalized by the square root of its
L2 norm, which can be cast as a Rayleigh quotient. Although
the criterion has been derived on intuitive grounds, a number of
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Fig. 7: Contour plot of the estimated Gaussian mixture model
of the corrupted data. Tentative classification of the data points
as suggested by this model is also shown, yielding highly
inaccurate results.

computer experiments have confirmed its good discrimination
capabilities and enhanced robustness to outliers as compared
to classical L2-PCA. Further work should include a thorough
theoretical study and a comparative performance analysis on
real data.
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