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Bertrand Toën∗and Tony Pantev
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Abstract

This paper is a companion to [Pa-To]. We study the moduli functor of flat bundles on smooth,
possibly non-proper, algebraic variety X (over a field of characteristic zero). For this we introduce
the notion of formal boundary of X, denoted by ∂̂X, which is a formal analogue of the boundary at
∞ of the Betti topological space associated to X studied in [Pa-To]. We explain how to construct
two derived moduli functors Vect∇(X) and Vect∇(∂̂X), of flat bundles on X and on ∂̂X, as well
as a restriction map R : Vect∇(X) −→ Vect∇(∂̂X).

This work contains two main results. First of all we prove that the morphism R comes equipped
with a canonical shifted lagrangian structure in the sense of [PTVV]. This first result can be
understood as the de Rham analogue of the existence of Poisson structures on moduli of local
systems studied in [Pa-To]. As a second statement, we prove that the geometric fibers of R are
representable by quasi-algebraic spaces, a slight weakening of the notion of algebraic spaces.
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Introduction

This work is a sequel of [Pa-To] in which we studied moduli of local systems on the underlying topological
space of a smooth non-proper complex algebraic variety X. One the main result of [Pa-To] asserts that
this moduli is a derived Artin stack endowed with a natural shifted Poisson structure whose symplectic
leaves can be studied by fixing monodromies of local systems at infinity.

In this paper we start to study the de Rham analogue of the results of [Pa-To]. The results of
this work can be somehow subsumed by stating that Vect∇(X), the derived moduli of flat bundles on
a smooth variety X (over a field k of characteristic 0), carries a canonical shifted Poisson structure.
However, this can only be a moral statement as Vect∇(X) is not representable outside of the proper case
and we thus have had to overcome many technical difficulties in order to state and prove this existence
statement.

The key ingredient of this work is the notion of formal boundary of a smooth variety X, denoted by
∂̂X in the sequel. The object itself ∂̂X has no formal existence in its own, but it is possible to define the
notions of vector bundles and flat bundles on ∂̂X has categories or stacks. The non-existing object is
morally the punctured formal completion of X̄ along D, for X̄ a smooth compactification of X with D
the divisor at infinity. This notion already appeared in [Be-Te, Ef, He-Po-Ve] and the novelty here is the
systematic study of its de Rham theory: vector bundles with connections and their de Rham complex.
We construct derived stacks Vect∇(X) and Vect∇(∂̂X), of flat bundles on X and ∂̂X, together with

a restriction map R : Vect∇(X) −→ Vect∇(∂̂X). We study infinitesimal properties of these derived
stacks, and show in particular that they are formally representable at any field valued points. This
formal representability can be used in order to define the notion of shifted symplectic structures, as
well as shifted lagrangian structure, on these derived stacks, even thought they are not representable.
A first main result of this work is the following theorem.

Theorem 0.0.1 There exists a canonical shifted lagrangian structure of degree 3−2d on the restriction
map

R : Vect∇(X) −→ Vect∇(∂̂X).

At the linear level of tangent complexes, the above theorem is an incarnation of Poincaré duality in
de Rham cohomology and de Rham cohomology with compact supports. The existence of the lagrangian
structure globally is itself a version of Poincaré duality relative to various derived base schemes, together
with the general existence result of [To3]. Morally, theorem 0.0.1 implies the existence of a shifted
Poisson structure of degree 2− 2d, thanks to [Me-Sa].

A second main result of this work is the following representability result. We fix a flat bundle at
infinity V∞ ∈ Vect∇(∂̂X)(k) and consider the fiber of R at V∞ denoted by Vect∇V∞(X). Or original

goal was to prove that Vect∇V∞(X) is representable by a derived Artin stack (even algebraic space if no
components of X are proper) locally of finite presentation over k. Thought we havent been able to
prove this last statement, we prove the following weakened version of it.
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Theorem 0.0.2 The derived stack Vect∇V∞(X) is a derived quasi-algebraic space locally of finite pre-
sentation in the sense of definition B.0.2.

Derived quasi-algebraic spaces are almost algebraic spaces, they satisfy all of Artin-Lurie’s criterion
for representability except they might not be of locally of finite presentation as a functor. They only
satisfy local presentability generically, and the result is that these derived stacks only have a smooth
atlas generically (i.e. whose image is Zariski dense in some sense).

Notations and conventions: k a field of characteristic zero. We use the expression symmetric
monoidal dg-categories to mean E∞-algebra object inside the symmetric monoidal∞-category of locally
presentable dg-categories (see [To2]).

1 Preliminaries on connections, graded mixed modules and

equivariant objects

In this section we have gathered some results concerning DX-modules on smooth varieties considered
as modules over the de Rham algebra. The results of this part do not pretend of being original.

1.1 Connections as graded mixed modules

We remind the notion of graded mixed k-modules from [PTVV, CPTVV], whose∞-category is denoted
by k − dggrε . It comes equipped with an ∞-functor

| − | := RHom(k(0),−) : k − dggrε −→ k − dg

where k(0) denotes the unit graded mixed complex pure of weight 0. Explicitly |−| sends a graded mixed
complex E to

∏
iE(i)[−2i] endowed with the total differential, sum of the cohomological differential

and the mixed structure. This ∞-functor is lax symmetric monoidal and thus induces a corresponding
∞-functor on algebras, modules etc.

We let X = SpecA be an affine smooth variety over k. Let DX be the k-algebra of differential
operators on X. We let DRX = SymA(Ω1

A[−1]) be the de Rham algebra of X, considered as a graded
mixed cdga for its natural structure of graded algebra and for which the mixed structure is defined
to be the de Rham differential (see [PTVV]). The dg-category of left DX-dgmodules where quasi-
isomorphisms have been inverted will be denoted by Dqcoh(DX) (see appendix for more on dg-categories
of D-modules). Recall that a model for Dqcoh(DX) is the dg-category of all cofibrant DX-dgmodules.
In the same way, we denote by DRX − dggrε the dg-category of graded mixed DRX-dgmodules up to
quasi-isomorphisms (again an explicit model is the dg-category of cofibfrant graded mixed dg-modules).
We have a natural dg-functor

DR : Dqcoh(DX) −→ DRX − dggrε ,

from dg-modules over DX to graded mixed DRX-modules. The dg-functor DR is defined by sending a
(cofibrant)DX-dgmodule E to its de Rham complex DR(E) := DRX⊗AE. By definition, DR(E) is free
as a graded module over DRX , and its mixed structure is induced by the connection ∇ : E −→ Ω1

A⊗AE
coming from the left DX-module structure on E.
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Proposition 1.1.1 The above dg-functor

DR : Dqcoh(DX) −→ DRX − dggrε

is fully faithful. Its essential image consists of all objects that are free as a graded dg-module (i.e. of
the form DRX ⊗A E0 for some A-dg-module E0).

Proof: To prove fully faithfulness we use the following method to compute the mapping complexes
inside DRX − dggrε .

Let B be a graded mixed cdga and E and F be two graded mixed B-dgmodule. We assume that E
and F are cofibrant as graded B-modules. Consider the complex

H(E,F ) :=
∏
p≥0

HomB−dggr(E,F (p))[−p],

where F (p) is the graded B-module defined by shifting the grading by p (so HomB−dggr(E,F (p))
consists of graded maps of degree p). The complex H(E,F ) is endowed with the total differential D,
sending a family of elements {fp}p≥0 to

D({fp}) := {∇Ffp + fp−1∇E + d(fp+1)}p≥0,

where ∇E and ∇F are the mixed structures on E and F , and d is the cohomogical differential. Then, we
have a natural quasi-isomorphism of complexes of k-modules H(E,F ) ∼ HomB−dggrε (E,F ), as this can
be seen by describing an explicit cofibrant model for E. Using this it is easy to see that the dg-functor
DR is fully faithful: for two DX-dg-modules E and F , it sends RHomDX (E,F ) to the de Rham complex
of the DX-module RHomA(E,F ).

For the second part of the proposition, let E be a graded mixed DRX-module which is of the
form E0 ⊗A DRX as a graded module. We can write E0 as a filtered colimit of perfect complexes of
A-modules. As the dg-functor DR is continuous and fully faithful, it is enough to restrict to the case
where E0 is perfect. By a cell decomposition induction we can furthermore reduce to the case where
E0 = M is a projective A-module of finite rank. We thus have a graded mixed DRX-module E whose
underlying graded module is quasi-isomorphic to M ⊗A DRX . We can recover a DX-module structure
on M simply by considering the map M −→ M ⊗A Ω1

A induced by the mixed structure on E. By
the method mentionned above, we can construct a canonical morphism of graded mixed dg-modules
DR(M) −→ E, which by construction is a quasi-isomorphism. 2

The previous proposition extends by stackification to the case where X is a smooth scheme over k,
or even a smooth DM-stack over k. It can be stated as fully faithful embedding of dg-categories

DR : Dqcoh(DX) ↪→ DRX − dggrε ,

where the dg-categories DRqcoh(DX) and DRX − dggrε are simpy defined by descent

Dqcoh(DX) := lim
U=SpecA→X

DU − dg DRX − dggrε := lim
U=SpecA→X

DRU − dggrε ,

where the limit are taken over the small etale site of X and inside the ∞-category of presentable
dg-categories (see [To2]). The essential image of the dg-functor DR consists of all graded mixed DRX-
dgmodules which, as graded modules, are of the form E⊗OX DRX for some quasi-coherent OX-module
E.
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Similarly, it is also possible to extend the statement to a relative situation. Let B be a connective
cdga and X a smooth DM-stack. Let us consider on the one side DX ⊗k B, as a sheaf of dg-algebras,
and on the other side DRX ⊗k B as a sheaf of graded mixed B-linear cdga’s (over the small etale site
of X). The above full embedding extends to a fully faithful embedding of presentable dg-categories

DR : Dqcoh(DX,B) ↪→ (DRX ⊗k B)− dggrε ,

whose essential image consists of graded mixed modules which, as graded modules, are of the form
E ⊗OX DRX for E a quasi-coherent OX ⊗k B-dgmodule.

We finish this part by an analyzing inverse image for D-modules in terms of graded mixed modules
over de Rham algebras. Let us give a morphism of smooth varieties f : X = SpecA′ −→ Y = SpecA,
given by a morphism of smooth k-algebras A→ A′. We have the usual pull-back functor of D-modules

f ∗ : Dqcoh(DY ) � Dqcoh(DX).

By the proposition 1.1.1 this can be seen as a dg-functor on dg-categories of graded mixed modules
which are free as garded modules that we are now going to describe explicitly. This functor simply
is the natural one given by base change. The morphism f induces a morphism of graded mixed cdga
DRY −→ DRX which, in turn, defines a base change functor on graded mixed modules. This base
change is canonically equivalent to f ∗ when restricted to graded mixed modules which are free as in
proposition 1.1.1. As a final note, the above discussion also makes sense without the affiness conditions
on X and Y , as well as in the relative setting by tensoring with a connective cdga B.

1.2 Graded mixed modules and equivariant objects

We now turn to a more conceptual but equivalent description of the dg-category of D-modules, as
equivariant objects inside the dg-category of quasi-coherent modules on the shifted cotangent stacks.
This will be useful later to reduce some statements for D-modules to the case of quasi-coherent modules.

We letH := aut(BGa) be the group stack of autoequivalences of BGa. It can be explicitely described
as a semi-direct product BGa nGm, of Gm acting on BGa by its natural action of weight 1 on Ga. In
this description, Gm acts on BGa by its standard action, and BGa acts on itself by translations (using
the fact that BGa is itself a group stack).

We remind from [To2] that there is a derived stack Dglp ∈ dStk of locally presentable dg-categories
with descent. We then set the following definition.

Definition 1.2.1 An H-equivariant (locally presentable) dg-category T consists of a morphism of
derived stacks T : BH −→ Dglp. Locally presentable H-equivariant dg-categories form an ∞-category

Dglp(BH) := Map(BH,Dglp).

We also remind that Dglp has a canonical extension to a derived stack of symmetric monoidal
∞-categories, for the tensor product of locally presentable dg-categories of [To2]. This makes it pos-
sible to consider symmetric monoidal dg-categories with a compatible H-action, as being a morphism
BH −→ E∞ − Alg(Dglp), from BH to the derived stack of E∞-algebra objects in Dglp. We leave the
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details of these monoidal extensions to the reader.

Given an H-equivariant dg-category T in the sense of the previous definition, we can form its direct
image (see [To2]) by the natural projection p : BH −→ Spec k, which by definition is the dg-category
of H-equivariant objects in T

TH := p∗(T ).

Assume now that X is a smooth DM-stack as in our previous paragraph, and B a connective cdga. We
let DRX ⊗k B, considered as a sheaf of graded cdga’s on X, and its dg-category of (non-graded, non-
mixed) dg-modules (DRX ⊗k B)−dg. The group H acts on the commutative dg-algebra (DRX ⊗k B)
in an obvious manner: the Gm-action is the grading and the BGa-action is the mixed structure. This
is formalized by the following proposition.

Proposition 1.2.2 Let H acts trivially on the dg-category k − dg of complexes of k-modules. Then,
there is a natural equivalence of symmetric monoidal dg-categories

(k − dg)H ' Dqcoh(BH) ' k − dggrε .

Proof: The first equivalence is true by definition, the content of the proposition is the existence of the
second equivalence. For this, we let π : BH −→ BGm be the natural projection. This morphism exhibits
BH as an affine stack over BGm whose fiber is K(Ga, 2). In other words we have BH ' SpecBGm A,
where A = π∗(O) considered as an E∞-algebra in BGm. This algebra simply is A = k[u] where u is in
cohomological degree 2 and weight 1. For any affine stack F = SpecA, there is a symmetric monoidal
∞-functor

A−Mod −→ Dqcoh(F )

which makes Dqcoh(F ) into the left completion of the A−Mod for the natural t-structure (see [Lu1]).
This remains true in the relative setting over BGm: there is a natural symmetric monoidal ∞-functor

A−Mod(Dqcoh(BGm)) −→ Dqcoh(BH),

which is an equivalence when restricted to objects bounded on the left for the natural t-structures on
both sides. As A = k[u], we have that Dqcoh(BH) can be identified with the left completion of the
natural t-structure on the dg-category of graded k[u]-dg-modules. This completion can be identified
with the dg-category of graded mixed complexes via the dg-functor

k − dggrε −→ k[u]− dggr,

sending E to the graded k[u]-module whose piece of weight p is RHom(k(p), E). This dg-functor is
indeed a symmetric monoidal equivalence when restricted to graded mixed complexes which are coho-
mologically bounded on the left. 2

Let X be an affine smooth variety over k and B a connective cdga. DRX ⊗k B is a graded mixed
cdga, and thus the previous proposition can be used to exhibit DRX ⊗k B as a quasi-coherent sheaf of
cdga’s on the stack BH. The dg-category (DRX ⊗k B)−dg can then be seen as a natural E∞-algebra
object in Dglp(BH), or in other words as an H-equivariant symmetric monoidal dg-category.
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Corollary 1.2.3 With the above notations, we have a natural equivalence of symmetric monoidal dg-
categories

(DX ⊗k B)− dg ' ((DRX ⊗k B)− dg)H.

Proof: This is a consequence of the proposition. Indeed, the equivalence of the proposition is sym-
metric monoidal, so preserves algebras and modules over algebras. 2

2 The formal boundary of smooth varieties

In this section we present the notion of the formal boundary of a smooth algebraic variety X over a
base field k of characteristic 0. As opposed to the Betti setting presented in the separate paper [Pa-To],
the formal boundary does not itself exist as an algebraic variety or stacks in any form and will only be
defined throught its categories of perfect complexes, possibly with integrable connections. The case of
perfect complexes has been studied recently by several authors (see [Be-Te, Ef, He-Po-Ve]). We follow
a similar approach for the case of perfect complexes endowed with integrable connections, for which
many statements can be deduced to the case without connections. However, the ∞-category of perfect
complexes with flat connections we introduce below can not be recovered from the ∞-categories of
perfect complexes of on the formal boundary and therefore the results of this section are not formal
consequences of the results of [Be-Te, Ef, He-Po-Ve] and are somehow new.

In this section all varieties, schemes and stacks are defined over a base field k of characteristic 0.

2.1 Perfect complexes on the formal boundary

In this section we remind the notion of the formal boundary ∂̂X of a smooth variety X studied in
[Be-Te, Ef, He-Po-Ve]. As we prefer to avoid any analytical aspects during the construction, we mainly
follow the approach of [Ef] and [He-Po-Ve], and will use both approaches simultanuously.

The setting. We let X be a smooth algebraic variety. We assume that we have fixed an open dense
embedding X ↪→ X̄ where X̄ is a smooth and proper scheme over k. We moreover assume that the
reduced closed complement D ⊂ X of X inside X̄ is a simple normal crossing divisor on X̄. We will at
some point need a situation where X̄ is only a smooth and proper DM-stack, for which the arguments
are similar. We call such an embedding X ↪→ X̄ a good compactification.

For any affine scheme SpecA with an étale map u : SpecA −→ X̄, we consider I ⊂ A the ideal of
the pull-back u∗(D) ⊂ SpecA as well as Â = limnA/I

n the formal completion of A along I. When u
varies in the small étale site of X̄ we obtain this way a presheaf of commutative rings on X̄et, sending
u : SpecA −→ X̄ to Â. This presheaf of commutative rings comes equipped with a presheaf of ideals,
which simply is the ideal generated by I inside Â.

Definition 2.1.1 The ∞-category of perfect complexes on ∂̂X is defined by

Parf(∂̂X) := lim
SpecA→X̄

Parf(Spec Â− V (I)).
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The above definition has a version with coefficients in any derived affine scheme S = SpecB, defined

as follows. For each u : SpecA −→ X̄ in X̄et we can form the cgda Â⊗B := limn(A/In⊗kB). The ideal

I defines an open subset in the derived scheme Spec Â⊗B which simply is the pull-back of Spec Â−V (I)

by the natural projection Spec Â⊗B −→ Spec Â. We continue to denote by Spec Â⊗B − V (I) this
open derived sub-scheme. We then set

Parf(∂̂X)(S) := lim
SpecA→X̄

Parf(Spec Â⊗B − V (I)) ∈ dgCat,

and call it the ∞-category of families of perfect complexes on ∂̂X parametrized by S. When S varies
in the ∞-category of derived affine schemes dAff , S 7→ Parf(∂̂X)(S) defines an ∞-functor

Perf(∂̂X) : dAffop −→ dgCat.

By [He-Po-Ve, Prop. 3.23] this ∞-functor is a derived stack for the étale topology on dAff . In the

same manner, we have the derived stack Perf( ˆ̄X), of perfect complexes on the formal completion of X̄
along D. Its S-points can be defined as before (with S = SpecB)

Perf( ˆ̄X)(S) = lim
SpecA→X̄

Parf(Spec Â⊗B) ∈ dgCat.

Another equivalent description is a derived mapping stack

Perf( ˆ̄X) 'MapdStk
( ˆ̄X,Perf),

where the formal scheme ˆ̄X is here defined as colimnDn, where the colimit is taken in dStk and
Dn = SpecOX/In ⊂ X is the n-th infinitesimal neighborhood of D inside X̄.

Definition 2.1.2 1. The derived stack of perfect complexes on ˆ̄X is the derived stack Perf( ˆ̄X) ∈
dStk defined above.

2. The derived stack of perfect complexes on ∂̂X is the derived stack Perf(∂̂X) ∈ dStk defined
above.

The derived stacks defined above also possess sheaf theoretical interpretations as follows. The

structure sheaf ÔD of ˆ̄X can be considered as a sheaf of commutative OX-algebras, sending an étale
map SpecA → X̄ to the A-algebra Â. We also have ÔD ' limnODn , where the limit is taken in
the category of all sheaves of OX-algebras. Note that ÔD is in general not a quasi-coherent sheaf on
X. In the same manner, if S = SpecB is a derived affine scheme, we have a sheaf of commutative

OX-dg-algebras ÔD,B, sending an étale map SpecA → X̄ to Â⊗k B = limn(A/In ⊗k B). Again, this
is, in general, not a quasi-coherent sheaf on X.

Similarly, we can define a sheaf of commutative OX-algebras ÔoD by locally inverting the equation
of D in ÔoD. More precisely, for S = SpecB a derived affine scheme we send the étale map SpecA→ X̂

to Γ(Spec (Â⊗k B) − V (I),O). When SpecA −→ X̂ is small enough so that D becomes principal
over SpecA (which we can always assume to define the sheaf ÔoD), the value of ÔoD,B is the cdga

(Â⊗k B)[t−1], where t ∈ A is a generator of the ideal I ⊂ A.
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Both sheaves ÔD,B and ÔoD,B of cdga’s on X̄et are set theoretically supported on D, and can therefore
be considered as sheaves of cdga’s on the site Det. It makes then sense to consider the ∞-categories
of sheaves of perfect modules on Det over the sheaves of cdgas ÔD,B and ÔoD,B. Let use denote this

∞-categories by Parf(ÔD,B) and Parf(ÔoD,B). The descent result proved in [He-Po-Ve, Prop. 3.23]
precisely implies that we have natural equivalences of ∞-categories, functorial in S = SpecB

Perf( ˆ̄X)(S) ' Parf(ÔD,B) Perf(∂̂X)(S) ' Parf(ÔoD,B).

One aspect of the definition 2.1.3 is it depends a priori on a choice of X̄. the case of perfect complexes

over ˆ̄X is certainly moral, but the idea behind the definition 2.1.3 (2) is that the derived stack Perf(∂̂X)
only depends on the variety X. Unfortunately, we de not know if this is the case and we could not
deduce this from the combined results of [Be-Te, Ef, He-Po-Ve]. It is shown in [He-Po-Ve, A.4] (together

with [Be-Te]) that the ∞-category Perf(∂̂X)(k) of global k-points only depends on X. However, as
noted in [He-Po-Ve, App. A] the setting [Be-Te] is only for smooth varieties and it is therefore unclear

that Perf(∂̂X)(B) remains independant of the choice of X̄ for a general cdga B (already for a non-
smooth commutative k-algebra B of finite type). To overcome this issue we will introduce a full substack

Perf ex(∂̂X) ⊂ Perf(∂̂X) of extendable perfect complexes and show that Perf ex(∂̂X) only depends on
X alone by using the categorical approach of [Ef].

We consider the map of stacks in ∞-categories

Perf( ˆ̄XD) −→ Perf(∂̂X)

from perfect complexes on the formal completion of X̄ along D to perfect complexes on ∂̂X. This is
morphism of stacks in stable ∞-categories and it therefore makes sense to define its karoubian image.
This is the substack of objects that are locally (for the étale topology) direct factors of objects in the
essential image of the above map. More precisely, for any affine derived scheme S ∈ dAff we have a
stable ∞-functor

Perf( ˆ̄XD)(S) −→ Perf(∂̂X)(S),

and we denote by Perf ex,pr(∂̂X)(S) ⊂ Perf(∂̂X)(S) the full sub-∞-category of objects that are retracts

of objects in the essential image of Perf( ˆ̄XD)(S) −→ Perf(∂̂X)(S). When S varies, this defines a full

sub-prestacks Perf ex,pr(∂̂X) ⊂ Perf ex(∂̂X).

Definition 2.1.3 The derived stack of extendable perfect complexes on ∂̂X is the stack associated to
prestack Perf ex,pr(∂̂X) defined above. It is denoted by Perf ex(∂̂X)

Note that by definition Perf ex(∂̂X) is a full sub-stack in Perf(∂̂X). An important property of the

stack Perf ex(∂̂X) is that it only depends on X alone and not on the choice of X̄.

Proposition 2.1.4 For a given S = SpecB ∈ dAff , the ∞-category Perf ex(∂̂X)(S) can be recon-
structed from the k-linear dg-category Parf(X) of perfect complexes over the variety X. Moreover, this
reconstruction is functorial in B.

Proof: This is essentialy the main result of [Ef, Thm. 3.2]. To start with, as Perf ex(∂̂X) is the stack

associated to the prestack Perf ex,pr(∂̂X) it is enough to show that Perf ex(∂̂X)(S) can be recovered
from Parf(X). We start by the following lemma.
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Lemma 2.1.5 Let K(S) be the kernel of the ∞-functor Perf( ˆ̄X)(S) −→ Perf ex,pr(∂̂X)(S) then the
sequence of stable ∞-categories

K(S) ↪→ Perf( ˆ̄X)(S) −→ Perf ex,pr(∂̂X)(S)

exhibits Perf ex,pr(∂̂X)(S) as the triangulated quotient of Perf( ˆ̄X)(S) by K(S).

Proof of the lemma: By descent, the ∞-functor of the lemma can be written as a finite limit over
an affine cover U of X̄

lim
SpecA∈U

Parf(Â⊗k B) −→ lim
SpecA∈U

Parf(Â⊗k B[t−1]),

where the affine cover U has been chosen so that D becomes principal on each SpecA (and we have
denoted by t an equation ofD). For a given SpecA ∈ U we have an exact sequence of stable∞-categories

K(S) ↪→ Parf(Â⊗k B) −→ Parf(Â⊗k B[t−1]).

It is easy to see that for finite diagram of full faithful stable∞-functors Tα ↪→ T ′α the induced∞-functor
on triangulated quotients

(lim
α
T ′α)/(lim

α
Tα) −→ lim

α
(T ′α/Tα)

is fully faithful. Therefore, the ∞-functor Perf( ˆ̄X)(S)/K(S) −→ Perf ex,pr(∂̂X)(S) is always fully
faithful. Finally, by definition of extendable objects it is also essentially surjective up to direct factors,
which implies that it is an equivalence. 2

We come back to the proof of the proposition. We will need a more precise description of the kernel
K(S). For this, we chose K ∈ Parf(X̄) a compact generator for ParfD(X̄) ⊂ Parf(X̄), the sub dg-
category of perfect complexes with supports on D. The corresponding object K ⊗kB ∈ Parf(X̄)⊗kB
is a compact generator for ParfD(X̄) ⊗k B, and this remains true after Zariski localization on X̄: for
any Zariksi open U = SpecA ⊂ X̄, the object K|U⊗kB ∈ Parf(U) is compact generator for ParfD(U).
Formal gluing for the affine U (see [He-Po-Ve]), tells us that we have a fibered square of dg-categories

Parf(A⊗B) //

��

Parf(A⊗k B[t−1])

��

Parf(Â⊗k B) // Parf(Â⊗k B[−1]),

and thus an equivalence of the kernels of the horizontal ∞-functor. This kernel is precisely ParfD(U),
and thus generated by K|U ⊗k B. By descent, we thus have

K(S) ' lim
U∈X̄zar

ParfD×S(U × S) ' ParfD×S(X̄ × S).

To summarize, let C = End(K) be the dg-algebra of endormophisms of the object K. We have an
exact sequence of stable dg-categories

Parf(C ⊗k B) // Parf( ̂̄X × S) // Perf ex,pr(∂̂X)(S).
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The∞-categories Parf( ˆX × S) can itself be written in terms of the dg-algebra C. Again by descent we
can replace X̂ by an affine open sub-scheme U = SpecA and K by its restriction K|U to U (and denote

CU = End(K|U)). It is then easy to see that Parf(Â⊗k B) is naturally equivalent to PsParf(C⊗kB),
the dg-category of CU -dg-modules inside Parf(B) (called pseudo-perfect dg-modules relative to B,
see [To-Va]). Such an equivalence is produced by sending a perfect dg-module E over A ⊗k B to
Hom(K|U , E) as dg-module over End(K|U). We refer to [Ef] for more details.

We thus have an exact sequence of dg-categories

Parf(C ⊗k B) // PsParf(C ⊗k B) // Perf ex,pr(∂̂X)(S).

As Parf(X̄ × S) is a smooth and proper dg-category over B, we can thus apply [Ef, Thm. 3.2] to the
object K⊗kB ∈ Parf(X̄×S), which precisely states that the above quotient can be functorially recon-
structed from the B-linear dg-category Parf(X̄ × S)/ < K ⊗k B >' Parf(X × S) ' Parf(X)⊗k B,
and thus from Parf(X) as a dg-category over k. 2

Corollary 2.1.6 The derived stack Perf ex(∂̂X) does not depend on the choice of the good compactifi-
cation X̄.

The above corollary can be made more precise as follows. Suppose that we two good compactifica-
tions X̄ and X̄ ′ as well as a morphism π : X̄ ′ −→ X̄ inducing an isomorphism over X. Let Perf(∂̂X)

and Perf(∂̂X ′) be the two derived stacks constructed above for X̄ and X̄ ′ respectively. There is an

obvious pull-back morphism π∗ : Perf(∂̂X) −→ Perf(∂̂X ′), and the corollary states that this morphism
is an equivalence of derived stacks.

Moreover, for any étale affine SpecA −→ X̄, we have a natural morphism of schemes Spec Â −
V (I) −→ SpecA−V (I). Similary, for any S = SpecB ∈ dAff we have a morphism of derived schemes

Spec Â⊗k B − V (I) −→ (Spec (A) − V (I)) × S. When A varies in the étale site of X̄ and S inside

derived affine schemes, we obtain by base change a natural restriction map R : Perf(X) −→ Perf(∂̂X),
where Perf(X) := Map(X,Perf) is the derived stack of perfect complexes on X. Similarly, we get a

restriction map R′ : Perf(X) −→ Perf(∂̂(X ′)). Corollary 2.1.6 can then be refined by stating that we
have a commutative triangle of derived stacks

Perf(∂̂X)

π∗

��

Perf(X)

R
77

R′ ''

Perf(∂̂X ′),

with π∗ an equivalence.

We do not know if the above corollary is also true for the bigger stack Perf(∂̂X). Because of

[He-Po-Ve, Thm. 7.3] the inclusion Perf ex(∂̂X)(S) ⊂ Perf(∂̂X)(S) is an equivalence as soon as S is a

smooth variety over k, so the restriction of Perf(∂̂X) to smooth varieties does not depend on X̄. We
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believe that this remains true for a general derived affine scheme S but we could not find a reference (or
prove it). The question is essentially equivalent to proving the analogue of the localization for coherent
complexes of [He-Po-Ve] where coherent complexes are replaced by perfect complexes.

2.2 Flat perfect complexes on the formal boundary

In the last section we have seen the derived stack of perfect complexes on the formal boundary of X.
In this section we use similar ideas to introduce the derived stack Perf∇(∂̂X) of perfect complexes

endowed with flat connections on ∂̂X. When X = A1 the underived version of Perf∇(∂̂X) has been
intensively studied in [Ra] (for vector bundles instead of perfect complexes).

We start with a similar setting as in the previous section, a smooth variety X and a good compact-
ification X ↪→ X̄, with D ⊂ X̄ the divisor at infinity. In order to define the derived stack of perfect
complexes on ∂̂X we first define certain sheaves of graded mixed cgda’s on Xet the small étale site of
X̄ and will define perfect complexes as certain graded mixed dg-modules.

Fix a commutative smooth k-algebra A of finite type. We consider DR(A) the de Rham algebra of
A (over k), as a graded mixed cdga over k. Concretely, DR(A) = SymA(Ω1

A[1]) considered as Z-graded
cdga with zero differential and for which Ω1

A sits in weight 1. The graded cdga DR(A) comes equiped
with an extra differential, namely the de Rham differential, which we denote here by ε. This extra
structure makes DR(A) into a graded mixed cdga in the sense of [PTVV, CPTVV]. When A comes
equiped with an ideal I ⊂ A, we denote by D̂R(A) the I-adic completion of DR(A) which is defined
by

D̂R(A) := limnDR(A/In),

where the limit is taken in the category of graded mixed cdga’s. It is easy to see that the underlying
graded cdga of D̂R(A) is naturally isomorphic to SymÂ(Ω̂1

A[1]), the symmetric algebra over the com-

pletion of Ω1
A. The mixed structure on SymÂ(Ω̂1

A[1]) simply is the canonical extension of the de Rham
differential on A to its completion.

Let SpecA −→ X̄ be an étale map, and I ⊂ A the ideal of definition of the divisor D. We have the
completed de Rham graded mixed cdga D̂R(A). When SpecA −→ X̄ varies in the small étale site of X̄
this defines a sheaf of graded mixed cdga’s D̂R on X̄et. This sheaf is set theoretically supported on D
and thus defines a sheaf of graded mixed cdga on Det. As before, the sheaf as a version with coefficients
in a cdga B over k denoted by D̂RB. Its values on an étale U = SpecA −→ X̄ is the graded mixed
cgda

D̂RB(U) := limn(DR(A/In)⊗k B).

The sheaf D̂RB is now a sheaf of graded mixed B-linear cdga’s. Note that the weight zero part of D̂RB

is the sheaf ÔD,B constructed before. We can therefore invert a local equation of the divisor D to define

D̂R
o

B, another sheaf of graded mixed B-linear cdga. For an étale map U = SpecA −→ X̄ on which the

divisor D is principal of equation f ∈ A, we have D̂R
o

B(U) := D̂RB(U)[t−1]. The part of weight zero

in D̂R
o

B(U) is of course ÔoD,B defined in our last section.

For S = SpecB ∈ dAffk, we let Parf∇(∂̂X)(S) be the dg-category of sheaves E of graded mixed

D̂R
o

B(U)-dg-modules which are locally free of weight 0 in the following sense: locally on X̄et, the

underlying graded D̂R
o

B-dg-module E (obtained by forgetting the mixed structure) is of the form

D̂R
o

B⊗ÔoD,B E(0) for a perfect ÔoD,B-module E(0) (considered of weight zero). When S = SpecB varies
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in dAff , the dg-categories Parf(∂̂X)(S) define an dg-functor Perf∇(∂̂X) : dAffop −→ dgCat. There
is an obvious forgetful map of derived prestacks

Perf∇(∂̂X) −→ Perf(∂̂X)

sending a graded mixed dg-module to its part of weight 0.

Definition 2.2.1 1. The derived pre-stack of flat perfect complexes on ∂̂X is Perf∇(∂̂X) defined
above.

2. The derived pre-stack of extendable flat perfect complexes on ∂̂X is defined to be the fiber product
of derived pre-stacks

Perf∇,ex(∂̂X)×Perf(∂̂X) Perf ex(∂̂X).

By construction, Perf∇,ex(∂̂X) is a full derived sub-prestack in Perf∇(∂̂X) defined by the local
condition ”the underlying perfect complex is extendable”. The main result of this part is the following
descent and invariance statements.

Proposition 2.2.2 With the notations above we have.

1. The derived pre-stacks Perf∇(∂̂X) and Perf∇,ex(∂̂X) are stacks.

2. The derived stack Perf∇,ex(∂̂X) only depends on X.

Proof: The key to for the proof of the above proposition is the interpretation of graded mixed
structures as actions of the group stack H := BGa n Gm, the semi-direct product of the classifying
stack of the formal additive group with the multiplicative group (see proposition 1.1.1). For a graded
mixed cdga Ω, the group stack H acts on Ω by cdga automorphisms, where the Gm-action provides the
grading and the BGa-action induces the mixed structure. This action induces an action of H on the k-
linear dg-category Parf(Ω) of perfect dg-modules over Ω. The dg-category of graded mixed Ω-modules
which are perfect as Ω-dg-modules can be recovered by taking invariants (see 1.1.1)

Parf gr,ε(Ω) ' Parf(Ω)H.

This presentation of graded mixed dg-modules easily implies the above proposition as follows.
For (1), the derived prestack Perf∇(∂̂X) is obtained as follows. We start with the prestack

Parf(D̂R
o
) of perfect D̂R

o
-dg-modules, where D̂R

o
is simply considered as a sheaf of graded cdga’s.

This is a derived prestack with values in H-equivariant dg-categories. It is moreover a stack, by noticing
that D̂R

o
is a cdga inside Perf(∂̂X) and by using [He-Po-Ve, Prop. 3.23]. This implies that its fixed

points by H remains a stack (because taking fixed points commutes with taking limits). This stack is

denoted by Parf gr,ε(D̂R
o
), and is the stack of graded mixed D̂R

o
-dg-modules which are perfect over

D̂R
o
. By definition Perf∇(∂̂X) is a sub-prestack of Parf gr,ε(D̂R

o
) defined by a local condition and

thus is a stack. The fact that Perf∇,ex(∂̂X) is also a stack now follows from the fact that it is defined
as a fiber product of stacks.

For (2) we use a similar argument. The derived stack Perf∇,ex(∂̂X) can be expressed as a full

sub-stack of the fixed points by H acting on D̂R
o
-dg-modules inside Perf ex(∂̂X) (note that as a graded

cdga D̂R
o

lives in Perf ex(∂̂X)). Therefore, to prove that Perf∇,ex(∂̂X) is independant of the choice

of X̄ we have to check that the stack of H-equivariant dg-categories Parf(D̂R
o
) only depends on X.

This reduces to the following lemma.
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Lemma 2.2.3 Let π : X̄ ′ −→ X̄ be a morphism between two good compactifications of X. Let D′ =
π−1(D) so that π induces an isomorphism between X̄ ′ − D′ and X̄ − D. Let D̂R

o

X̄ and D̂R
o

X̄′ be the
corresponding two sheaves of graded mixed cdga constructed above. Then, for any SpecB ∈ dAff , we
have.

1. There is a pull-back map
fpi : π−1(D̂R

o

X̄,B) −→ D̂R
o

X̄′,B

of sheaves of graded mixed cdga on X̄ ′et.

2. The above map, when forgetting the graded mixed structures, induces an equivalence of dg-categories

π∗ : Parf(D̂R
o

X̄,B) ' Parf(D̂R
o

X̄′,B).

Before giving a proof of the lemma, let us mention how this finishes the proof of the proposition.
The fact that fπ exists implies that the dg-functor π∗ also exists by simply pulling back graded mixed
dg-modules. Moreover, as fπ is a morphism of graded mixed cdga’s, it is clear that the dg-functor π∗

is naturally H-equivariant. As it is an equivalence it also induces an equivalence on the fixed points
dg-categories, and the result follows easily by considering the full sub-dg-categories corresponding to
Perf∇,ex(∂̂X).

Proof of the lemma: The existence of the map fπ simply follows from functoriality of the construction
A 7→ DRB(A), A 7→ D̂RB(A) and A 7→ D̂RB(A)[t−1], as functors from smooth k-algebras of finite type

to graded mixed cdga. To prove (2), we observe that D̂R
o

X̄,B and D̂R
o

X̄′,B, when considered as sheaves

of cdga are perfect over ÔoD,B and ÔoD′,B and extendable. They can thus be considered as graded cdga’s

inside the symmetric monoidal the dg-categories Perf ex(∂̂X)(B) and Perf ex(∂̂X ′)(B). By corollary
2.1.6 we know that pull-back along π induces an equivalence symmetric monoidal of dg-categories

π∗ : Perf ex(∂̂X)(B) ' Perf ex(∂̂X ′)(B).

To finish the proof it remains to show that the symmetric monoical equivalence above π∗ sends the cdga
D̂R

o

X̄,B to D̂R
o

X̄′,B. There are canonical restriction maps

R : Perf(X) −→ Perf(∂̂X) R′ : Perf(X) −→ Perf(∂̂X ′)

and we have π∗ ◦R′ ' R. Moreover, by construction we have

D̂R
o

X̄,B ' R(DRX) D̂R
o

X̄′,B ' R′(DRX),

where DRX = SymOX (Ω1
X [1]) as a sheaf of perfect cdga’s over OX . The lemma is proven and this

finishes the proof of the proposition 2.2.2. 2

To finish this section, as for the case of perfect complexes, there is a restriction morphism

R : Perf∇(X) −→ Perf∇,ex(∂̂X) ⊂ Perf∇(∂̂X),

from the derived stack Perf∇(X) of extendable perfect complexes endowed with flat connections to the
derived stack of perfect complexes with flat connections on the formal boundary of X. It is defined
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as follows. First of all the derived stack Perf∇(X) is defined as the derived stack of graded mixed
dg-modules over DRX , the de Rham algebra of X, which are perfect of weight 0. More precisely, for
S = SpecB ∈ dAff , then Perf∇(X)(S) is defined to be the ∞-category of graded mixed DRX ⊗k B-
dg-modules E, such that E ' E(0)⊗OX DRX as a graded dg-modules over B, and where E(0) is perfect
over OX ⊗k B. The restriction map R is then induced by the natural morphism of sheaves of graded
mixed cdga over X̄et

DRX ⊗k B −→ D̂R
o

B.

Locally on an étale affine SpecA −→ X̄ on which D is principal of equation t ∈ A, this morphism is
the natural map

DR(A⊗k B)[t−1] −→ D̂R(A⊗k B)[t−1]

induced by the completion morphism A⊗k B −→ limn(A/In ⊗k B).

This defines a restriction map R : Perf∇(X) −→ Perf∇(∂̂X), which covers the restriction map of

perfect complexes R : Perf(X) −→ Perf(∂̂X). As the later map factors through extendable perfect
complexes (because any perfect complex on X×S extends to X̄×S up to a retract), we find a restriction

map Perf∇(X) −→ Perf∇(∂̂X).

Definition 2.2.4 The restriction map is the morphism of derived stacks

R : Perf∇(X) −→ Perf∇,ex(∂̂X)

defined above.

2.3 De Rham cohomology of the formal boundary and compactly sup-
ported cohomology

To finish this part, let us describe the Hom-complexes of the dg-category Perf∇(∂̂X)(B) in terms
of hypercohomology of certain complexes of sheaves on D and relate this to a notion of compactly
supported de Rham cohomology. The notion of de Rham cohomology with compact supports already
appeared in [Ba-Ca-Fi], but our treatment here is somehow new as it is based on the theory of Tate
objects and their duality (see [He]), which makes the theory also available over any base cdga B. In
this part we give the constructions and definitions of compactly supported cohomology. The duality
will itself be studied later in our section §4.2.

For this, we fix a good compactification X ↪→ X̄ with divisor at infinity D. For any connective cdga
B and any object E ∈ Perf∇(∂̂X)(B), we define a sheaves of B-dg-modules on DZar as follows. By

definition, E is a sheaf of graded mixed modules over D̂R
o

B. We define |E| to the sheaf of B-modules
Homdggrε

(k,E), of graded mixed morphisms from the unit k to E. This is also called the de Rham
complex of E completed along D. Note that it is a priori given as a infinite product

|E| =
∏
i≥0

E(i)[−2i]

where the differential is the sum of the cohomological differential and the mixed structure. However,
in our situation this infinite product is in fact a finite product, as E(i) is non-zero only for a finite

number of index i (because E is free as a graded module and D̂R
o

B only has weight in degree [0, d]
where d = dimkX). The sheaf B-dg-modules |E| is also called the completed de Rham complex of E.
We then set the definition below.
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Definition 2.3.1 With the notation above, the de Rham cohomology of ∂̂X with coefficients in E is
the B-module defined by

HDR(∂̂X,E) := H(D, |E|) ∈ B − dg.

With the above notation, let E and F be two objects in Perf∇(∂̂X)(B). The dg-category of graded

mixed modules over D̂R
o

B has a canonical symmetric monoidal structure, for which the tensor product
is given by tensoring the underlying B-dg-modules (see [PTVV, CPTVV]). As perfect complexes of

ÔoD,B-modules form a rigid symmetric monoidal dg-category, we deduce easily that Perf∇(∂̂X)(B) is

also rigid. We can then form E∨ ⊗ÔoD,B F , which is a new graded mixed D̂R
o

B-modules and an object

in Perf∇(∂̂X)(B). For sake of simplicity this object will simply be denoted by E∨ ⊗ F . We then have
a natural quasi-isomorphism

HomPerf∇(∂̂X)(B)(E,F ) ' H∗DR(∂̂X,E∨ ⊗ F ),

given a wanted interpretation of mapping complexes of Perf∇(∂̂X)(B) in terms of de Rham cohomology

of ∂̂X.

Remark 2.3.2 For any connective B, and any object E ∈ Perf∇(∂̂X)(B) the complex of sheaves |E|
on DZar is made of acyclic sheaves on affines. In particular, the hyper-cohomology complex H(D, |E|)
can be computed by a finite limit using an affine cover of D. In particular, if |E| is locally perfect as a
B-module on D, then H(D, |E|) is a perfect B-module.

We now use the formal boundary ∂̂X in order to define a notion of cohomology with compact
supports, both for perfect complexes and perfect complexes with flat connections. We start with a
connective cdga B and a perfect complex E on X×S, where S = SpecB. As explained in the previous
section (before definition 2.2.4) we have its restriction R(E) ∈ Perf(∂̂X)(B), and by functoriality an
induced map on cohomology

H(X,E) = Hom(OX , E) −→ H(∂̂X,R(E)) = Hom(R(OX), R(E)).

The cohomology of X with compact supports and with coefficients in E is defined to be the fiber of
the above map. It is denoted by

Hc(X,E) := fib(H(X,E) −→ H(∂̂X,R(E))) ∈ B − dg.

By construction this is a B-dg-module. This is note quite enough for our purpose, as this B-dg-module
turns out to be the realization of a natural pro-object that we will now describe. This pro-structure
is going to be very important for us, as it will makes possible to state that compactly supported
cohomology is dual to cohomology, even if the later is infinite dimensional. For sake of simplicity we
assume that E extends to our fixed good compactification as a perfect complex Ē on X̄ × S. It is
not always possible to find Ē in general although it always exists if B = k (because K−1(X) = 0).
Moreover, an extension always exists up to a retract, assuming the existence of Ē is thus not a true
restriction. Let us also not that in our specific situations of application E will always come with an
extension to X̄.
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Using the formal gluing, we find that there is a cartesian square of B-dg-modules

H(X̄, Ē) //

��

H(X,E)

��

H(D̂, ˆ̄E) // H(∂̂X,R(E)).

Here D̂ is the formal completion of X along D, and H(D̂, ˆ̄E) is defined by

H(D̂, ˆ̄E) := limnH(D(n), j
∗
nĒ),

where jn : D(n) := SpecOX/InD −→ X is the n-th infinitesimal thickening of D inside X. From the
diagram above we have that Hc(X,E) can also be described as the fiber of

H(X̄, Ē) −→ limnH(D(n), j
∗
nĒ).

This above morphism can itself be considered as a morphism of pro-objects in Parf(B). Therefore,
this allows us to defined a pro-perfect B-module by

H̃c(X,E) := fib(H(X̄, Ē) −→ ”limn”H(D(n), j
∗
nĒ)) ∈ Pro− Parf(B).

It is possible to show that the above definition is independent of any choices, either X̄ or Ē, but we
will not do it here. It will be a consequence of Serre duality with supports that will be studied in our
section §4.2, as the dual B-module turns out to be canonical equivalent to H(X,E∨ ⊗OX ωX), which
only depends on X and E.

Definition 2.3.3 With the above notation, the refined cohomology with compact supports of X with
coefficients in E, is the pro-perfect B-module H̃c(X,E) defined above.

One nice aspect of the refined version above is that it is obviously compatible with base changes of
B. Let B → B′ be any morphism of connective cdga’s, then the natural map

H̃c(X,E)⊗̂BB′ −→ H̃c(X,E ⊗B B′)

is an equivalence of pro-perfect B′-modules. Here we have denoted by

⊗̂BB′ : Pro− Parf(B) −→ Pro− Parf(B′)

the functor induced on pro-objects by the usual base change ⊗BB′ : Parf(B) −→ Parf(B′).
Another aspect is the fiber sequence of B-modules

Hc(X,E) // H(X,E) // H(∂̂X,R(E)).

The first map can be easily checked to come from a natural morphism of ind-pro-perfect B-modules
H̃c(X,E) → H(X,E), where H(X,E) is considered as a ind-perfect B-module in the canonical way

(using Ind − Parf(B) ' B − dg). This implies that H(∂̂X,R(E)) is itself the realization of an ind-

pro-perfect module H̃(∂̂X,R(E)) ∈ Ind− Pro− Parf(B), sitting in a triangle

H̃c(X,E) // H(X,E) // H̃(∂̂X,R(E)).
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By construction this ind-pro-perfect object is an extension of a pro-perfect by an ind-perfect, and thus
by definition is a Tate B-module in the sense of [He].

We now turn to the case of an object E ∈ Perf∇(X)(B). The naive cohomology with compact
supports is defined as

Hc,DR(X,E) := fib(HDR(X,E) −→ HDR(∂̂X,R(E))) ∈ B − dg.

Again, we will now see that this B-module is the realization of a natural pro-perfect B-module denoted
by H̃c,DR(X). We assume again that the underlying perfect complex E(0) of E extends to a perfect
complex Ē(0) on X̄×S. Using this, it is easy to see that the sheaf of B-modules |R(E)| on D possesses
a natural structure of a sheaf of ind-pro B-modules. Indeed, it is of the form ⊕iR(E(i))[−2i] with a
suitable differential. Each R(E(i)) is itself of the form Ē(0)⊗OX̄ Ωi

X̄
⊗OX̄ Ô

o
D,B. As Ô0

X,B has a canonical
ind-pro structure, and as Ē(0) ⊗OX Ωi

X ⊗OX − commutes with limits and colimits of OX-modules, we

see that each R(E)(i) is the realization of a canonical sheaf of ind-pro B-module. Moreover, as ÔO
o

D,B

is ind-pro perfect as a B-module, this endows |E| with a natural structure of sheaf of Tate B-modules.
This provides a canonical Tate structure on hyper-cohomology of D with coefficients in |E|, that is de

Rham cohomology of ∂̂X with coefficients in E. We denote this Tate B-module by H̃DR(∂̂X,R(E)).

The restriction map R induces a morphism HDR(X,E) −→ H̃DR(∂̂X,R(E)), which is a morphism of
ind-pro perfect B-modules if one endows the left hand side with the canonical structure of an ind-perfect
B-module structure. It thus lifts to a morphism of Tate B-modules

H̃DR(X,E) −→ H̃DR(∂̂X,R(E)).

Definition 2.3.4 With the notation above, the refined de Rham cohomology of X with compact sup-
ports with coefficients in E is the tate B-module defined by

H̃c,DR(X,E) := fib(H̃DR(X,E) −→ H̃DR(∂̂X,R(E))).

We first notice that the ind-pro-perfect B-module structure on H̃c,DR(X,E) is in fact only pro-
perfect (in particular it is a Tate B-module in the sense of [He]). This can be seen by reducing to the
case of perfect complexes without connections, previously treated. Indeed, the complexes of sheaves |E|
and |R(E)| are canonically filtered using their Hodge filtrations. The graded layers of this filtration on

H̃c,DR(X,E) are H̃c(X,Ω
i
X⊗OX E(0))[−i], and thus as pro-perfect. As this filtration is finite, we deduce

that ind-pro object H̃c,DR(X,E) is filtered with associated graded being pro-perfect. This implies that

H̃c,DR(X,E) itself is pro- perfect. We thus have proven the following corollary.

Corollary 2.3.5 With the notations and assumptions above the ind-pro perfect B-module H̃c,DR(X,E)

is pro-perfect. Furthermore the ind-pro perfect B-module H̃DR(∂̂X,R(E)) is a Tate B-module in the
sense of [He].

As for the case of perfect complexes, the formation of H̃c,DR(X,E) commutes with base change over
B. For any B → B′ of connective cdga’s, the natural morphism

H̃c,DR(X,E)⊗̂BB′ −→ H̃c,DR(X,E ⊗B B′)

is an equivalence of pro-perfect B′-modules.
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3 Formal properties of moduli functors

We start by some general reminders on formal properties of derived stacks (see [To-Ve], [Lu2]). Let F ∈
dAffk be a derived stack over k. For any derived affine scheme mapping to F , u : U = SpecB −→ F ,
and any connective B-dg-module M , we can define the space of derivations of F on U with coefficients
in M , as the fiber taken at u of the restriction map

F (B ⊕M) −→ F (B),

where B⊕M is the trivial square zero extension of B by M . Let us denote this space by Deru(F,M) ∈ T.
For any morphism B −→ B′ of connective cdga’s and any connective B′-dg-module M ′, we have a
canonical morphism B ⊕M ′ −→ B′ ⊕M ′ covering the map B → B′. Therefore, for any commutative
diagram of derived stacks

U = Spec

u
$$

f // U ′ = Spec ,B′

u′xx
F

there is a natural induced morphism on the corresponding spaces of derivations

f ∗ : Deru(F,M) −→ Deru′(F,M
′).

Definition 3.0.1 With the notation above.

1. The derived stack F has a cotangent complex at u : U = SpecB −→ F if there is an eventually
connective B-dg-module LF,u and functorial equivalences

MapB−mod(Lu,F ,M) ' Deru(F,M).

2. We say that F has a (gobal) cotangent complex if it has cotangent complexes at all maps u : U =
SpecB −→ F , and if moreover for commutative diagrams

U = Spec

u
$$

f // U ′ = Spec , B′

u′xx
F

the induced morphism Deru(F,M)→ Deru′(F,M
′) is an equivalence.

As explained in [To-Ve, Lu2] LF,u, if it exists, is uniquely characterized by the∞-functor Deru(F,−).
As for condition (2), it is equivalent to states that the natural morphism Lu,F⊗BB′ → Lu′,F is an equiv-
alence of dg-modules.

Let SpecB ∈ dAffk be a derived affine scheme and M a connective B-module. Let d : B −→M [1]
be a k-linear derivation, which by definition means a section of B ⊕M −→ B inside the ∞-category
of cdga’s over k. We remind that the square zero extension of B by M with respect to d, denoted by
B ⊕dM is defined by the cartesian square of cdga’s (see [To-Ve])

B ⊕dM //

��

B

0

��
B

d
// B ⊕M [1]
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where 0 denotes the natural inclusion of B as a direct factor in the trivial square zero extension B⊕M [1].

Definition 3.0.2 Let F be a derived stack.

1. We say that F is inf-cartesian if for any B, M and d as above the square

F (B ⊕dM) //

��

F (B)

0
��

F (B)
d

// F (B ⊕M [1])

is cartesian.

2. We say that F is nil-complete if for any SpecB ∈ dAffk with postnikov tower {B≤n}n the natural
morphism

F (B) −→ lim
n
F (B≤n)

is an equivalence.

Suppose now that F is a derived stack which is inf-cartesian. For any x : SpecB −→ F , we have
an ∞-functor

TF,x : B −Modc −→ T,

from connective B-modules to spaces, that sends M to the fiber of F (B⊕M) −→ F (B) at the point x.
This∞-functor restricts to the full sub-∞-category of B-modules of the form B[i]n for various i ≥ 0 and
various n. Because F is inf-cartesian, the∞-functor TF,x preserves finite products as well as the looping
construction Ω∗ (i.e. the natural map TF,x(M [−1]) → Ω∗(TF,x(M)) is an equivalence of spaces). This
implies that there exists a unique B-dg-module TF,x such that TF,x(B[i]n) ' MapB−Mod(B[−i]n,TF,x)
for all i ≥ 0 and n. We still denote this complex by TF,x, and call it the tangent complex of F at x.
The following result is an easy criterion for existence of cotangent complexes.

Lemma 3.0.3 Let F be a derived stack which is inf-cartesian and x : SpecB −→ F . Assume that the
two conditions below are satisfied.

1. The ∞-functor M 7→ TF,x(M) commutes with arbitrary colimits.

2. The B-module TF,x is perfect.

Then F has a cotangent complex at x and moreover we have LF,x is naturally identified with T∨F,x, the
B-linear dual of TF,x.

Proof: We consider the two ∞-functors

B −Modc −→ T,

sending M to either MapB−Mod(B,TF,x ⊗B M) or TF,x(M). There is a canonical equivalence

MapB−Mod(B,TF,x ⊗B −) ' TF,x(−)

when restricted to the full sub-∞-category of objects of the form B[i]n. However, these objects generate
B −Modc by colimits, so by condition (1) the above equivalence remains an equivalence of ∞-functors
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defined on the whole ∞-category B −Modc. In formula we have for any connective B-module M a
natural equivalence

MapB−Mod(B,TF,x ⊗B M) ' TF,x(M).

When FF,x is moreover perfect, this implies that TF,x(M) ' MapB−Mod(T∨F,x,M), and thus that the
cotangent complex of F at x exists and is LF,x = T∨F,x. 2

3.1 Infinitesimal properties of Perf∇

We now study the formal properties of the derived moduli functors Perf∇(X) and Perf∇(∂̂X) con-
structed in the previous section. The main result is the following.

Proposition 3.1.1 Let X be a smooth algebraic variety over k and let us fix a good compactifica-
tion X ↪→ X̄. Then, the two derived moduli stacks Perf∇(X) and Perf∇(∂̂X) are nilcomplete and
infinitesimally cartesian.

Proof: We start by the case of Perf∇(X). By construction this derived stack is a derived mapping
stack and can be written of the form Perf∇(X) ' MapdStk

(XDR,Perf), where XDR is the de Rham
functor associated to X (see for example [Ga-Ro] for the relation between D-modules and sheaves
on XDR). We can write X = colimSpecAi as a finite colimit of affine schemes, and thus XDR '
colim(SpecAi)DR. The derived stack Perf∇(X) is then the limit of Perf∇(SpecAi). As a limit of
nilcomplete (resp. infinitesimally cartesian) derived stacks is again nilcomplete (resp. infinitesimally
cartesian), we have reduced the statement to the case where X = SpecA is furthermore afffine. We
conclude by the following lemma.

Lemma 3.1.2 Let F be a nilcomplete (resp. infinitesimally cartesien) derived stack over k. For any
affine scheme X, the derived mapping stack MapdStk

(X,F ) is again nilcomplete (resp. infinitesimally
cartesian).

Proof of the lemma: LetX = SpecA, and B any connective cdga. Assume first that F is nilcomplete.
We consider the Postnikov tower {B≤n}n of B. The natural map

MapdStk
(X,F )(B) −→ lim

n
MapdStk

(X,F )(B≤n)

can be written as
F (A⊗k B) −→ lim

n
F (A⊗k B≤n).

As k is a field, A is a flat over k, and the tower {A⊗k B≤n}n is a Postnikov tower for A⊗k B, and thus
by the assumption on F the above morphism is an equivalence.

Let us now assume that F is infintesimally cartesian. Let B ⊕dM be a square zero extension of B
by a connective module M , given by a cartesian square

B ⊕dM //

��

B

d

��
B

0
// B ⊕M [1].
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Again because A is flat over k, tensoring with A induces a pull-back diagram of connective cdga’s

C ⊕dMC
//

��

C

d

��
C

0
// C ⊕MC [1],

where C := A⊗k B and MC := C ⊗B M . As F is assumed infinitesimally cartesian, the image of this
diagram by F remains a pull-back. By definition this diagram is equivalent to

MapdStk
(X,F )(B ⊕dM) //

��

MapdStk
(X,F )(B)

��
MapdStk

(X,F )(B) //MapdStk
(X,F )(B ⊕M [1]).

This shows that MapdStk
(X,F ) is infintesimally cartesian. 2

We now analyse the case of Perf∇(∂̂X). The argument here is slightly different as this is not a
derived mapping stack. We start by writting X̄ = colimSpecAi as a colimit of open affine sub-schemes.
By doing so we can assume that the divisor D is principal on each SpecAi, defined by an equation
fi ∈ Ai. By the descent result of [He-Po-Ve], we know that Perf∇(∂̂X) = limi Fi is then equivalent to
a limit of derived stacks. These derived stacks Fi can be described as follows. For each connective cdga
B, we have the completeted de Rham algebra of Ai ⊗k B defined by

D̂RB(Ai) := lim
j

(DR(Ai/(fi)
j)⊗k B).

This is a B-linear graded mixted cdga for which the weight zero part is Âi ⊗k B := limj(Ai/(fi)
j⊗kB).

By inverting the weight zero element fi we have a new graded mixted cdga

D̂R
o

B(Ai) := lim
j

(DR(Ai/(fi)
j)⊗k B)[f−1

i ].

The derived stack Fi is then the functor sending B to the space of all graded mixted D̂R
o

B(Ai)-dgmodules

which are perfect as Â⊗k B-dgmodules. Let us drop the index i and simply write A for one of the
Ai (and f for fi). The derived stacks under considerations naturally carry structures of stacks in
dg-categories and will be considered as such in the sequel.

We have a forgetful dg-functor

D̂R
o

B(A)− dggrε −→ D̂R
o

B(A)− dg

from graded mixed dg-modules to dg-modules. According to corollary 1.2.3 this exhibits the left hand
side as the dg-category of fixed points in D̂R

o

B(A) − dg for the natural action by the group H on the

right hand side. Restricting to dg-modules which are perfect over Â⊗k B on both sides provides a
similar forgetful dg-functor

F (A) −→ Parf(D̂R
o

B(A)).

Lemma 3.1.3 The ∞-functor B 7→ Parf(D̂R
o

B(A)) is nilcomplete and infinitesimally cartesian (as a
derived stack of dg-categories).
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Proof of the lemma: It is easy to check that if {B≤n}n is the Postnikov tower forB, then { ̂A⊗k B≤n)}n
is a Postnikov tower for Â⊗k B. In the same manner, Â⊗k − will transform a square zero extension
to a square zero extension. The lemma therefore reduces to the fact that the derived stack Perf is
nilcomplete and infinitesimally cartesian. This last assertion is true as Perf is locally geometric (see
[To-Va]). 2

We finish the proof of the proposition by using lemma 3.1.3 and the fact that taking fixed points by
H preserves limits of dg-categories. 2

It is unclear to us that Perf∇,ex(∂̂X) is also nilcomplete and infinitesimally cartesian. Again, we

beleive that the inclusion Perf∇,ex(∂̂X) ↪→ Perf∇(∂̂X) is an equivalence, but are unable to prove this
at the moment. Note also that we mention the compactification X̄ in the statement of the proposition
above as we do not know that Perf∇(∂̂X) is independant of the choice of compactification (as opposed

to Perf∇,ex(∂̂X)).

3.2 Cotangent complexes

We now turn to the study of cotangent complexes of the derived stacks Perf∇(X) and Perf∇(∂̂X).
In general, these cotangent complexes do not exist, except when X is proper. We thus introduce the
following notion.

Definition 3.2.1 Let B be a connective cdga. We say that an object E ∈ Perf∇(X)(B) (resp. E ∈
Perf∇(∂̂X)(B)) is End-Fredholm (or simple Fredholm) if the cotangent complex at E exists and is
perfect.

The computation of the tangent complexes of Perf∇(X) and Perf∇,ex(∂̂X) are standards and is
given by the following proposition.

Proposition 3.2.2 Let B be a connective cdga and E ∈ Perf∇(X)(B) with restriction R(E) ∈
Perf∇,ex(∂̂X)(B).

1. The ∞-functor M 7→ TPerf∇(X),E(M) is equivalent to M 7→ HDR(X,E∨ ⊗ E ⊗B M)[1].

2. The ∞-functor M 7→ TPerf∇(∂̂X),R(E)(M) is equivalent to M 7→ HDR(∂̂X,R(E∨ ⊗ E)⊗B M)[1].

As a direct consequence of the above proposition and the definition of being Fredholm we have the
following direct corollary.

Corollary 3.2.3 Let B be any connective cdga and E ∈ Perf∇(X)(B).

1. The object E is Fredholm if and only if HDR(X,E∨ ⊗ E) is a perfect B-module.

2. The object R(E) is Fredholm if and only if HDR(∂̂X,R(E∨ ⊗ E)) is a perfect B-module.

Proof: (1) By definition it is enough to show that the formation of HDR(X,E∨ ⊗ E) is compatible
with base changes of B. But this is a consequence of the fact that it does so as a Tate B-module, as

23



shown in §2.3. The proof of (2) is similar. 2

We will see later that all objects are Fredholm when B is a field (see corollary 4.2.5). More generally,
if E ∈ Perf∇(X)(B) is any object, we will see that E and R(E) are Fredholm under the condition
that both j∗(E) and j∗(E

∨) are perfect DX ⊗k B-modules in the sense of our appendix (and where
j : X ↪→ X̄ is a good compactification). We refer to corollary 4.2.4 for this important statement which
will be crucial in the proof of the representability theorem.

4 The lagrangian restriction map

In this section we construct a natural shifted lagrangian structure on the restriction morphism

R : Perf∇(X) −→ Perf∇(∂̂X),

which is the de Rham analogue of the well known facts in Betti cohomology (see for instance [Pa-To]).

However, the new feature here is that the derived stacks Perf∇(X) and Perf∇(∂̂X) are not repre-
sentable, and their tangent complexes can be infinite dimensional. We thus have to be careful with
the notion of lagrangian structure itself. The definition of closed forms and isotropic structure is not
problematic as it makes sense on general derived stacks. However, the non-degeneracy conditions in
the definition of lagrangian structures causes a problem as there are a priori no direct relations between
2-forms on a derived stack F and global sections of ∧2LF (even assuming that LF exists).

Non-degeneracy in our setting will have to be defined pointwise, on all field valued points. For this
we use in a crucial manner that the derived stacks Perf∇(X) and Perf∇(∂̂X) are nil-complete and
infinitesimally cartesian, and moreover that their cotangent complexes exist and are perfect at all field
valued points (see proposition 3.1.1 corollary 4.2.5)

4.1 Reminders on forms and symplectic structures

Recall from [PTVV] that for any derived stack F we have a complex of p-forms Ap(F ), and a complex
of closed p-forms Ap,cl(F ), together with a forgetful morphism Ap,cl(F ) −→ Ap(F ). When F = SpecA
is a derived affine scheme, the complex Ap(F ) ∼ ∧pALA simply is the p-th wedge power of the cotangent
complex of A. In the same manner, Ap,cl(F ) ∼

∏
i≥p(∧iALA)[−i] is the completed derived truncated de

Rham complex.
Suppose that F is any derived stack that possesses a cotangent complex LF ∈ Dqcoh(F ) in the sense

recalled in the definition 3.0.1. There is a descent morphism

H(F,∧pOFLF ) −→ Ap(F ).

When F is a derived Artin stack, it is shown in [PTVV] that this morphism is a quasi-isomorphism. In
general this descent morphism has no reason to be a quasi-isomorphism. This fact creates complications
to define the non-degeneracy conditions of 2-forms [PTVV]. In this paper we overcome this complication
by working pointwise on F as follows.

Definition 4.1.1 A derived stack F is formally good if it is infinitesimally cartesian and for any k-field
L and any x ∈ F (L) the tangent complex TxF is perfect over L.
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According to our results proposition 3.1.1 and corollary 4.2.5 the derived stacks Perf∇(X) and

Perf∇(∂̂X) are formally good in the sense above.

Let F be a formally good derived stack and x ∈ F (L) be a field valued point. We can restrict the
functor F to the ∞-category of artinian local augmented L-cdga by sending such a cdga A ∈ dgArt∗L
to the fiber of F (A) −→ F (L) taken at x. We denote this restriction by F̂x which by definition is the
formal completion of F at x. As F is assumed to be infinitesimally cartesian the ∞-functor F̂x is a
formal moduli problem over L in the sense of [Lu3]. It then corresponds to an L-linear dg-lie algebra
Lx whose underlying complex is TxF [−1].

By left Kan extension from artinian to whole connective cdga, the∞-functor F̂x can be itself consider
as a derived stack. As such it possesses a complex of p-forms Ap(F̂x). It turns out that this complex
can be computed purely in terms of the dg-Lie algebra Lx as follows.

Proposition 4.1.2 Let F be a formal moduli problem over L, associated to a dg-lie algebra L. There
is a canonical quasi-isomorphism

Ap(F ) ' HomL−dg(k,∧p(L∨[−1])),

where L∨ is the L-linear dual of L considered as a dg-module over L by the coadjoint action.

Proof: We first prove the statement when F is representable, that is F = SpecA for A ∈ dgArt∗L.
In this case F has cotangent complex LA/L ∈ Dqcoh(F ). By [Lu3] there is a full embedding Dqcoh(F ) ↪→
D(L − dg), and the image of LA/L is the dg-module L∨[−1], as this can be checked easily by using
the universal property of LA/L. Finally, the above full embedding also sends O to k, which implies the
existence of the required equivalence

Ap(F ) = Hom(O,∧pLA/L) ' HomL−dg(k,∧p(L∨[−1])).

This extends easily to the case where F = colimSpecAi is now only pro-representable by a pro-object
” limiAi” in dgArt∗L.

To deduce the general case we use the existence of smooth hyper-coverings proved in [Lu3], which
insure that a general formal moduli problem F can be written as a geometric realization |F∗| of a
simplicial object in pro-representables which moreover satisfies the smooth hyper-coverings condition.
We can then use the same descent argument as done in the algebraic case in [PTVV]. We consider the
formal moduli problem TF [−1] = Map(Spec (k ⊕ k[1]), F ), the shifted tangent of F . Using that F∗ is
a smooth hyper-covering we observe that TF [−1] is again the realization of TF∗[−1]. Passing to the
complex of functions we find that the natural morphism

HomL−dg(k,∧p(L∨[−1])) −→ lim
n
HomLn−dg(k,∧p(L∨n [−1]))

is a quasi-isomorphism (where we have denoted by Ln the dg-Lie algebra corresponding to Fn). This last
descent statement, together with the already treated case of pro-representable F provides the result. 2

Going back to our formally good stack F and x ∈ F (L) a field valued point. Using the proposition
4.1.2 we see that there is a natural restriction map

Ap(F ) −→ Ap(F̂x) ' HomLx−dg(k,∧p(L∨x [−1])) −→ ∧p(L∨x [−1]),

where the last morphism is obtained by forgetting the Lx-module structure.

25



Definition 4.1.3 Let F be a formally good derived stack and ω ∈ Hn(A2,cl(F )) be a closed 2-form of
degree n on F . We say that ω is non-degenerate if for any field valued point x ∈ F (L), the image of ω
by the morphism

A2,cl(F ) −→ A2(F ) −→ ∧p(L∨x [−1]) ' ∧2(T∨F,x)

is a non-degenerate pairing of degree n and induces an equivalence TF,x ' T∨F,x[n].

The above definition is easy to generalize to the relative setting as follows. Suppose now that we
have a morphism of formally good derived stacks f : F −→ F ′, and ω a closed 2-form of degree n on
F ′. Assume that we are given a homotopy to zero h : f ∗(ω) ∼ 0 inside A2,cl(F ). By what we have seen,
for any field valued point x ∈ F (L), the form ω and the homotopy h induces an n-cocycle ωx in ∧2T∨F ′,x
as well as a null homotopy of its image f ∗(ωx) in ∧2T∨F,x. This null homotopy induces a well defined
morphism of complexes

TF,x −→ T∨F/F ′,x[n− 1].

Definition 4.1.4 Let f : F −→ F ′ be a morphism of formally good derived stacks. Let ω be a closed
2-form of degree n on F ′ and h : f ∗(ω) ∼ 0 a co-isotropic structure on f with respect to ω. We say
that the isotropic structure is lagrangian if for any field valued point x ∈ F (L) the induced morphism
of complexes

TF,x −→ T∨F/F ′,x[n− 1]

is a quasi-isomorphism.

4.2 Orientation on the formal boundary

In this section we will prove that the conditions for applying the results of [To3] are satisfied for the
restriction morphism of derived stacks

R : Perf∇(X) −→ Perf∇(∂̂X).

The main step consists of studying Serre duality on ∂̂X and the key ingredient is the construction of
the integration map

or : H(∂̂X,R(ωX)) −→ k[1− d]

where d is the dimension of X (we assume that X is connected for sake of simplicity).

As a start, ωX := Ωd
X is here the canonical sheaf of X. Its restriction to ∂̂X, R(ωX) will still be

denoted by ωX for simplicity. We pick a good compactification X ↪→ X̄ once for all. By the formal
gluing theorem of we have a cartesian sqare

H(X̄, ωX̄)

��

// H(X,ωX)

��

H(D̂, ω̂X̄) // H(∂̂X, ωX).

The boundary map for this cartesian square produces a morphism of complexes over k u : H(∂̂X, ωX) −→
H(X̄, ωX̄)[1]. Composed with Grothendieck trace morphism Hd(X̄, ωX̄) ' k we find the required mor-
phism of complexes

or : H(∂̂X, ωX) −→ k[1− d].
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The map defined above is a version of the residue morphism, for instance it coincides with the usual
residue of forms when X is a curve (and the residues are taken at the points at infinity).

The morphism or is here defined as a morphism of complexes over k. However, the left hand side
is the realization of the ind-pro complex H̃(∂̂X, ωX) as explained in our section §2.3. By construction
the above cartesian square obtained by formal gluing lifts canonically to a cartesian square of Tate
complexes over k. This implies that the boundary morphism mentioned above u also lifts canonically
as a morphism in the ind-pro category. As a result or arises as the realization of a natural moprhism
of Tate complexes

õr : H̃(∂̂X, ωX) −→ k[1− d].

By base change (see §2.3) we have an induced morphism for every connective cdga B

õr : H̃(∂̂X, ωX ⊗k B) −→ B[1− d].

Assume now that B is a connective cdga and E and F are two perfect complexes over X × S, with
S = SpecB. For sake of simplicity we assume that E and F can be extended to perfect complexes on
X̄ × S (but this is not strictly necessary for the results below). We have a composition morphism

H(∂̂X,R(E)∨ ⊗R(F ))⊗B H(∂̂X,R(F )∨ ⊗R(E)⊗ ωX) −→ H(∂̂X,R(E)∨ ⊗R(E)⊗ ωX)

which we can compose with the trace morphism R(E)∨ ⊗ R(E) −→ R(OX), and with the orientation
or in order to get a pairing

H(∂̂X,R(E)∨ ⊗R(F ))⊗B H(∂̂X,R(F )∨ ⊗R(E)⊗ ωX) −→ B[1− d].

This pairing also possesses a canonical lift as a pairing of Tate B-modules. Indeed, we already have
seen that or has such a lift, and composition and trace also are compatible with the ind-pro structures.
We thus have defined a canonical pairing of Tate B-modules

H̃(∂̂X,R(E)∨ ⊗R(F ))⊗̂BH̃(∂̂X,R(F )∨ ⊗R(E)⊗ ωX) −→ B[1− d].

By rigidity there is no lose of generality to assume F = OX . The pairing can then be written as

H̃(∂̂X,R(E)∨)⊗̂BH̃(∂̂X,R(E)⊗ ωX) −→ B[1− d].

By construction, the orientation morphism õr canonically vanishes on H(X,ωX), which implies that the
above pairing induces a new pairing of Tate B-modules

H(X,E∨)⊗̂BH̃c(X,E ⊗ ωX) −→ B[−d].

The following result is Serre duality with compact supports.

Proposition 4.2.1 The above pairing is non-degenerate. It induces an equivalence of Tate B-modules

H̃c(X,E ⊗ ωX) ' H(X,E∨)∨[−d].

Proof: The pairing induces a morphism of B-modules α : H(X,E∨) −→ H̃c(X,E⊗ωX)∨[−d]. Here,

H̃c(X,E ⊗ ωX)∨ is the dual of H̃c(X,E ⊗ ωX) as a Tate module. As H̃c(X,E ⊗ ωX) is pro-perfect this
dual is a genuine B-module. We must show that the above morphism α is an equivalence. For this, we
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come back to the formal gluing cartesian square, and the definition of the pairing. We have the exact
triangle of Tate B-modules

H̃c(X,E ⊗ ωX) // H(X̄, E ⊗ ωX̄) // ”limn”H(D(n), j
∗
n(E ⊗ ωX̄)).

The right hand side can be written as ”limn”H(D(n), j
∗
n(E) ⊗ ωD(n)

⊗ L), where L is the conormal

sheaf of D(n) ↪→ X. By Serre duality on X̄ and D(n) each n, the restriction map H(X̄, E ⊗ ωX) −→
H(D(n), j

∗
n(E) ⊗ ωD(n)

⊗ L) is dual to the natural map H(D(n), j
∗
n(E∨) ⊗ L)[d − 1] −→ H(X̄, E∨)[d].

Passing to the colimit over n these assemble to the natural map

HD(X̄, E∨)[d] −→ H(X̄, E∨)[d],

where the left hand side is cohomology with supports in D. The cofiber of this map is then natural
equivalent to H(X,E∨)[d]. This constructs a natural equivalence of B-modules

H̃c(X,E ⊗ ωX)∨ ' H(X,E∨)[d].

This equivalence can be checked to be the morphism of the proposition induced by the orientation or. 2

Corollary 4.2.2 The pairing of Tate B-modules

H̃(∂̂X,R(E)∨)⊗̂BH̃(∂̂X,R(E)⊗ ωX) −→ B[1− d]

is non-degenerate.

Proof: We have two exact triangles of Tate B-modules

H̃c(X,E
∨) // H(X,E∨) // H̃(∂̂X,R(E∨))

H̃c(X,E ⊗ ωX) // H(X,E ⊗ ωX) // H̃(∂̂X,R(E ⊗ ωX))

The dual, inside Tate B-modules, of the second triangle is (up to a rotation and shift by −d)

H(X,E ⊗ ωX)∨[−d] // H̃c(X,E ⊗ ωX)∨[−d] // H̃(∂̂X,R(E ⊗ ωX))∨[1− d] .

By the construction of the orientation or, the natural pairing produces a commutative diagram of Tate
B-modules

H̃c(X,E
∨)

��

// H(X,E∨)

��

// H̃(∂̂X,R(E∨))

��

H(X,E ⊗ ωX)∨[d] // H̃c(X,E ⊗ ωX)∨[d] // H̃(∂̂X,R(E ⊗ ωX))∨[d− 1].

The first two vertical morphisms on the left are equivalences by proposition 4.2.1. Therefore the third
left vertical morphism on the right is an equivalence. 2
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The same orientation morphism can be used in order to prove a duality statement for de Rham
cohomology with compact supports. It goes as follows. The complex of sheaves |D̂R

o

B| on D, computing

HDR(∂̂X,R(OX)) is bounded of amplitude contained in [0, d]. Moreover, its last non-zero term is R(ωX).
Therefore, there is a canonical map

H2d−1
DR (∂̂X,R(OX)) −→ Hd−1(∂̂X,R(ωX)).

Composing with the orientation map or : Hd−1(∂̂X,R(ωX)) −→ k[1−d] we get an orientation morphism

HDR(∂̂X,R(OX)) −→ k[1− 2d]. As before it extends naturally as a moprhism of Tate complexes over
k

or : H̃DR(∂̂X,R(OX)) −→ k[1− 2d].

For any connective cdga B and any E ∈ Perf∇(X)(B), the above orientation defined as before two
pairings of Tate B-modules

H̃c,DR(X,E)⊗̂BH̃HDR(X,E∨) −→ B[−2d]

H̃DR(∂̂X,R(E))⊗̂BH̃DR(∂̂X,R(E)∨) −→ B[1− 2d].

Proposition 4.2.3 Both pairing above are non-degenerate and induces natural equivalences of Tate
B-modules

H̃c,DR(X,E) ' H̃DR(X,E∨)∨[1− 2d] H̃DR(∂̂X,R(E)) ' H̃DR(∂̂X,R(E)∨)∨[−2d].

Proof: The proof is by using the Hodge filtrations on the various complexes computing these
cohomology groups. In terms of graded mixed modules these are the filtrations on |E| given by
⊕i≥pE(i)[−2i] ⊂ ⊕iE(i)[−2i]. The associated graded of these filtrations are perfect complexes of
the form E(0) ⊗OX Ωi

X [−i]. The pairings of the proposition are compatible with these filtrations and
the induced pairings are the one for Serre duality of perfect complexes. Therefore the proposition is a
consequence of Serre duality with compact supports (see proposition 4.2.1). 2

One important corollary of the previous results in the following criterion for finiteness of the de
Rham cohomology of ∂̂X.

Corollary 4.2.4 Let E ∈ Perf∇(X)(B) be such that HDR(X,E) and HDR(X,E∨) are both perfect

B-modules. Then the Tate B-module H̃(∂̂(X), R(E)) and H̃c,DR(X,E) are both perfect.

Proof: Using the exact triangle

H̃c,DR(X,E) // HDR(X,E) // H̃DR(∂̂X,R(E))

we see that the Tate B-module H̃DR(∂̂X,R(E)) must be pro-perfect. But corollary 4.2.2 implies that
its dual is also pro-perfect. This implies that it must be perfect. 2

One important consequence is the following.

Corollary 4.2.5 1. Let E ∈ Perf∇(X)(B) be such that HDR(X,E∨⊗E) is perfect over B, then E
and R(E) are both Fredholm in the sense of definition 3.2.1.
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2. If B = k, any E ∈ Perf∇(X)(k) is Fredholm and so is R(E).

Proof: (1) is a direct consequence of corollary 4.2.4 and the fact that both HDR(X,E) and H̃(∂̂(X), R(E))
are stable by base changes of B. For (2), we have to show that for any E ∈ Perf∇(X)(k) the complex
HDR(X,E∨ ⊗ E) is perfect over k. But E∨ ⊗ E is a bounded complex of coherent DX-modules with
holonomic cohomologies. By Berstein theorem the holonomic D-modules are stable by push-forward,
and thus HDR(X,E∨⊗E) is a bounded complex with finite dimensional cohomology and thus perfect. 2

We now are in the position of constructing the lagrangian structure on the restriction morphism
R : Perf∇(X) −→ Perf∇(∂̂X). For this we use the main result of [To3]. The derived stack Perf∇(X) is
indeed the underlying stack of a derived stack in symmetric monoidal rigid dg-categories. According to
[To3] in order to construct a closed 2-form ω on Perf∇(∂̂X), together with an homotopy h : R∗(ω) ∼ 0,
it is enough to:

1. construct a morphism of complexes of k-modules

or : HDR(∂̂X,R(OX)) −→ k[1− 2d]

together with a homotopy to zero of the restriction

R∗(or) : HDR(X,OX) −→ k[1− 2d]

2. prove that for any connective cdga B the induced morphisms

HDR(∂̂X,R(OX))⊗k B −→ HDR(∂̂X,R(OX)⊗k B)

HDR(X,OX)⊗k B −→ HDR(X,OX ⊗k B)

are equivalences of B-modules.

The statement (2) is true thanks to corollary 4.2.5. The construction of or has been done previously
in this section. Let us recall that it comes from the cartesian square

H(X̄, ωX̄) //

��

H(X,ωX)

��

H(D̂, ĵ∗(ωX)) // H(∂̂X,R(ωX)),

and its boundary map Hd−1(∂̂X,R(ωX)) −→ Hd(X̄, ωX̄) ' k. Precomposing with the canonical map

H2d−1
DR (∂̂X,R(OX)) −→ Hd−1(∂̂X,R(ωX)) provides the orientation morphism

or : HDR(∂̂X,R(OX)) −→ k[1− 2d].

By construction, the composition Hd−1(X,ωX) −→ Hd−1(∂̂X,R(ωX)) −→ Hd(X̄, ωX̄) is the zero map
so a null homotopy of the morphism R∗(or) : HDR(X,OX) −→ k[1 − 2d] is given by a morphism
H2d
DR(X,OX) −→ k. If X is proper, we take this map to be the natural isomorphism. If X is not proper

then H2d
DR(X,OX) = 0 and this map is the zero map.

By the main result of [To3], we have that the derived stack Perf∇(∂̂X) carries a canonical closed 2-
form ω of degree 3−2d. Moreover the pull-back form R∗(ω) comes equiped with a natural null-homotopy
h : R∗(ω) ∼ 0. We thus have proved the following statement.
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Corollary 4.2.6 The morphism of derived stacks R : Perf∇(X) −→ Perf∇(∂̂X) carries a canonical
isotropic structure of degree 2− 2d.

As explained in definition 4.1.4, we can evaluate the lagrangian structure to all field valued points
of Perf∇(X). For a given such point E ∈ Perf∇(X)(L), for L a k-field, the morphism induced by the
isotropic structure

TPerf∇(X),E −→ LPerf∇(X)/Perf∇(fbX),E[2− 2d]

becomes, after identifications given by proposition 3.2.2, to the duality morphism

HDR(X,E∨ ⊗ E) −→ H̃c,DR(X,E∨ ⊗ E)∨[−2d].

This last morphism is an equivalence because of proposition 4.2.3.

Corollary 4.2.7 The isotropic structure of corollary 4.2.6 is a lagrangian structure in the sense of
definition 4.1.4.

5 The relative representability theorem

In this last part we prove that the fibers over field valued points of the restriction morphism R are locally
representable by algebraic spaces in the sense of our appendix B. We prove this statement restricting
ourselves to vector bundles endowed with flat connexions. The extension to the perfect complexes set-
ting can be restricted to this special case by truncation. We omit the details in this work and leave this
to the interesting reader.

We first consider the derived substack Vect∇(X) ⊂ Perf∇(X) consisting of all objects whose un-
derlying OX-module is a vector bundle. In more explicit terms, for a connective cdga B, an object
E ∈ Perf∇(X)(B) lies in Vect∇(X)(B) if the OX ⊗k B-module E(0) is locally free of finite rank. We

define similarly Vect∇(∂̂X)(B) ⊂ Perf∇(∂̂X)(B) as objects E such that E(0) is locally free of finite
rank as a ÔoD,B-module.

We fix once for all V∞ ∈ Vect∇(∂̂X)(k), a vector bundle with flat connexion on the formal boundary

of X. The fiber of the restriction morphism R : Vect∇(X) −→ Vect∇(∂̂X) taken at V∞ will be denoted
by Vect∇V∞(X). It is the derived stack of vector bundles with flat connexions on X whose restriction

to ∂̂X is fixed being V∞. When no component of X is proper, the rank of V∞ fixes the rank of all
objects in Vect∇V∞(X). As the proper case of the results is well known we assume that X has no proper
component.

Theorem 5.0.1 With the notations above, the derived stack Vect∇V∞(X) is a derived quasi-algebraic
space in the sense of definition B.0.2.

Proof: We will prove the theorem by applying the version of Artin-Lurie’s criterion for quasi-algebraic
derived stacks recalled in our appendix B.0.3. By Galois descent we assume that k is algebraically closed.
We also assume that the derived stack Vect∇V∞(X) is not empty, or equivalently that V∞ extends to a
flat vector bundle V on the whole X.

By proposition 3.1.1 we know that Vect∇V∞(X) is infinitesimally cartesian and nil-complete, as it is
defined to be the fiber between two infinitesimally cartesian and nil-complete derived stacks. Let us
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show moreover that it has a global cotangent complex. By definition 3.2.1 this is the content of the
following lemma.

Lemma 5.0.2 Let B be any connective cdga and E ∈ Vect∇V∞(X)(B) an object. Then the image of E

in Vect∇(X)(B) is Fredholm over B.

Proof of the lemma: This is consequence of our corollary 3.2.3. Indeed, we have an exact triangle
of Tate B-modules

H̃c,DR(X,E∨ ⊗ E) // HDR(X,E∨ ⊗ E) // H̃DR(∂̂X,R(E∨ ⊗ E)).

The right hand side is equivalent to H̃DR(∂̂X,R(V ∨∞ ⊗ V∞))⊗k B and by corollary 4.2.5 is perfect over
B. In particular, it is compact and cocompact as an ind-pro-perfect B-module. As HDR(X,E∨ ⊗ E)

is ind-perfect it is cocompact as an ind-pro-perfect B-module. We thus have that H̃c,DR(X,E∨ ⊗ E)
is also cocompact as an ind-prop-perfect B-module. As it is pro-perfect, it must be perfect. But this
implies that HDR(X,E∨ ⊗ E) is perfect and thus that E is Fredholm by corollary 3.2.3. 2

The previous lemma shows that Vect∇V∞(X) has a global cotangent complex which is furthermore

perfect. In order to apply the theorem B.0.3 it remains to prove that Vect∇V∞(X) satisfies the three

conditions (2), (5) and (6). These three statements are properties of the restriction of Vect∇V∞(X) to

underived k-algebras. Let us denote this restriction by Vect∇V∞(X)0.

We start by studying the diagonal morphism of Vect∇V∞(X)0 in order to check condition (2) of
theorem B.0.3.

Lemma 5.0.3 The diagonal morphism

d : Vect∇V∞(X)0 −→ Vect∇V∞(X)0 × Vect∇V∞(X)0

is representable by a scheme of finite type over k.

Proof of the lemma: The statement of the lemma is equivalent to state that for any discrete cdga
B and any two points E and F in Vect∇V∞(X)(B), the sheaf of isomorphisms Iso(E,F ) is representable
by a scheme of finite type over SpecB. This sheaf is an open sub-sheaf inside the sheaf of morphisms
Hom(E,F ) from E to F , it is therefore enough to prove that Hom(E,F ) is representable by a scheme
over finite type over B. The values over a B-algebra B′ of this sheaf is given as the fiber at the identity
of the restriction map

0 // Hom(E,F )(B′) // H0
DR(X,E∨ ⊗ F ⊗B B′) // H0

DR(∂̂X, V ∨∞ ⊗ V∞)⊗k B′.

In other words Hom(E,F ) is the sheaf of morphisms with compact supports (i.e. restrict to the identity

morphism on ∂̂X) from E to F . Because E∨⊗F is automatically Fredholm, the functor sending B′ to
H0
DR(X,E∨ ⊗ F ⊗B B′) is the H0-functor of a perfect complex over B of amplitude [0,∞[, and thus is

representable by a scheme of finite type.

Sublemma 5.0.4 Let K be a perfect complex on a commutative k-algebra B, and suppose that K has
amplitude contained in [0,∞[. Then the functor B′ 7→ H0(K⊗BB′) is representable by an affine scheme
of finite presentation over B′.
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Proof of the sublemma: Because of the amplitude hypothesis K can be presented by a bounded
complex of projective modules of finite rank

0 // K0 // K1 // . . . // Kn

for some integer n. The functor under consideration is then the kernel of K0 −→ K1, that is the kernel
of a morphism between vector bundles over SpecB, and the result follows as affine schemes of finite
presentation over B are stable by fiber products. 2

Coming back to the proof of the lemma 5.0.3, the sublemma and the fact that E∨⊗F is automatically
Fredholm, imply that both functors

B′ 7→ H0
DR(X,E∨ ⊗ F ⊗B B′)

B′ 7→ H0
DR(∂̂X, V ∨∞ ⊗ V∞)⊗k B′

are representable by affine schemes of finite presentation over SpecB. We thus get that the sheaf
Hom(E,F ) is also representable by an affine scheme of finite presentation over SpecB, and thus the
lemma. 2

The previous lemma implies that our condition (2) of theorem B.0.3 is also satisfied. Indeed,
the diagonal morphism has the property that it is nil-complete, inf-cartesian and possesses a perfect
cotangent complex, so the fact that it is representable at the levels of truncations implies that it is
representable (see [To-Ve]). The condition (1) of theorem B.0.3 is also satisfied as no components of X
are assumed to be proper, so for any V ∈ Vect∇(X)(k) the induced morphism

H0
DR(X, V ∨ ⊗ V ) −→ H0

DR(∂̂X,R(V )∨ ⊗R(V ))

is injective. It thus remains to check conditions (5) and (6) of B.0.3.
Let us start by showing that condition (5) of theorem B.0.3 is satisfied by Vect∇V∞(X). By [Mo] we

can chose a good compactification X ↪→ X̄ (possibly stacky) such that the underlying bundle of V∞
extends to a vector bundle V̄ on X̄. We denote by D ↪→ X̄ the divisor at infinity. The connection on
V∞ can then be represented by a connection with poles

∇̄ : V̄ −→ Ω1
X̄(nD)⊗OX̄ V̄

for some integer n. The morphism ∇̄ can also be interpreted as a splitting of the Atiyah extension with
poles along D

E(V, n) : 0 // Ω1
X̄

(nD)⊗OX̄ V̄ // P(V̄ )(nD) // V̄ // 0,

where P(V̄ )(nD) is the vector bundle of principal parts of V̄ possibly with poles of order at most n
along D.

We consider the (underived) stack of pairs (W,∇), consisting of a vector bundle on X̄ and a flat
connection ∇ on W with poles of order at most n along D. By definition this stack sends a commutative
k-algebra B to the groupoid of vector bundles on X̄ × SpecB, together with a splitting ∇ of the exact
sequence of bundles on X × SpecB

E(W,n) : 0 // Ω1
X̄

(nD)⊗OX̄ W̄ ⊗k B // P(W̄ )(nD)⊗k B // V̄ ⊗k B // 0,
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satisfying the integrability condition ∇2 = 0 (as a section of Ω2
X̄

(2nD)⊗OX̄ End(W )). Let denote this
stack by FX̄ . This is obviously an Artin stack locally of finite type over k. In the same manner we can
define FX := Vect∇(X)0, as well as FD̂, the stack of vector bundles W on the formal completion endowed

with flat connections with poles or order at most n along D ↪→ D̂. Finally, we have F∂̂X := Vect∇(∂̂X)0.
Formal gluing (see [He-Po-Ve]) implies that there exists a cartesian square of underived stacks

FX̄ //

��

FD̂

��
FX // F∂̂X .

The stack FD̂ is a limit of Artin stacks locally of finitet type, and thus satisfies the condition (5) of
theorem B.0.3. The stack FX̄ satisfies the conditions (5) and (6) of theorem B.0.3. This implies that
the fiber of the top horizontal, taken at (V̄ , ∇̄), map does satisfy condition (5). But by construction
this fiber is the truncated stack Vect∇V∞(X)0. This implies that Vect∇V∞(X)0 satisfies the conditions (5)
of the theorem B.0.3, as wanted.

We are now left proving that Vect∇V∞(X) satisfies condition (6) of B.0.3. For this, let B = colimiBi

as in (6), and we will assume that each Bi as well as B are noetherian rings. We consider

colimiVect
∇
V∞(X)(Bi) −→ Vect∇V∞(X)(B).

By the lemma 5.0.3 this map is injective and it remains to show it is surjective as well. Let us fix an
object in Vect∇V∞(X)(B), represented by a pair (E,α), of E ∈ Vect∇(X)(B) and α : R(E) ' V∞ ×k B
in Vect∇(∂̂X)(B). As the stack Vect∇(X) of flat bundles on X is locally of finite presentation, there is
an i and Ei ∈ Vect∇(X)(Bi) such that Ei ⊗Bi B ' E.

We now consider the sheaf I of isomorphism between R(Ei) and V∞ ⊗k Bi, which is a sheaf on
the big etale site of affine schemes over Si = SpecBi. This sheaf is a subsheaf in J the sheaf of all
morphisms from R(Ei) to V∞ ⊗k Bi.

Lemma 5.0.5 There exists a non-empty Zariski open Ui ⊂ Si = SpecBi such that the restriction of
the sheaf J is representable by a scheme of finite type over Ui.

Proof of the lemma: This is a similar argument of lemma 5.0.3, what we have to prove is, if we set

E ′i := R(Ei)
∨ ⊗ V∞ ⊗k Bi ∈ Vect∇(∂̂X)(Bi),

then the Tate object H̃DR(∂̂X,E ′)[f−1] is a perfect Bi[f
−1]-module, for some non-zero localization

Bi[f
−1]. For this we use the criterion corollary 4.2.4 and proposition A.0.4. We let j : X ↪→ X̄ the

embedding in the good compactification. We first notice that j∗(E
∨) is a perfect DX̄,B-module on

X̄ × SpecB. This is a local statement on X̄ which reduces to the following algebraic fact.

Let A be a smooth k-algebra of finite type and f ∈ A. We consider Â⊗k B, the formal completion
of A ⊗k B at f ⊗ 1. We denote by D̂X̄,B the ring of completed relative differential operators. As a

module it is Â⊗k BA⊗kB(DX̄ ⊗k B), where the ring structure is defined naturally by making DX̄ ⊗k B
acts on the completion Â⊗k B by extending derivations to the completion. In the same manner we let
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D̂X,B be D̂X̄,B[f−1] Using the formal gluing of [Bh] we have a cartesian square of ∞-categories

Dqcoh(DX̄,B) //

��

Dqcoh(DX,B)

��

Dqcoh(D̂X̄,B) // Dqcoh(D̂X,B).

Therefore, for j∗(E
∨) ∈ Dqcoh(DX̄,B) to be perfect it is enough that its restriction as DX,B and D̂X̄,B

are both perfect. But, the first of this restriction is E which is perfect over DX,B, and the second

of this restriction corresponds to j∗(V
∨
s ⊗k B). This is perfect because it is the restriction to ∂̂X of

j∗(V
∨

0 ) ⊗k B ∈ Dqcoh(DX,B), which is perfect because of Bertsein theorem asserting that j∗(V
∨

0 ) is a
coherent and holonomic complex of DX-modules.

We thus have that j∗(E
∨) is a perfect DX̄,B-module. More is true, it is also holonomic (see appendix

A.0.4). Indeed, because R(E) is isomorphic to j∗(Vs) ⊗k B, its characteristic cycle is contained in
Λ × SpecB ⊂ T ∗X × SpecB, where Λ = Char(j∗(V∞)). As the ∞-functor sending B to perfect
DX̄,B-module is locally of finite presentation, we can whose i such and Fi ∈ Dparf (DX̄,B) such that
j∗(E

∨) ' Fi⊗Bi B. By enlarging i if necessary, we can also assume that the characteristic variety of Fi
is contained in Λ× SpecBi, and thus that Fi is moreover holonomic. Also, we can assume that Fi and
j∗(E∨i ) are isomorphic as objects in Vect∇(X)(Bi).

As now both Fi and j∗(V∞) ⊗k Bi are perfect and holonomic, the proposition A.0.4 implies that
Fi ⊗O (j∗(V∞) ⊗k Bi) ' j∗(E

′
i) remains perfect over DX̄,Bi[f−1] for some non-zero localization of Bi.

Working with V ∨∞ and E∨ from the start we prove the same manner that j∗((E
′
i)
∨) is also perfect. By

corollary 4.2.4 this implies that H̃DR(∂̂X,E ′i) is perfect and thus the lemma. 2

By the above lemma J is representable by a scheme of finite type. The sheaf I clearly is an open
subsheaf of J and thus is also representable by a scheme of finite type over an non-empty open on
SpecBi. The canonical isomorphism α : R(E) ' V∞ ⊗k B, which an element in I(B) is then definable
over some Bi[f

−1] for some i and non-zero localization, say αi : R(E0)[f−1] ' V∞ ⊗k Bi[f
−1]. The pair

(E0, αi) defines an object in Vect∇(X)V∞(Bi[f
−1]) whose image in Vect∇V∞(X)(B[f−1]) is the restriction

of our original object E.

This finishes the proof of condition (6) of theorem B.0.3, and thus of theorem 5.0.1. 2

Unfortunately, we do not know if the theorem 5.0.1 can be strengthened to the statement that
Vect∇V∞(X) is representable by an algebraic space locally of finite type over k. The only missing condition

would be that Vect∇V∞(X) is also locally of finite presentation, a condition that we havent been able to
prove or disprove.

A Perfect relative D-modules

In this section we gather some basic results about D-modules in the relative settings. Many of these
results are already contained in [Ga-Ro], and this part does not claim originality. However, we have
been unable to find a reference treating the algebraic situation (possibly with k non-algebraically closed)
and also relative to bases SpecB with B an arbitrary connective cdga.
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We start by the important fact concerning the compact generation, and characterization of compact
objects inside quasi-coherent relative D-modules. We fix X a smooth variety over k, and S = SpecB
an affine derived scheme. We have DX ⊗k B, which is a sheaf of dg-algebras over X. We can therefore
consider the dg-category of all sheaves of DX⊗kB-modules, whose underlying OX⊗kB-module is quasi-
coherent on X × S. We denote this category by Dqcoh(DX,B), and call it the dg-category of relative
D-modules on X × S over S. An object E ∈ Dqcoh(DX,B) will be called perfect if it is locally on X
given by a perfect dg-module over the dg-algebra DX ⊗k B. When B is a regular discrete k-algebra,
DX ⊗k B is (locally) a finitely generated algebra of finite homological dimension, and thus is of finite
type in the sense of [To-Va] This implies that the perfect objects in this special case are precisely the
bounded coherent DX⊗kB-modules. In general the two notions do not coincide as being perfect implies
in particular being of finite tor dimension over B.

Proposition A.0.1 The dg-category Dqcoh(DX,B) is compactly generated and its compact objects are
the perfect DX ⊗k B-modules.

Proof: There is a forgetful functor

Dqcoh(DX,B) −→ Dqcoh(X × S)

to the dg-category of quasi-coherent complexes onX×S. This dg-functor is conservative and continuous.
Moreover, it has a left adjoint

ind : Dqcoh(X × S) −→ Dqcoh(DX,B)

which sends a quasi-coherent complex E on X × S to DX ⊗OOX E, with its natural DX ⊗k B-module
structure. It is known that perfect complexes on Dqcoh(X × S) are the compact generators, and it is
formal to deduce that their image by ind are compact generators of Dqcoh(DX,B). These are obviously
perfect DX ⊗k B-modules. Finally, any perfect DX ⊗k B-module is locally compact, and thus compact
by quasi-compactness of X. 2

Let now f : X −→ Y be a morphism between smooth varieties over k. We have a direct image
dg-functor

f∗,B : Dqcoh(DX,B) −→ Dqcoh(DY,B)

defined as usual. We will often drop the B in the notation and simply write f∗. On the level of compact
generators, f∗ acts as follows. Let E be a perfect complex on X × S, and ind(E) = DX ⊗OX E. Then
we have a canonical isomorphism f∗(ind(E)) ' ind(f∗(E)), where f∗(E) is the direct image of E as a
quasi-coherent complex on X × S. In particular, when f is proper the dg-functor f∗ preserves perfect
objects. It is easy to check that the formation of f∗ commute with change of base B: for B → B′ any
morphism of connective cdga, the square

Dqcoh(DX,B)
⊗BB′ //

f∗,B
��

Dqcoh(DX,B′)
f∗,B′

��
Dqcoh(DY,B)

⊗BB′
// Dqcoh(DY,B′)

canonically commutes. We have thus proved the following proposition, which is well known when B is
itself a smooth algebra but for which we could not find any general reference.
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Proposition A.0.2 If f is proper, then f∗ preserves perfect objects, and its formation commutes with
change of bases B.

We remind also the following notion of holonomicity. For this, we remind that for any coherent
DX ⊗k B-module admits a good filtration, and that that support of the associated graded is a well
defined algebraic subset inside T ∗X × S.

Definition A.0.3 Let E ∈ Dqcoh(DX,B) be a quasi-coherent DX ⊗k B-module. We say that E is
holonomic if it satisfies the following two conditions.

1. It is perfect.

2. There exists a conic lagrangian algebraic subset Λ ⊂ T ∗X such that the characteristic variety of
E is contained in Λ× S.

Contrary to the case of a base field, it is not true that holonomic D-modules are stable by all
operations. However, this holds on a dense open subset in S, and for us the following proposition will
be used.

Proposition A.0.4 Suppose that B is a discrete noetherian k-algebra. Let E and F be two holonomic
objects in Dqcoh(DX,B). There exists a non-empty open derived sub-scheme SpecB[f−1] ⊂ SpecB such
that their tensor product E ⊗O F is a perfect DX,B[f−1]-module on X × SpecB[f−1].

Proof: We start by the observation that a given object E ∈ Dqcoh(DX,B) is perfect if and only if its
restriction to Dqcoh(DX,B0) is so, where B0 = Bred is the reduced algebra of B. We can use induction on
the power annihilating the nil-radical of B to restrict to the case where B is a square zero extension of
B0 by an ideal I. It is easy to see that the functor sending a cdga B to the space of all quasi-coherent
DX,B-module is 1-proximate in the sense of formal deformation theory (see [Lu3]). More precisely, for
any discrete noetherian k-algebra B0, ideal I0 ⊂ B0 and any derivation d : B0 −→ I[1], and B0 = B⊕d I
the square-zero extension classified by d, the square of ∞-categories

Dqcoh(DX,B) //

��

Dqcoh(DX,B0)

��
Dqcoh(DX,B0) // Dqcoh(DX,B0⊕I)

induces a full-embedding from Dqcoh(DX,B) to the fiber product of the three other terms. This easily
imply that for a given E ∈ Dqcoh(DX,B), E is a compact object if its restriction in Dqcoh(DX,B0) is so.

We are thus lead to the case where B is a reduced noetherian k-algebra. By picking a dense open
in an irreducible component we can even assume that B is a smooth domain. Let K = Frac(B) be its
fraction field and we consider X ×k K as a smooth variety over K. It is known that for any smooth
K-variety Z and a smooth sub-variety j : Y ⊂ Z given by a single equation f = 0 on X, and any
holonomic coherent DZ/K-module M , there exists a Berstein polynomial b(M) for M with respect to
the equation f . The polynomial exists as a monic polynomial over a localization B[f−1] of B. Replacing
B by B[f−1] we can assume that b(M) exists as a monic polynomial over B. By classical arguments
its existence implies that the pull-back j∗(E) is a bounded coherent complex of DY,B-modules with
coherent cohomology, and thus is perfect as B is smooth.
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As the statement of the proposition is local on X, we can apply the above fact to the diagonal
X ⊂ X ×X, by writting it as a complete intersection, and to the holonomic DX×X,B-module E � F ,
exterior product of E and F . The proposition follows. 2

B Derived quasi-algebraic spaces and Artin’s representability

In this section we gather some definitions and results on the derived quasi-algebraic spaces and the
corresponding representability criterion. This is a modification of the the notion of derived algebraic
spaces for which atlases only exist generically. These derived stacks are not algebraic in general, but
are algebraic as soon as the functor they represent are locally of finite presentation.

For this, we need the following notion of dominant morphism to a derived stack F . For this, we
assume that F has a perfect global cotangent complex, is nil-complete and infinitesimally cartesian. We
also assume that F is integrable: for any local complete noetherian discrete k-algebra A = limiA/m

i,
the natural morphism

F (A) −→ limiF (A/mi)

is bijective. For any such F , and any field K which is finitely generated over k, and any point x :
SpecK −→ F , there exists by [Lu2, Thm. 18.2.5.1] a complete local noetherian cdga A with residue
field K, and a formally smooth morphism

Spf(A) −→ F

extending the point x. We get this way a morphism from its truncation

Spf(π0(A)) −→ F,

and by integrability a well defined morphism

x̂ : Spec(π0(A)) −→ F.

A morphism x̂ obtained this way will be called a formally smooth lift of x.

Definition B.0.1 For a derived stack F as above and a derived scheme X locally of finite presentation
over k, with a morphism f : X −→ F . We say that f is dominant if for any finitely generated k-field
K, any point x : SpecK −→ F and any formally smooth lift x̂ : Spec(π0(A)) −→ F , the derived scheme
X ×F Spec(π0(A)) is non-empty.

We note that if F is itself representable by a derived algebraic space locally of finite presentation,
then f : X −→ F is dominant in the sense above if and only if for any étale morphism SpecB −→ F
we have X ×F SpecB 6= ∅. Indeed, assume that there is an étale map SpecB −→ F whose pull-back
to X is empty. We pick a point x of SpecB and consider its formal completion B̂x. As SpecB −→ F
is étale the composition

Spec π0(B̂x) −→ SpecB −→ F

is a formally smooth lift of x. By construction the pull-back Spec π0(B̂x) ×F X is empty. This shows
that the notion of dominant map above is a generalization of the notion of a morphism with Zariski
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dense image.

We can then give the definition of a derived quasi-algebraic spaces as derived stacks with dominant
smooth atlases as follows.

Definition B.0.2 A derived stack F is an derived quasi-algebraic space (locally of presentation with
schematic diagonal of finite presentation) if it satisfies the following three conditions.

1. The diagonal of the stack F −→ F ×F is representable by a derived scheme of finite presentation.

2. The derived stack F possesses a perfect global cotangent complex, is nil complete and infinitesimally
cartesian.

3. The derived stack F is integrable: for any local complete noetherian discrete k-algebra A =
limiA/m

i, the natural morphism

F (A) −→ limiF (A/mi)

is bijective.

4. There exists a family of cdga’s Ai of finite presentation over k and a morphism p :
∐
SpecAi −→ F

such that

(a) For each i the morphism SpecAi −→ F is smooth.

(b) The morphism p is dominant in the sense of definition B.0.1 above.

A derived quasi-algebraic space is algebraic if and only if the functor F is futhermore locally of finite
presentation, as this follows from Artin-Lurie’s representability theorem [Lu2, Thm. 18.3.0.1].

The derived quasi-algebraic spaces can be characterized by the following version of Artin’s repre-
sentability.

Theorem B.0.3 A derived stack F is a derived quasi-algebraic space if it satisfies the following con-
ditions.

1. For any discrete cdga B the simplicial set F (B) is 0-truncated.

2. The diagonal morphism of its truncation F −→ F × F is representable by a scheme of finite
presentation.

3. The derived stack F has a perfect global cotangent complex.

4. The derived stack F is nil-complete and infinitesimally cartesian.

5. For any discrete local k-algebra (A,m) essentially of finite type, with completion Â = limiA/m
i,

the morphism F (Â) −→ limi F (A/mi) is an equivalence.

6. For any filtered system of noetherian discrete commutative k-algebras B = colimiBi and any
x ∈ F (B), there exists an index i and a non-empty Zariski open Ui ⊂ SpecBi with U = Ui×SpecBi
SpecB non-empty, and such that the restriction of x lies in the image of F (Ui) −→ F (U).
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Sketch of a proof: The proof is essentially the same as the usual representability theorem in [Lu2].
We start by considering all fields K which are finitely generated over k. For any morphism

x : SpecK −→ F

we can use [Lu2, Thm. 18.2.5.1] to find a local complete and noetherian cdga (A,m) with residue field
K = A/m and a factorisation

SpecK ↪→ Spf(Â) −→ F,

where the second map is formally smooth (i.e. its relative contangent perfect is a vector bundle). We
write B = π0(Â), which is a complete local discrete k-algebra with residue field K, and consider the
induced morphism on the truncation x̂ : Spf(B) −→ F . We can use condition (4) to lift this to a
factorization

SpecK ↪→ Spec(B) −→ F.

As explained in the proof of [Lu2, Thm. 18.2.5.1], there exists a k-algebra of finite type B′ ⊂ B,
such that if p = m ∩B′, then the induced morphism on formal completions

B̂′p −→ B

is surjective (take A′ big enough so that it contains generators for K over k as well as generators of
the k-vector space m/m2). We can apply Popescu’s theorem to the regular morphism B′ −→ B̂′p and

thus write B̂′p = colimiB
′
i as a filetered colimit of smooth B′-algebras. As B is finitely presented as a

B̂′p-algebras, we can find an index i and a B′i-algebra C ′i of finite presentation such that

C ' colimi(B̂′pB ⊗B′i C
′
i).

We let Ci := B̂′pB ⊗B′i C
′
i, which is a B′i-algebra of finite presentation, and thus is itself of finite

presentation over k.
We now apply condition (6) to the morphism SpecB −→ F , and get that there exists an integer

i and a Zariski open Ui = SpecCi[f
−1] ⊂ SpecCi, with U = SpecB[f−1] non-empty, and with a

commutative diagram
Ui

##
U

OO

��

F

SpecB.

;;

Lemma B.0.4 With the notation above, and enlarging i is necessary, the morphism p : Ui −→ F
constructed above is formally smooth is the underived sense: τ≤−1(LUi/F ) is a vector bundle in degree 0.

Proof of the lemma: First of all Ui being of finite type together with the fact that the diagonal of F
is representable of locally of finite presentation implies that p is representable and locally of finite type
in the underived sense. It thus only remains to show that its p is also formally smooth in the underived
sense, that its relative 1-truncated cotangent complex τ≤1(LUi/F ) is a vector bundle.

For this we first notice that LUi/F is almost perfect (i.e. quasi-isomorphic to a complex of free
modules of finite rank over Ci[f

−1] concentrated in degree ]−∞, 0]). As we will only be interested in its
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truncation τ≤1(LUi/F ) we will be able to act as if LUi/F is in fact perfect (simply replace it by a perfect
complex having the same cohomology in degree [−n, 0] for n big enough). We start by computing the
pull-back of LUi to U = SpecB[f−1].

We start by the exact triangle of complexes of B-modules (where LA stands for LA/k for any k-algebra
A).

LCi ⊗Ci B // LB // LB/Ci .

As B is complete with respect to its maximal ideal m, for any connective dg-module E over B, we have
its completion Ê := limiE ⊗B B/mi, which is another connectiveB-dg-module together with a natural

morphism E −→ Ê. Moreover, when E is almost perfect this morphism is a quasi-isomorphism. We
can then complete the triangle above another triangle

̂LCi ⊗Ci B // L̂B // L̂B/Ci .

As LCi is almost perfect the left hand side simply is LCi ⊗Ci B. Moreover, by base change LB/Ci is
naturally equivalent to LB̂′/C′i ⊗B′ B. As B′ −→ B is a surjective local morphism we see that the base

change of L̂B̂′/C′i , considered as a pro-object in connective B′-dg-module, by the map B̂′ −→ B, is the

pro-object L̂B/Ci .
We now use that B̂′ is the completion of B′ along the maximal ideal m ⊂ B′, and thus that for all

i we have LB̂′/B′ ⊗B′ B′/mi ' 0. We thus have an equivalence of pro-object

L̂B̂′/Ci '
̂LCi/B′ ⊗′B B̂′[1].

As Ci is smooth over B′ we therefore conclude that the pro-object L̂B/Ci is a vector bundle in degree 1,
and thus that its realization as a connective B-dg-module is LCi/B′ ⊗Ci B[1]. Our original triangle can
thus be written as

LCi ⊗Ci B // L̂B // V [1]

with V a vector bundle on SpecB. We can now localize this triangle to the open U = SpecB[f−1] in
order to get new triangle on U

LCi[f−1] ⊗Ci[f−1] B[f−1] // L̂B[f−1] // V [f−1][1].

The morphisms q : U → Ui −→ F induces a morphism

q∗(LF ) //

((

LCi[f−1] ⊗Ci[f−1] B[f−1]

��
LB[f−1],

which factors throught completions as q∗(LF ) is a perfect complex by our condition (3)

q∗(LF ) //

((

LCi[f−1] ⊗Ci[f−1] B[f−1]

��

L̂B[f−1].
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The induced morphism on the cones sits in an exact triangle

LUi/F ⊗Ci[f−1] B[f−1] // ̂LSpec B/F [f−1] // V [1] .

Because Spf −→ F was chosen formally smooth in the underived sense we have that τ≤−1( ̂LSpec B/F [f−1])
is a vector bundle in degree 0. The conclusion is that LUi/F is an almost perfect complex over Ci[f

−1]
such that its base change to B[f−1] = colim(Ci[f

−1]) has vanishing H−1 and a vector bundle as H0.
This implies that the same is true for LUi/F ⊗Ci[f−1] Cj[f

−1] for some big enough j. 2

Back to the proof of the theorem, we use again [Lu2, Thm. 18.2.5.1] but this time for Ui −→ F ,
which by the lemma can be chosen to be formally smooth in the underived sense. We can thus produce
a smooth morphism

Wi −→ F

where Wi is a derived affine scheme whose truncations coincides with the given map Ui −→ F . The
derived scheme Wi is itself of finite presentation over k as its truncation is of finite type and its cotangent
complex is perfect (because its maps smoothly to F ).

Taking the union of all morphisms Wi −→ F constructed as above provides the required generic
atlas for F as in definition B.0.2.
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