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Abstract: Wellbeing is often affected by health-related conditions. One type of such conditions are1

nutrition-related health conditions, which can significantly decrease the quality of life. We envision a2

system that monitors the kitchen activities of patients and that based on the detected eating behaviour3

could provide clinicians with indicators for improving a patient’s health. To be successful, such4

system has to reason about the person’s actions and goals. To address this problem, we introduce a5

symbolic behaviour recognition approach, called Computational Causal Behaviour Models (CCBM).6

CCBM combines symbolic representation of person’s behaviour with probabilistic inference to reason7

about one’s actions, the type of meal being prepared, and its potential health impact. To evaluate the8

approach, we use a cooking dataset of unscripted kitchen activities, which contains data from various9

sensors in a real kitchen. The results show that the approach is able to reason about the person’s10

cooking actions. It is also able to recognise the goal in terms of type of prepared meal and whether it11

is healthy. Furthermore, we compare CCBM to state of the art approaches such as Hidden Markov12

Models (HMM) and decision trees (DT). The results show that our approach performs comparable to13

the HMM and DT when used for activity recognition. It outperforms the HMM for goal recognition14

of the type of meal with median accuracy of 1 compared to median accuracy of 0.12 when applying15

the HMM. Our approach also outperforms the HMM for recognising whether a meal is healthy with16

a median accuracy of 1 compared to median accuracy of 0.5 with the HMM.17

Keywords: activity recognition; plan recognition; goal recognition; behaviour monitoring; symbolic18

models; probabilistic models, sensor-based reasoning19

1. Introduction and Motivation20

One aspect of having a healthy lifespan is the type and way in which we consume food [2].21

Following unhealthy diet can cause nutrition-related diseases, which in turn can reduce the quality of22

life. This is especially observed prolonged physical conditions, such as diabetes and obesity, or mental23

health conditions such as eating disorders and depression. Such conditions influence one’s desire to24

prepare and consume healthy meals, or in some cases, the patient’s ability to prepare food, e.g. those25

suffering from dementia disorders whose abilities are affected by the disease’s progression [3]. Such26

conditions are also associated with high hospitalisation and treatment costs. Different works have27
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attempted to solve this problem by providing automated home monitoring of the patient. Potentially,28

this can also improve the well-being of the patient by replacing hospitalisation with monitoring and29

treatment in home settings [4,5].30

A system, able to address the above problem, has to recognise the one’s actions, goals and causes of31

the observed behaviours [6]. To that end, different works propose the application of knowledge-based32

models often realised in the form of ontologies [7–9]. In difference to data-driven methods, which33

need large amounts of training data and are able to learn only cases, similar to those in the data,34

knowledge-based approaches can reason beyond the observations due to their underlying symbolic35

structure. This symbolic representation defines all possible behaviours and the associated effects36

on the environment. In that manner, they can reason about the one’s actions, goals, and current37

situation [3]. While rule-base approaches provide additional unobserved information, they have two38

main disadvantages when modelling problems in unscripted settings: (a) behaviour complexity and39

variability results in large models that, depending on the size, could be computationally infeasible,40

and (b) noise typical for physical sensors results in the inability of symbolic models reason about the41

observed behaviour.42

In attempt to cope with these challenges, there are works that propose the combination of symbolic43

structure and probabilistic inference, such as [10–12]. This type of approaches are known, among44

other, as Computational State Space Models (CSSMs) [13]. These approaches have a hybrid structure45

consisting of symbolic representation of the possible behaviours and probabilistic semantics that46

allow coping with behaviour variability and sensor noise [10,12,13]. Currently, CSSMs have shown47

promising results in scripted scenarios but have not been applied in real world settings. In other words,48

the model simplified problems that do not extensively address complications cause by behaviour49

complexity and variability observed in real settings. Another core challenge is the recognition of one’s50

high-level behaviour from low level sensor observations [14].51

In a previous work, we shortly presented our concept and we showed first preliminary empirical52

results from CSSMs applied to an unscripted scenario [1]. In this work we extend our previous work53

by providing54

1. detailed formal description of the proposed methodology;55

2. detailed analysis on the influence of different sensors on the CSSM’s performance;56

3. extension of the model to allow the recognition of single pooled and multiple goals;57

4. detailed comparison between state of the art methods and our proposed approach.58

The work is structured as follows. Section 2 discusses the state of the art in symbolic models for59

activity and goal recognition. Section 3 presents the idea behind CSSMs and we discuss a concrete60

implementation of CSSMs, called Computational Causal Behaviour Models, that we use in this work.61

Section 4 describes the experimental setup and the model development while Section 5 presents62

the results. The work concludes with a discussion and outline of future work in Sections 6 and 763

respectively.64

2. Related Work65

To be able to reason about one’s cooking and eating behaviour and its implications on their66

health, a system has to be able to infer information about the person’s behaviour from observation by67

means of sensors. To this end, current work distinguishes between Activity Recognition (AR), goal68

recognition (GR) and Plan Recognition (PR) [14]. Activity recognition is known as the task of inferring69

the user’s current action from noisy and ambiguous sensor data, while GR deals with recognising the70

goal the person is pursuing. Plan recognition, in contrast, aims to infer the action sequence leading71

to a goal under question by using (partial) action observations. Plan recognition can be considered72

as the combination of activity and goal recognition. In other words, PR recognises both the person’s73

sequence of actions and goals they follow.74

The term “behaviour recognition”, on the other hand, refers to the overall process of activity, goal,75

and plan recognition [15]. In the framework of behaviour recognition we refer to “actions” as the76
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Figure 1. Graphical representation of three different types of classifier. X represents a hidden state
and Y an observation that is used to conclude information about X. (a) discriminative classifier, (b)
generative classifier without temporal knowledge, (c) generative classifier with temporal knowledge
(figure adapted from [16]).

primitive actions constituting a plan. A plan is then a sequence of actions leading to a certain goal1.77

In difference to typical AR terminology, where actions can build up complex parallel or interleaving78

activities, here we consider plan to be complex activity built up of sequentially executed actions. Based79

on this definition, we introduce the general model of sensor based behaviour recognition which has80

the objective to label temporal segments by use of observation data.81

From the inference point of view, the aim of behaviour recognition is to estimate a hidden variable82

X from an observable variable Y. Figure 1 (a) provides a graphical illustration of this task. Here, the83

hidden variable X represents the activity of the human protagonist. With respect to the probabilistic84

structure, two fundamentally different approaches to behaviour recognition exist [17]: discriminative85

and generative classifiers. While discriminative classifiers model the conditional probability P(X |Y),86

generative classifiers model the joint probability P(X, Y). In other words, discriminative classifiers87

map the observation data to activity labels directly [17], while generative classifiers allow to exploit88

the causal link between the system’s state X and the observation Y by factoring the joint probability89

into P(X, Y) = P(Y |X)P(X). A graphical representation of generative models is provided in Figure 190

(b). The representation allows to include prior knowledge about the dynamics of the underlying91

process. Furthermore, experiences can often be used to establish the sensor model P(Y |X) [18, p.5].92

[19] provide a detailed overview of methods for activity recognition. Typical approaches include93

decision trees [20], support vector machines [21,22], or random forests [23,24].94

By including further knowledge about the temporal structure of the activities, a transition model95

P(Xt |Xt−1) can be introduced to provide temporally smoothed estimates of the activities. This is96

illustrated in Figure 1 (c). Generally, temporal generative models (e.g. Hidden Markov Models (HMM))97

do not raise any restrictions to the possible sequences of activities, which allows the estimation of98

sequences that are impossible from the viewpoint of causality. Then, to reason about the causally valid99

action sequences, we need to use plan recognition (PR) approaches. The literature provides different100

overviews of plan recognition [14,25–28].101

From the modelling viewpoint, two different approaches exist for restricting the set of possible102

sequences. The first approach is to enumerate all possible sequences (plans) in a plan library [29].103

However, the plan library has to be created manually, which is a tedious task due to the high number104

1 Note that there is some variation in the interpretation of the term “activity recognition” across different works. For example,
the authors in [9] refer to activity recognition as the process of recognising coarse-grained complex activities (e.g. “prepare
breakfast”, “take a shower”, etc.) They however do not recognise the sequence of fine-grained actions needed to complete
these activities. In our work, we consider the recognition of these fine-grained actions as “activity recognition”, the
recognition of the correct sequence of fine-grained actions as “plan recognition”, and the recognition of the overall complex
activity as “goal recognition”.
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Table 1. Existing CSSMs applied to activity and goal recognition problems.

Approach
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noise latent
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n
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goals unscr
ipted

sce
nario

[31] no
[10] yes
[33] no
[13] no
[12] no
[34] yes
[11] yes
[35] yes
[36] yes

feature not included feature included

of action sequences [30]. As pointed in [12], “library-based models are inherently unable to solve105

the problem of library completeness caused by the inability of a designer to model all possible106

execution sequences leading to the goal”. This is especially true in real world problems where the107

valid behaviour2 variability can result in models with millions of states and execution sequences.108

A second approach to introducing restrictions to the set of causally valid action sequences is to109

employ a structured state representation of X and generate only action sequences that are causally110

valid with respect to this state. This technique is also known as inverse planning [31], as it employs111

ideas from the domain of automated planning to infer the action sequence of a human protagonist.112

This technique is, for instance, used by [32] and [11].113

To cope with behaviour variability, some works introduce the use of computational state space114

models (CSSM). CSSMs allow modelling complex behaviour with a lot of variability without the need115

of large training datasets or manual definition of all plans, [10,11]. CSSMs describe the behaviour in116

terms of precondition-effect rules and a structured state representation to synthesise possible action117

sequences. The manually implemented model is very small as it requires only a few rules to generate118

different sequences of possible actions. This is done through the causal relations defined in the rules.119

Note that this is an alternative to manually defining all possible action sequences, or using large120

training datasets to learn them. In addition, some CSSMs combine their symbolic structure with121

probabilistic inference engines allowing them to reason even in the presence of ambiguous or noisy122

observations [12,13].123

Table 1 lists different works on CSSMs. For example, most of them make simplifying assumptions124

of the environment in order to perform plan recognition. Most do not make use of action durations.125

In real world, however, actions have durations and this makes the inference problem more complex.126

Many works assume perfect observations, which is not the case in real world problems where the127

sensors are typically noisy and there are missing observations. Also, most of the works assume that128

there is only one goal being followed. In real world scenarios it is possible that the goals change over129

time. Presently, CSSMs have been applied to problems in scripted scenarios. Such settings limit the130

ability to investigate behaviour complexity and variability that is usually observed in everyday life.131

There is still no solid empirical evidence that CSSMs can cope with the behaviour variability observed132

in real world everyday activities3. Additionally, presently CSSMs have been used for recognising133

2 We have to note that by “valid” we mean any causally correct sequence of actions. This does not necessarily mean that
the behaviour is also rational from a human point of view. “Causally correct” here indicates that the sequence of actions is
physically possible (e.g. a person has to be at a given location to execute the action at this location, or an object has to be
present for the person to interact with this object, etc.).

3 Note that CSSMs have been applied to the problem of reconstructing the daily activities in home settings [37]. This analysis,
however, is very coarse-grained and does not address the problem of reasoning about the fine-grained activities and goals
within a certain task, e.g. while preparing a meal.
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Figure 2. Elements of a Computational Causal Behaviour Model.

the goal only in scenarios with simulated data [10,11]. In other words, it is unclear whether these134

approaches are able to reason about the user behaviour when the user is not following a predefined135

script or agenda.136

In a previous work, we showed preliminary results of a CSSM approach called Computational137

Causal Behaviour Models (CCBM), which reasons about one’s activities in real cooking scenarios [1,38].138

In this work, we extend our previous work by providing detailed information on the approach and the139

developed model. We show that our model is able to perform goal recognition based on both multiple140

and single “pooled” goals. We also present a detailed empirical analysis on the model performance, the141

effect of the sensors on the performance, and we compare the proposed approach with state-of-the-art142

Hidden Markov Model for PR. Finally, we provide a discussion on the effect of adding the person’s143

position extracted from video data on the model performance.144

3. Computational Causal Behaviour Models145

The previous section introduced the concept of behaviour recognition and illustrated that CSSMs146

provide a convenient approach by bridging the gap between activity recognition and plan recognition.147

This section further extends these concepts and gives an introduction to Computational Causal148

Behaviour Models, a framework for sensor based behaviour recognition based on the principle of149

CSSMs. The description is based on the dissertation of F. Krüger [16]. Figure 2 describes the CCBM150

elements.151

CCBM provides a convenient way to describe sequences of human actions by means of computable152

functions rather by providing plan libraries to provide all possible sequences. From the viewpoint153

of probabilistic models, as introduced in Section 2, CCBM allows to specify the temporal knowledge154

of human behaviour — the system model P(Xt | Xt−1). To this end, CCBM employs a causal model,155

which uses precondition and effect rules in order to describe the system dynamics. Beside the system156

model, inference from noisy observations requires an observation model, which basically describes157

the relation between the sensor observation Y and the system’s state X. CCBM uses a probabilistic158

semantic to cope with uncertainties resulting from noisy sensor observations and the non-deterministic159

human behaviour. In the following these concepts are describes in more detail.160

3.1. Causal Model161

As described earlier, CSSMs rely on the idea of plan synthesis. A model based description [39] is162

employed to describe the state space and possible actions. A state is described by predicates, where163

each represents a property of the environment such as the current position of the person, or whether164

the person is hungry or not. Actions are described by means of preconditions and effects with respect165
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(:action move
:parameters (?from ?to - location)
:duration (normal 30 5)
:precondition (and

(is-at ?from)
(not (is-at ?to))
(not (= ?from ?to))
(not (not-allowed-to-move ?from ?to))

)
:effect (and

(is-at ?to)
(not (is-at ?from))

)
:observation (setActivity (activity-id move))

)

Figure 3. Example rule for the execution of the action “move”.

(:types
location food tool - object
tool ingredient - takeable
meal ingredient - food
drink - meal
prep-meal - meal
prev-meal - meal

)

(:objects
study kitchen - location
tools - tool
ingredients - ingredient
coffee tea juice water - drink
pasta salad chicken toast snack - prep-meal
other - prev-meal

)

Figure 4. Example definition of types and their concrete objects for the cooking problem.

to a structured state. While the preconditions restrict the application of actions to appropriate states,166

the effects describe how the state is changed after executing an action. In case of CCBM, the causal167

model employs a PDDL-like4 notation to describe the action rules, the initial and goal states, and the168

concrete objects in the environment. Figure 3 shows an example of a PDDL-like rule for the action169

“move”. The rule represents an action template that can be grounded with different parameters. For170

example, the action template “move” can be grounded with two parameters of type “location”5. The171

template then incorporates its rules in terms of preconditions and effects. The preconditions describe172

the constraints on the world in order for an action to become executable, while the effects describe how173

the execution of this action changes the world. They are defined in terms of predicates that describe174

properties of the world. Apart from the preconditions and effects, an action template has a duration (in175

this case a normal distribution with a mean of 30 and a standard deviation of 5), and an “:observation”176

clause that maps the high level action to the observation model. Apart form the action templates, the177

objects in the environment and their types are expressed in a PDDL-like notation. Figure 4 shows178

the definition of the types and objects for the cooking problem. For example, the objects “study” and179

“kitchen” are from type “location” and the type “location” has a parent type “object”. This notation180

builds up a hierarchy with the concrete objects at the bottom and the most abstracted class at the top.181

A graphical representation for this structure can be seen in Figure 7.182

The action templates together with the objects generate a symbolic model that consists of actions A,183

states S, ground predicates P, and plans B. The set A of grounded actions is generated from the action184

templates by grounding a template with all possible concrete objects. The set P of grounded predicates185

is generated by grounding all predicates with the set of all possible objects. A state s ∈ S is defined as a186

combination of all ground predicates and describes one particular state of the world. For a state s ∈ S,187

each state describes one possible combination of the actual values of the ground predicates. Imagine188

we have a model, which has 3 predicates and each of these predicates can have the value true or false.189

One possible state will have the following reprsentation s = (pr1 := true, pr2 := true, pr3 := false).190

4 Planning Domain Definition Language [40].
5 E.g. “(move ?from ?to)” could yield the concrete action “(move kitchen study)”.
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Figure 5. DBN structure of a CCBM model. Adapted from [13].

Then S represents the set of all such predicate combinations, i.e. all states that are reachable by applying191

any sequence of action on the initial state. We can reach from one state s to another s′ by applying an192

action a ∈ A in s. We then say that s′ is reachable from s by a. The initial state s0, is the state of the193

world at the beginning of the problem. Apart from the initial state, another important subset of states194

is the one containing the goal states G ⊆ S. G is basically the set of states containing all the predicates195

that have to be true in order to reach the goal the person is following. B = {p1, . . . , pn} is the set of all196

possible execution sequences (or plans) starting in the initial state and reaching a goal state. For a plan197

pi = (a1, . . . , am) that leads to a goal g ⊆ G and an initial state s0 ∈ S, we say that pi achieves G, if for198

a finite sequence of actions aj and a state sl ∈ G, sl = am(· · · a2(a1(s0)) · · · ). B corresponds to a plan199

library in approaches that manually define the possible plans [29]. A plan library will then contain200

all possible valid plans (either manually built in library-based approaches or generated from rules in201

approaches such as CCBM).202

3.2. Probabilistic Semantics203

As introduced in Section 2, a generative probabilistic model with temporal knowledge is modelled204

by two random variables X and Y at different time steps, which represent the belief about the system’s205

state and the sensor observation. In order to reason not only about the state, but also about the206

action being executed by the person, the state X is further structured. As can be seen in Figure 5, the207

system state X is structured into the following random variables S, A, G, D, and U, each representing208

a different aspect of the state. Similarly the observation Y is structured into Z, W, and V, each209

representing different types of sensory observation.210

From the illustration it can be seen, that the state X at time t depends on the state at time t− 1.
The transition model describes this dependency through the probability P(Xt|Xt−1) of observing that
we are in a state X given that the the previous state was Xt−1. We call this model a system model.
Since the state X is a five-tuple (A, D, G, S, U), this can be rewritten as:

p(Xt |Xt−1) = p(At, Dt, Gt, St, Ut | At−1, Dt−1, Gt−1, St−1, Ut−1, Vt, Vt−1) (1)

Here, the random variable A represents the action (from the set A) that is currently executed by211

the human protagonist while trying to achieve the goal G (from the set G). The current state of the212

environment is represented by S (from the set S). The variables U and D represent the starting time of213

the current action and signal whether the action should be terminated in the next time step. Finally, the214

variables V, W, and Z reflect observations of the current time, environment, and action, respectively.215



Version January 30, 2019 submitted to Sensors 8 of 27

By exploiting the dependencies from the graphical model, this transition model can be simplified
into five sub-models, each describing the dependency of one element of the state.

p(St | At, Dt, St−1) I action execution model (2)

p(At |Dt, Gt, At−1, St−1) I action selection model (3)

p(Ut |Dt, Ut−1, Vt) I action start time model (4)

p(Dt | At−1, Ut−1, Vt, Vt−1) I action duration model (5)

p(Gt |Xt−1) I goal selection model (6)

The action execution model describes the application of the actions to a state and the resulting
state. This sub-model basically implements the effects of the action description. For this purpose, the
resulting state is determined based on the current state, the action to be executed, and whether the
current action is finished or not. More formally,

p(st | at, dt, st−1) =


1, if dt=false∧ st=st−1;

1, if dt=true∧ st = at(st−1);

0, otherwise.

(7)

Depending on the value of dt, either the system’s state remains untouched, or the new state st is set to216

the results of applying the selected action at to the current state st−1. While the action execution model217

generally allows the usage of non-deterministic effects (i.e. the outcome of an action is determined218

probabilistically), CCBM’s deterministic effects are considered sufficient in order to model the human219

protagonist’s knowledge about the environment.220

Both, the action start time and the action duration model implement the fact that actions executed
by human protagonists consume time. While the first model basically “stores” the starting time of the
current action, the second model determines whether the action that is currently executed should be
terminated or not. From the probabilistic viewpoint, the action start time model is rather simple. The
value of ut is set to the current time t if a new action is selected, otherwise the value is copied from the
previous time step. More formally,

p(ut | dt, ut−1, vt) =

{
1, if (dt=false∧ ut=ut−1) ∨ (dt=true∧ ut=vt);

0, if (dt=false∧ ut 6=ut−1) ∨ (dt=true∧ ut 6=vt).
(8)

The action duration model employs the start time of an action to determine the termination by use of
an action specific duration function (provided by the CDF F):

p(dt | at−1, ut−1, vt, vt−1) =
F(vt | at−1, ut−1)− F(vt−1 | at−1, ut−1)

1− F(vt | at−1, ut−1)
(9)

Objective of the goal selection model is to provide a mechanism to model the rational behaviour
of the human protagonist. While different approaches in the literature allow changes of the goal (see
for instance [31] or [41]), CCBM is based on the assumption that once a goal is selected it is not changed.
Similar as for the deterministic action execution, this assumption is based on the complete and static
knowledge of the human protagonist. This means that the goal is chosen at time t=0 and copied from
the previous time step afterwards.

p(gt | gt−1, st−1, at−1, dt−1, ut−1) =

{
1, if gt = gt−1

0, otherwise
(10)
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To reflect the human protagonist’s freedom to choose an action, the action selection model221

provides a probability distribution over possible actions. This includes two aspects:222

1. goal-directed actions are preferred, but223

2. deviations from the “optimal” action sequence are possible.224

Whenever the previous action has been terminated, a new action has to be selected.

p(at | dt, gt, at−1, st−1) =


γ(at | gt, at−1, st−1), if dt = true

0, if dt= f alse ∧ at 6=at−1

1, if dt= f alse ∧ at=at−1

(11)

This is done by the action selection function γ, which is implemented based on log-linear models. This
allows to include different factors into the action selection mechanism.

γ̃(at | gt, at−1, st−1) = exp (∑
k∈K

λk fk(at, gt, at−1, st−1)) (12)

γ(at | gt, at−1, st−1) =
1
Z

γ̃(at | gt, at−1, st−1) (13)

Z = ∑
a∈A

γ̃(at | gt, at−1, st−1) (14)

Here fk is the feature used for the action selection with k = {1, 2}. f1 is based on the goal distance225

[42], while f1 uses a landmarks-based approximation of the goal distance [43]. The distance in f1 is226

determined by an exhaustive process, which could be infeasible in very large state spaces. For that227

reason f2 uses approximation based on the predicates that have to be satisfied to reach the goal. The228

weight λk allows the adjust the influence of the particular heuristic to the action selection model.229

3.3. Observation Model230

The connection between the system model and the observations is provided through the
observation model. It gives the probability p(Yt = yt|Xt = x) of observing an observation y given a
state x. As illustrated in Figure 5 the random variable Y is structured into Z, W, and V, representing
sensors observation of actions (e.g. movement of a person), the environment (e.g. whether a cupboard
is open or closed) and the current time. While the observation model itself is not part of the causal
model, but has to be provided separately, the :observation clause in the action template is used to
map the specific functions from the observation model to the high level system model (see Figure 3).
The :observation provides the observation model with information about the current state X, such
as the action currently executed or the environment state. Objective of the observation model is to
provide the probability of the sensor observation given the action a ∈ A and state s ∈ S.

P(Yt | Xt) = P(Zt | At)P(Wt | St) (15)

While there are no restrictions to way, in which this probability is computed, here we use an observation231

model that incorporates a decision tree. More information about the implementation of the system232

and observation models can be found in [44].233

4. Experimental Setup and Model Development234

4.1. Data Collection235

To investigate whether CSSMs are applicable to real word scenarios, we used a sensor dataset236

recorded in real settings. The dataset consists of 15 runs of food preparation and eating activities. The237

dataset was collected in a real house rented by the SPHERE project (a Sensor Platform for HEalthcare238
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Figure 6. The SPHERE house at the University of Bristol and the kitchen setup.

in a Residential Environment) [45]. SPHERE is an interdisciplinary research project aiming to assist239

medical professionals in caring for their patients by providing a monitoring solution in home settings240

[45]. The SPHERE House is a normal 2-bedroom terrace in Bristol (UK) into which has been installed241

the full SPHERE system for testing, development and data collection. The SPHERE system consists of a242

house wide sensor network which gathers a range of environmental data (such as temperature, humidity,243

luminosity, motion), usage levels (water and electricity), and RGB-D features from depth cameras in the244

downstairs rooms [46]. The system also has support for a wearable sensor, used for location, heart-rate245

and an on-board accelerometer, although this was not used for this dataset due to hygiene concerns.246

For this work, binary cupboard door state monitoring was also added in the house kitchen to provide247

additional domain relevant data [47]. A head-mounted camera was used during the data collection to248

provide a point-of-view for each participant allowing for easier annotation of the observations. Due to249

extensive consultation with members of the public and medical professionals, the SPHERE system250

strikes a balance between protecting the privacy of the occupants and providing useful clinical data.251

Figure 6 shows the SPHERE house and the kitchen setup.252

Each participant was given ingredients that they had requested and asked to perform two or three253

cooking activities of their choice without any set recipe or other restrictions. They were encouraged254

to act naturally during the recordings, which lead to a range of behaviours, for example leaving the255

kitchen for various reasons, preparing drinks as desired and using personal electrical devices when256

not actively cooking. This led to various meals, both in terms of preparation time and complexity,257

and a range of exhibited behaviours. Table 2 shows the different runs, the meals and drinks that were258

prepared and whether they have been classified as healthy for the purposes of this work. It also shows259

the length of the task in terms of time steps after the data was preprocessed (see Section 4.2). The260

resulting dataset can be downloaded from [48]. Note that this dataset does not contain the RGB-D data261

from the depth cameras as this is not stored by the system for privacy reasons. Bounding boxes of262

humans in the scene, generated by the system from the RGB-D in real time, are included and used in263

this work to evaluate whether the information from the cameras improves model performance (see264

Section 5.2).265
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Table 2. Types of meal and length of execution sequence in a dataset. “Number of Actions” gives the
discrete actions required to describe the sequence (i.e. it gives the number of actions executed during
the task). “Time” gives the duration of the recording in time steps. Time steps are calculating by using
a sliding window over the data, which is originally in milliseconds (see Section 4.2). “Meal” gives the
eventual result of the food preparation.

Dataset # Actions Time Meal
D1 153 6502 pasta (healthy), coffee (unhealthy), tea (healthy)
D2 13 602 pasta (healthy)
D3 18 259 salad (healthy)
D4 112 3348 chicken (healthy)
D5 45 549 toast (unhealthy), coffee (unhealthy)
D6 8 48 juice (healthy)
D7 56 805 toast (unhealthy)
D8 21 1105 potato (healthy)
D9 29 700 rice (healthy)
D10 61 613 toast (unhealthy), water (healthy), tea (healthy)
D11 85 4398 cookies (unhealthy)
D12 199 3084 ready meal (unhealthy), pasta (healthy)
D13 21 865 pasta (healthy)
D14 40 1754 salad (healthy)
D15 72 1247 pasta (healthy)

4.2. Data Processing266

The dataset was recorded in JSON format. After converting it into column per sensor format, the267

procedure generated multiple rows with the same timestamp (in milliseconds). To remove redundant268

data, we combined rows with the same timestamp given that there was only one unique value for269

a sensor type. Furthermore, the action class was added for each row in the data. As the conversion270

generates some undefined values (due to the different frequencies of data collection for each type271

of sensor), time steps with undefined values for a particular sensor were replaced with the nearest272

previous value for that sensor. Apart from collecting the sensors’ values at a certain sampling rate, the273

value was also recorded when a change in the sensor’s state was detected. This ensures that replacing274

undefined values with the previous one, will not result in transferring incorrect values when the275

sensor changes its state. To reduce the impact of ambiguous observations on the model performance,276

we applied a sliding window for all sensors with overlapping of 50%. We used a window size of 5.277

We summarised the values in a window by taking the maximum for each sensor. A larger window278

resulted in removing certain actions from the dataset. For that reason we chose the window size of 5279

steps. This still produced actions with equivalent observations but reduced their number. The length280

of the resulting execution sequences in time steps can be seen in Table 2.281

4.3. Data Annotation282

In order to obtain the annotation, an action schema and ontology were developed and used for283

the annotation and the CCBM model design considerations. The ontology contains all elements in284

the environment that are relevant for the annotation and the model, while the action schema gives285

the restrictions on which actions can be applied to which elements in the environment. Note that286

the proposed action schema is more fine-grained than other existing works on AR in home settings287

(e.g. see [37,49]). This could be partially explained with the fact that sensors are unable to capture288

fine-grained activities leading to the development of action schema on the sensors’ granularity level289

[50]. In this work, we follow the assumption that we need an action schema on the granularity level290

of the application domain, so we are not guided by the sensors’ granularity. In other words, we can291

produce annotation that is not captured by the sensors. To produce the annotation, we followed the292

process proposed in [51,52].293
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4.3.1. Ontology294

The ontology represents the objects, actions, and their relations that are relevant for the problem.295

The actions in the ontology refer to the meal they are contributing to (e.g. “get ingredient pasta” means296

“get the ingredient needed for preparing pasta”). The action schema used in the model are shown in297

Table 3. They provide the rules for applying actions on elements in the environment. For example,

Table 3. The actions schema for the ontology.

1) (move < location > < location >) 5) (eat < meal >)
2) (get < item > < meal >) 6) (drink < meal >)
3) (put < item > < meal >) 7) (clean)
4) (prepare < meal >) 8) (unknown)

298

prepare can be applied only on element of type meal. In Table 3, location and item represent sets of299

objects, necessary for achieving the task, while meal refers to the goal of preparing a certain type of300

meal. The concrete locations, items and meals can be seen in Table 4. Here the get, put and prepare301

actions do not take into account the location where the meal is being prepared but rather the type302

of meal as a goal. Beside the goal oriented actions, the ontology also has an unknown action, which303

describes actions that do not contribute to reaching the goal. Figure 7 shows the objects’ hierarchy for

object

location food

tool

takeable

mealingredient

drink prep-mealprev-meal

studykitchen

coffee teajuice water pasta salad chicken toast snack potatorice cookies readymealother

ingredientstools

Figure 7. The relevant elements in the environment represented as hierarchy. Rectangles show objects;
ellipses describe the object types; arrows indicate the hierarchy or “is-a” relation (the arrow points to
the father class). Figure adapted from [38].

304

the action schema. The rectangles show the object used in the experiment, while the ellipses depict the305

object types. The types are the same as those in Table 4.306

4.3.2. Annotation307

Based on the ontology, 15 datasets were annotated using the video logs from the head mounted308

camera and the ELAN annotation tool [53]. The process proposed in [51] was used, ensuring that309

the resulting annotation is syntactically and semantically correct. Figure 5 shows an example of the310

annotation, where the time indicates the start of the action in milliseconds. The annotation has then311

been mapped to the processed sensor data, where the time is no longer in milliseconds but in time312

steps.313

The length of the annotation sequences after synchronising with the sensor data (with and without314

timing) can be seen in Table 2. The types of meals are also listed there. The annotation was later used315

to simulate data for the experiments reported in [38]. It was also used as a ground truth in this work316

during the model evaluation as well as for training the observation model for the CCBM.317

Table 4. Object sets in the ontology.

Meal chicken, coffee, cookies, juice, pasta, potato, readymeal, rice, salad, snack, tea, toast,
water, other

Item ingredients, tools

Location kitchen, study
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Table 5. Excerpt of the annotation for run D1. Time here is given in milliseconds.

Time Label
1 (unknown)

3401 (move study kitchen)
7601 (unknown)

10401 (prepare coffee)
31101 (unknown)
34901 (clean)
47301 (unknown)
52001 (get tools pasta)
68001 (get ingredients pasta)
86301 (prepare pasta)

202751 (get tools pasta)
221851 (get ingredients pasta)
228001 (prepare pasta)

4.4. Model Development318

To develop the model, we follow the process proposed in [12]. It consists of developing the causal319

model and the observation model, then defining the different heuristics for action selection and finally320

identifying appropriate action durations.321

4.4.1. CCBM Models322

Causal model: We first developed 15 specialised models, which were fitted for each of the323

15 execution sequences (we call these models CCBMs). More specifically, for all 15 models the324

same precondition-effect rules were used, but the initial and goal states differed so that they could325

accommodate the specific for each meal situation. We built the specialised models only for comparison326

purpose, as we wanted to evaluate whether our general model performs comparable to specialised327

models, which are typically manually developed in approaches relying on plan libraries. We also328

developed a general model, able to reason about all sequences in the dataset and allows performing GR329

(we call this model CCBMg). The model uses the action schema presented in Figure 3 and can label the330

observed actions as one of the classes clean, drink, eat, get, move, prepare, put, unknown. The model size

Table 6. Parameters for the different models.

Parameters CCBMg CCBMs
Action classes 8 8
Ground actions 92 10 – 28
States 450 144 40 – 1288
Valid plans 21 889 393 162 – 15 689

331

in terms of action classes, ground actions, states, and plans for the different model implementations332

can be seen in Table 6. Here, “action classes” shows the number of action types in the model, “ground333

actions” gives the number of unique action combinations based on the action schema in Table 3,334

“states” gives the number of S-states the model has, and “valid plans” provides the number of all335

valid execution sequences leading from the initial to one of the goal states. The general model has a336

larger state space and a larger set of plans. This allows coping with behaviour variability, however, it337

potentially reduces the model performance in contrast to the over-fitted specialised model.338

Goals in the model: To test whether the approach is able to reason about the observed behaviour, we339

modelled the different type of behaviour as different goals. As we are interested not only in the type of340

meal the person is preparing, but also what influence it has on the person’s health, we integrated two341

types of goals:342

1. type of meal being prepared. Here we have 13 goals, which represent the different meals and343

drinks the person can prepare (see Table 4);344
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2. healthy / unhealthy meal / drink (4 goals). Here we made the assumption that coffee, toast, and345

ready meals are unhealthy, while tea and freshly prepared meals are healthy (see Table 2). This346

assumption was made based on brainstorming with domain experts.347

Note, that although the goals could also be interpreted as actions or states, in difference to AR348

approaches, in GR we are able to predict them before they actually happen.349

Duration model: The action durations were calculated from the annotation. Each action class350

received probability that was empirically calculated from the data. The probability models the duration351

of staying in the one state. Figure 8 shows selected examples of the frequency of action durations for a
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Figure 8. Frequency of the durations of some actions in the dataset.
352

given action.353

Observation model: The observation model P(y|x) has been obtained by a learning-based approach354

as follows. We trained a decision tree (DT) based on the action classes. The output of the DT is for355

each time step, a distribution of the action class, given the current observation. This output has been356

used as a high-level observation sequence that is used to update the state prediction of the CCBM, by357

weighting each state by the probability of the corresponding action class, as indicated by the DT. The358

DT was applied to the following sensors:359

• fridge electricity consumption: for this sensor we expect to see more electricity consumption when360

the door of the fridge is open, which will indicate an ingredient being taken from the fridge;361

• kitchen cupboard sensors (top left, top right, sink): show whether a cupboard door is open, which362

could indicate that an ingredient or a tool has been taken from the cupboard;363

• kitchen drawer sensors (middle, bottom): as with the cupboard sensors, provide information whether364

a drawer has been opened;365

• temperature sensor: measures the room temperature and increasing temperature can potentially366

indicate the oven or stoves being used;367

• humidity sensor: measures the room humidity and increased humidity can indicate cooking368

(especially when boiling water for the pasta);369

• movement sensor: provides information whether a person is moving in the room. This is useful370

especially for the eating actions, when the person leaves the kitchen and eats in the study;371

• water consumption (hot and cold): shows the water consumption in the kitchen. This is useful372

especially in the cleaning phase.373

• kettle electricity consumption: as with the fridge, we expect to see more electricity consumption374

when the kettle is on and somebody is boiling water.375

• depth cameras: the position of the person was estimated through the depth cameras. We expected376

that adding the position will increase the model performance.377

We trained two types of observation models with DT:378
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1. OMo: We used all data to train the OM and the the same data to test the model (o denotes379

“optimistic”). This is an over-fitted model and we assume it should provide the best performance380

for the given system model and sensor data. Although this model is not realistic, it gives us381

information about the capabilities of the approach under optimal conditions.382

2. OMp: We used the first run for training and the rest to test the model (p denotes “pessimistic”).383

We chose the first run as it is the only one containing all actions. This observation model gives us384

information about the performance of the system model in the case of very fuzzy observations.385

4.4.2. Hidden Markov Model386

In order to compare the CCBM approach to the state of the art, we also built a hidden Markov387

model (HMM) both for activity and goal recognition. The number of hidden states in the HMM equals388

the number of action classes. Figure 9 shows a graphical representation of the modelled HMM.

clean

drink

eat

get

move

prepare

put

unknown

Figure 9. The HMM used for activity recognition. Each state represents an action class. Thicker lines
indicate higher transition probabilities.

389

The HMM has a transition matrix as well as prior probabilities for each state. We empirically390

estimated the transition matrix from the annotation of the training data by counting the number of391

state transitions. The state prior probabilities are based on the number of times a state appears in the392

training data. Two different transition models have been examined:393

• estimating the transition model from the data of all runs (general HMM, we call this model394

HMMg);395

• estimating the transition model separately for each run (specialised HMM, we call this model396

HMMs).397

For the HMMs we used the same two observation models as with the CCBM model.398

Goal Recognition399

The HMM has been used for goal recognition as proposed in [16]. This means, an HMM has been400

built for each possible goal. Each HMM has been trained using all runs where this goal occurs. These401

HMMs have been combined by introducing a common start state. The transition probabilities from the402

start state to the states of the sub-models are the normalised priors of the sub-model states. Note that403

the sub-models can have different number of states, when not all action classes occur in a run. This404

type of HMM is known as joint HMM [54]. This way, each state in the joint HMM is a tuple (action405

class, goal) and the probability of a goal is computed by marginalising over all states with the same406

goal.407

4.5. Evaluation Procedure408

To select the best combination of sensors for behaviour recognition and to evaluate the models’409

performance, the following experiments were conducted:410
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1. feature selection of the best combination of sensors. This experiment was performed to select the411

sensors that at most contribute to the model performance. The selected combination was later412

used when comparing the CCBM and HMM models;413

2. activity recognition of the action classes with DT, HMM, and CCBM models;414

3. goal recognition of the types of meals and drinks as well as preparation of healthy / unhealthy415

meal / drink.416

4.5.1. Feature selection417

We used the HMM for activity recognition to find the best feature combination, where by “feature”418

we mean the type of sensor. We did two types of evaluation: we first performed activity recognition419

with all feature combinations without the features from the depth cameras (212 = 4096 combinations).420

This feature selection was performed with OMp as the observation model and DT as classifier. OMp421

has been chosen because it gives the most realistic assessment of the performance on new data (OMo422

is over-fitted and selecting features with this observation model would result in an over-fitted feature423

combination, i.e. in too many features).424

This procedure results in accuracies for all feature combinations. We computed the accuracy using

Accuracy =
∑C λC

N
. (16)

Here C represents the action class. N represents all instances that are classified. λ is the number of425

correctly recognised instances in C.426

As we wanted to decide which features to use for the model evaluation, for each feature f we427

calculated how much it contributes to the model performance.428

1. We start by comparing the mean performance for the different feature combinations;429

2. we decide that f may produce noise when the performance of the models which contain f is430

below the accuracy of the rest of the models;431

3. for the model comparison, choose the feature combination with the highest accuracy.432

We performed similar procedure for all features combinations including the features from the433

depth cameras ((215 = 32, 768 combinations)). We performed this second evaluation separately as434

the first run (D1) does not contain the features from the depth cameras but it is the only dataset that435

contains all action classes. For that reason we performed a leave-one-out cross validation. D1 was thus436

removed from the evaluation. For each feature combination, we performed 14 training runs: training437

with all of the runs except i, and evaluating the performance (accuracy) on run i. Then, the accuracy438

was calculated as the mean accuracy of the 14 runs.439

4.5.2. Activity recognition440

We use factorial design for both activity and goal recognition. For the activity recognition, three441

types of factors were examined:442

1. algorithm: this factor considers the different approaches to be compared (DT, HMM, CCBM). The443

decision tree was our baseline and it gives information about the performance when applying444

only the observation model. In that sense, we expected the HMM and CCBM models to perform445

better that the DT;446

2. observation model: (optimistic / pessimistic);447

3. system model: (general / specific). In the case of DT we did not have different system models.448

The different dimensions we considered resulted in 10 models.449

4.5.3. Goal recognition450

Each dataset was annotated with one or several goals. Two kinds of goal annotations exist:451
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• Meal goals: pasta, coffee, tea, salad, chicken, toast, juice, potato, rice, water, cookies, ready meal452

• Healthy/unhealthy goals: healthy drink, unhealthy drink, healthy meal, unhealthy meal453

The goals for a given run can be seen in Table 2.454

CCBMs (and HMMs) normally cannot recognise multiple goals. Instead, they recognise one goal455

for each time step. Ideally, they converge after some time, only recognising a single goal after this456

time. To perform multi-goal recognition (as required by this scenario), we examined two strategies for457

deriving multiple goals.458

Multiple goals strategy: we collected all goals that have been recognised at least once by the
algorithm, and compared them with the set of true goals. The performance of each dataset was
estimated by Formula 17.

performance(i) =
|esti ∩ truthi|
|esti|

(17)

Here esti is the set of recognised goals for dataset i, and truthi is the set of true goals for dataset i. The459

overall performance is the mean of each datasets’ performance.460

“Pooled” goals strategy: each distinct set of goals was subsumed as a goal set. We performed461

goal recognition with this goal set. The goal of a run is said to be recognised correctly if the goal462

estimation of this run converged to the correct goal.463

Furthermore, we used different types of goal priors:464

1. uniform priors (uninformed): in this case all priors (i.e. x0) have the same probability.465

2. informed priors: here, the correct goal has two times the likelihood than the rest of the goals.466

When applying factorial design to the goal recognition, the activity recognition factors do not467

apply, as each sub-HMM has been trained by using the data of all runs where the corresponding goal468

occurs. For that reason, for the goal recognition, we examined the following factors:469

1. algorithm (HMM / CCBM);470

2. goal target (Meal / Healthy);471

3. type of multigoal recognition (multiple goals / single, “pooled” goals);472

4. prior (informed / uninformed).473

This resulted in 16 models.474

5. Results475

5.1. Feature Selection without the Depth Camera Features476

4096 combinations of sensors were evaluated and from them the best combination was selected477

for the further experimentation. Using the procedure described in the previous section, the mean478

accuracy of the model with and without a given feature was calculated. Figure 10 (left) shows the479

results. It can be seen that the humidity sensor reduces the performance of the model the most. The480

fridge electricity consumption, movement sensor, and temperature sensor also slightly reduce the481

mean performance. Interestingly enough, the fridge electricity consumption and movement sensors482

are both in the set of best performing feature combination (see Table 7). This indicates that taking483

the mean accuracy is probably not the best evaluation metric as some of the sensor combinations can484

reduce the usefulness of a sensor that otherwise brings relevant information to the model.485

Table 7 shows the 10 worst and the 10 best combinations. The best performing set of features is486

fridge, cupboard top right, movement sensor, hot water consumption, cold water consumption with accuracy of487

0.4332. This combination was later used in the remainder of the experiments.488

5.2. Feature Selection with Locational Data from Depth Cameras489

During the experiment, the position of the person estimated through depth cameras was also490

recorded. One hypothesis we had, was that adding the position will increase the model performance.491



Version January 30, 2019 submitted to Sensors 18 of 27

●
●

● ●
●

●
●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

0.32

0.34

0.36

0.38

0.40

HUM
PIR

TEM
P

W
CD

W
HT

cu
pb

oa
rd

Sink

cu
pb

oa
rd

To
pL

ef
t

cu
pb

oa
rd

To
pR

igh
t

dr
aw

Bot
to

m

dr
aw

M
idd

le
fri

dg
e

ke
ttle

sensor

ac
cu

ra
cy models

●

●

with

without

●

●
●

●
●●●

●

●

●

●
●

● ●
●

●

●
●

●
●●●

●

●

●

●
●

● ●
●

0.32

0.34

0.36

0.38

0.40

HUM
PIR

TEM
P
W

CD
W

HT

cu
pb

oa
rd

Sink

cu
pb

oa
rd

To
pL

ef
t

cu
pb

oa
rd

To
pR

igh
t

dr
aw

Bot
to

m

dr
aw

M
idd

le
fri

dg
e
ke

ttle

xC
oo

rd

yC
oo

rd

zC
oo

rd

sensor

ac
cu

ra
cy models

●

●

with

without

Figure 10. Mean accuracy with and without a given feature. Left: the accuracy for all feature
combinations without the camera features and using the first run (D1) for training and the rest
for testing. Right: the accuracy of all feature combinations including the camera features and using
leave-one-out cross validation.

This hypothesis was not confirmed by the empirical results we obtained after adding the position to492

the existing sensor data. Below we discuss the procedure for the data processing and the empirical493

results.494

In order to address privacy concerns about RGB-D images being stored within the SPHERE495

system, there was a requirement for all features to be extracted at run time [46]. In order to obtain496

the positional and tracking information of any scene elements of interest, the SPHERE system makes497

use of a Kernelised Correlation Filter (KCF), augmented with Depth Scaling (DS-KCF) [55]. This is498

an extremely lightweight object tracker which is capable of handling the complicated environments499

encountered by SPHERE, while running at around 180 frames per second.500

By using DS-KCF to obtain a 2D bounding box for an individual in frame along with the depth501

information from the image, a 3D bounding box could be established in order to get the 3D position502

for each person within shot. This information was stored as Cartesian coordinates, and during data503

processing was handled in the same way as the rest of the sensor data (see Section 4.2). Three new504

columns were added for the x, y, and z position of the person extracted from the video data. To evaluate505

whether the video data provides any additional information that increases the model performance,506

we performed the feature selection process for all features including the depth camera features as507

presented in Section 4.5.1.508

The 10 best and worst features are shown in Table 8. It can be seen that the video data does509

not appear in the 10 best feature combinations. For this evaluation, the best feature combination is510

kettle electricity consumption, cupboard top left, drawer bottom, temperature, and movement. This feature511

combination does not include any camera features. When visually inspecting the video data compared512

to the actions from the ground truth, it became apparent that the camera data does not allow any513

conclusions about the currently performed activity. This could be interpreted in two ways. The514

performed activities are not related to the position of the person in the kitchen (e.g. the action “prepare”515

can take place at different locations within the kitchen). The second interpretation is that the position516

extracted from the camera is noisy and thus does not provide useful information for the model.517

Figure 10 (right) shows the mean accuracy of all feature combinations with and without each518

feature. This shows how much each feature contributes to the overall performance. It shows that the519

camera features reduce the performance. Interestingly enough, in contrast to the results from Figure520

10 (left), here the movement sensor and the fridge electricity consumption improve the performance.521

These two sensors were also used in the set of sensors selected for our experiments.522

5.3. Activity Recognition523

Figure 11 shows the results for activity recognition. It depicts the distribution of the results524

for a given model over all runs. The accuracy is quite similar for all algorithms. There is a slight525



Version January 30, 2019 submitted to Sensors 19 of 27

Table 7. Accuracies for the 10 worst and 10 best sensor combinations without the camera features.

10 worst combinations
features accuracy
fridge, drawer middle, drawer bottom, humidity, movement 0.2688
fridge, drawer middle, drawer bottom, humidity, movement, water cold 0.2691
fridge, drawer bottom, humidity, movement, water cold 0.2692
fridge, drawer bottom, humidity, movement 0.2692
fridge, cupboard top left, humidity, movement 0.2694
fridge, cupboard top left, drawer middle, humidity, movement 0.2694
fridge, humidity, movement, water cold 0.2695
fridge, drawer middle, humidity, movement, water cold 0.2695
fridge, cupboard sink, humidity, movement, water cold 0.2695
fridge, draw middle, humidity, movement 0.2695

10 best combinations
features accuracy
drawer bottom, cupboard sink, water hot, water cold 0.4307
drawer middle, drawer bottom, water hot, water cold 0.4308
cupboard top left, drawer middle, drawer bottom, water hot, water cold 0.4308
drawer middle, drawer bottom, cupboard top right, water hot, water cold 0.4308
fridge, drawer bottom, movement, water hot, water cold 0.4325
fridge, movement, water hot, water cold 0.4330
fridge, cupboard top left, movement, water hot, water cold 0.4330
fridge, draw middle, movement, water hot, water cold 0.4330
fridge, cupboard sink, movement, water hot, water cold 0.4330
fridge, cupboard top right, movement, water hot, water cold 0.4332

improvement in the recognition when using CCBMg with OMo compared to the HMM and DT models.526

In combination with OMp, however, there is no difference in the performance of CCBMg, HMMg,527

HMMs, and DT. Applying CCBMs, there is improvement in the performance both when combined528

with OMo and OMp. This improvement, however, is not significant compared to the rest of the models529

(0.038<p value<0.187, 81<V<86 when applying Wilcoxon signed rank test with N = 156). The results
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Figure 11. Activity Recognition results. OM-o refers to the optimistic observation model, OM-p to the
pessimistic observation model, dt is decision tree, hmmg is the general HMM, hmms is the specialised
HMM, CCBM.s is the specialised CCBM, CCBM.g is the general CCBM.

530

show that the CCBM models do not significantly improve the performance for activity recognition and531

that the observation model has the largest effect on the accuracy. This is to be expected with regard532

to CCBMg as the model is very general (with 21 million valid plans), which allows coping with the533

behaviour variability but in the same time provides multiple explanations for the observed behaviour534

6 p value of 0.038 was observed between HMMg and CCBMs. Although it is slightly under the threshold value of 0.05, we
consider that it is a borderline result, and not a significant difference between the two models.
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Table 8. Accuracies for the 10 worst and 10 best sensor combinations with the camera features.

10 worst combinations
features accuracy
fridge, cupboard top left, drawer bottom, cupboard top right, humidity, xCoord 0.2199
fridge, cupboard top left, drawer bottom, cupboard sink, humidity, xCoord 0.2199
fridge, cupboard top left, drawer middle, cupboard sink, humidity, movement,
xCoord

0.2194

fridge, cupboard top left, drawer middle, humidity, movement, xCoord 0.2189
fridge, cupboard top left, cupboard sink, humidity, movement, xCoord 0.2170
fridge, cupboard top left, drawer middle, cupboard top right, cupboard sink,
humidity, xCoord

0.2167

fridge, cupboard top left, drawer middle, cupboard top right, humidity, xCoord 0.2162
fridge, cupboard top left, drawer middle, cupboard sink, humidity, xCoord 0.2162
fridge, cupboard top left, drawer middle, humidity, xCoord 0.2158
fridge, cupboard top left, cupboard top right, cupboard sink, humidity, xCoord 0.2149

10 best combinations
features accuracy
kettle, cupboard top left, drawer bottom, temperature, movement 0.4911
kettle, cupboard top left, drawer bottom, cupboard top right, temperature,
movement

0.4911

kettle, cupboard top left, drawer bottom, cupboard sink, temperature,
movement

0.4911

kettle, cupboard top left, drawer bottom, cupboard top right, cupboard sink,
temperature, movement

0.4911

kettle, cupboard top left, cupboard sink, temperature, movement 0.4902
kettle, cupboard top left, cupboard top right, cupboard sink, temperature,
movement

0.4901

kettle, cupboard top left, drawer middle, drawer bottom, cupboard sink,
temperature, movement

0.4901

kettle, cupboard top left, drawer middle, drawer bottom, cupboard top right,
cupboard sink, temperature, movement

0.4901

kettle, drawer bottom, cupboard sink, temperature, movement 0.4892
kettle, drawer bottom, cupboard top right, cupboard sink, temperature,
movement

0.4892

when the observations are ambiguous. Surprisingly, CCBMs also did not show significantly better535

performance. This can be partially explained with the fact that the ambiguous observations do not536

provide one-to-one mapping with the actions (i.e. multiple actions can have the same observation).537

5.4. Goal Recognition538

Next, we compare the performance of the informed CCBM model (we call it CCBMi) and the539

uninformed CCBM mode (CCBMu), with the informed HMM (HMMi) and the uninformed HMM540

(HMMu).541

5.4.1. Multigoal Model542

The results for goal recognition with multiple goals for the type of meal being prepared is543

depicted in Figure 12. It can be seen that CCBMi always performs significantly better than the rest544

of the models with a median accuracy of 1. We used Wilcoxon signed rank test to evaluate whether545

there is significant difference between the models’ performance. The results showed that CCBMi546

combined with both OMo and OMp had a p value of under 0.0006 (V=120, Wilcoxon signed rank547

test with N = 15), indicating that using CCBM model and informed priors indeed improves the goal548

recognition. In difference to CCBMi, HMMi performed comparable to CCBMu and HMMu and there549

was no significant improvement when using informed priors. This stands to show that CCBM models550

are able to provide significantly better goal recognition than the state of the art HMM.551
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Figure 12. Multigoal recognition results, meal goals. OM-o refers to the optimistic observation model,
OM-p to the pessimistic observation model, HMM.u is the HMM with uninformed a priori goal
probabilities, HMM.i is the HMM with informed a priori goal probabilities, CCBM.u is the CCBM with
uninformed a priori goal probabilities, CCBM.i is the CCBM with informed a priori goal probabilities.

Figure 13 shows the results for recognising whether the meal or drink being prepared is healthy.552

Once again CCBMi, when combined with OMp, performs significantly better than the rest of the
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Figure 13. Multigoal recognition results, healthy/unhealthy goals. OM-o refers to the optimistic
observation model, OM-p to the pessimistic observation model, HMM.u is the HMM with uninformed
a priori goal probabilities, HMM.i is the HMM with informed a priori goal probabilities, CCBM.u is the
CCBM with uninformed a priori goal probabilities, CCBM.i is the CCBM with informed a priori goal
probabilities.

553

models (p value < 0.01; V = 120, 45, 105 for HMMu, HMMi and CCBMu, respectively, using Wilcoxon554

signed rank test with N = 15). Interestingly, CCBMi combined with OMp leads to significantly better555

accuracy than when combined with OMo. This is the opposite of what we would expect, as the556

pessimistic observation model has an inferior activity recognition performance. This can be interpreted557

as a result of the very ambiguous observations, which allow the CCBM model to rely on its symbolic558

structure and the assigned priors in order to recognise the goal. Although the priors play an important559

goal, it can be seen that CCBMu combined with OMp also performed better than when combined560

with OMo. It also performed significantly better than HMMu (p value of 0.005, V=55) and better561

than HMMi, which stands to show that in case of ambiguous observations, CCBM models are able to562

provide additional information that improves the goal recognition performance.563

5.4.2. “Pooled” Goals564

The results for the single goal recognition are depicted in Figure 14. It shows the number of565

goals recognised by the model (15 being the highest number achievable). In contrast to the multi-goal566

recognition, now both HMM models have a better performance than CCBMu (when combined with567

OMo). In combination with OMp, CCBMu performed slightly better than HMMu but it was unable568

to outperform HMMi. However, CCBMi still yields the best results. In combination with OMo it569
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Figure 14. Single goal recognition results, meal goals. OM-o refers to the optimistic observation
model, OM-p to the pessimistic observation model, HMM.u is the HMM with uninformed a priori goal
probabilities, HMM.i is the HMM with informed a priori goal probabilities, CCBM.u is the CCBM with
uninformed a priori goal probabilities, CCBM.i is the CCBM with informed a priori goal probabilities.

was able to recognise 11 out of the 15 goals. Still, the results show that when using “pooled-goals”570

the performance of the CCBM model strongly depends on the observation model and the assigned571

priors. This differs from the results obtained when using the multiple goals strategy, where the models572

combined with OMp showed better performance.573

6. Discussion574

The results showed that the CCBM modelling approach is able to reason about the actions and575

goals of the protagonist in real world cooking scenario based on noisy and ambiguous sensors. This576

stands to show that CSSMs are applicable to real world behaviour recognition problems in cases where577

the protagonist is acting in a goal-oriented manner. On the one hand, the combination of symbolic578

rule-based structure and probabilistic reasoning makes the approach attractive in situations where579

purely rule-based systems will have problems with the sensors’ ambiguity.580

On the other hand, in difference to discriminative probabilistic approaches, the symbolic structure581

of CCBM allows integrating contextual information and causal dependencies that provide a mechanism582

for reasoning about the person’s goals and reasons behind the observed behaviour. This was also583

observed in the empirical results for goal recognition, which showed that the model is able to reason584

about the protagonist’s goals even in the case of very ambiguous observations (when using OMp).585

In difference to goal recognition, however, the results showed that the model is seriously586

influenced by the observation model when performing activity recognition. This could be explained587

with the fact that the model is very general and has a high degree of freedom in selecting the next588

action. Combined with ambiguous sensors, the model is able to provide various explanations to589

the observations, which reduces the model performance. This problem can be addressed by either590

providing better action selection heuristics, or by tailoring the model in order to reduce the degree of591

freedom. In that respect, reinforcement learning methods could potentially be applied to learn more592

typical execution sequences.593

Another interesting result is that the positional data from the depth cameras do not improve the594

model performance. This could have two reasons: either there is a problem with the data, or the model595

does not make use of the location information. The latter assumption is reinforced when visually596

examining the location data (see Figure 15). In the example, it can be seen that there is no obvious597

relation between the annotation and the location. This problem can be addressed by introducing598

additional locational information into the CCBM model (e.g. specific actions can be executed at a599

certain location in the kitchen).600

Finally, the manual modelling of symbolic models is a time consuming and error prone process601

[56,57]. Additionally, it is often the case that the system designers are not the domain experts. That602

is especially true in medical applications, such as health monitoring. One potential solution to this603

problem is to automatically generate the CCBM models from textual sources provided by the domain604

experts [58,59].605
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Figure 15. Example of the relationship between camera data and performed activity. The x-axis position
extracted from the depth camera is given with black circles, while the annotated actions are given with
red solid line.

7. Conclusion and Future Work606

In this work we investigated the practical application of CSSMs to the problem of AR and607

GR in a real world setting. To evaluate the approach, we used a sensor dataset containing the608

preparation of various meals and drinks. The results showed that the approach performs AR with609

accuracy comparable to that of state of the art approaches such as DT and HMM. In the case of goal610

recognition, the approach was able to infer the prepared meal and its “healthy” status even when the611

AR performance was poor. As a conclusion, the approach showed the potential to infer one’s activities612

and goals that could hint at medical conditions or the progression of such even in unscripted scenarios613

and home settings.614

In the future, we plan to explore several different directions. We intend to build a more615

fine-grained model that contains additional contextual details such as the concrete objects that616

are manipulated and the locational information. This will provide additional information about617

the person’s situation beside the goal being followed. It could also potentially improve the model618

performance when combined with the locational data from the depth cameras.619

The model we built in this work had a very large state space (> 400, 000 states). A more620

fine-grained model will result in an even larger state space. To address this problem, we intend to621

investigate a lifted inference approach, which provides a mechanism for efficient reasoning in cases of622

observation equivalent states [60].623

In this work, we analysed the behaviour of a single person preparing a meal. There is already624

evidence that CSSMs are also able to reason about multiple users in scripted experiments [33] and so625

we intend to investigate CSSMs for this purpose in future work.626

We also intend to investigate combining deep learning methods with our approach in order to627

increase the model performance.628

Finally, we plan to record a new dataset that contains the cooking activities of people with629

health-related conditions. We will use this dataset to validate the ability of our model to reason about630

the nutrition-related risks and conditions of patients in home settings.631
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AR Activity Recognition
CCBM Computational Causal Behaviour Model
CSSM Computational State Space Model
DS-KCF Depth Scaling Kernelised Correlation Filter
DT Decision Tree
ELAN Multimedia Annotator
GR Goal Recognition
HMM Hidden Markov Model
JSON JavaScript Object Notation
KCF Kernelised Correlation Filter
OM Observation Model
PDDL Planning Domain Definition Language
PR Plan Recognition
SPHERE Sensor Platform for HEalthcare in a Residential Environment
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