N

HAL

open science

Polynomial interpolation in higher dimensions

Alexandru Dimca

» To cite this version:

Alexandru Dimca. Polynomial interpolation in higher dimensions. Université Cote d’Azur Complex
Systems, M. Argentina; S. Barland; P. Reynaud-Bouret; F. Cauneau; K. Guillouzouic; U. Kuhl; T.
Passot; F. Planchon, Jan 2018, Nice, France. pp.1-7. hal-02003283

HAL Id: hal-02003283
https://hal.science/hal-02003283v1
Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Copyright


https://hal.science/hal-02003283v1
https://hal.archives-ouvertes.fr

Polynomial interpolation in
higher dimensions

Alexandru Dimca

Abstract We describe a recent advance in the theory of interpolation in the
plane, based on the theory of line arrangements in the complex projective
plane.

1 Interpolation in dimensions one and two

1.1 Lagrange interpolation

We denote by R the field of real numbers and by C the field of complex
numbers. Let py,..., pn be n real numbers, thought of as n points on the real
line.

Assume that each point p; has an associated number c; € R, thought of as
the result of a measurement effectuated at the point p;, fori =1,2,..,n, of a
physical entity of interest to us, e.g., temperature, pressure, or density of a
substance. Let S = {p1, p2, ..., pn } be the set of these n points, and

f:S—=R

the function defined by f(p;) = ¢; for i = 1,2,...,n. In order to move from
experiment to theory, we would like to find a formula for this function f.
The most natural idea is to look for a polynomial P(x) of minimal possible
degree such that one has
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f(pi)=P(p;) foralli=1,2,..,n.

The hope is that this polynomial will in fact satisfy f(f) = P(t) for any real
number ¢, and hence our discovered formula would allow us to make pre-
dictions as well.
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Fig. 1 The n = 4 points (p;,c;) are on the parabola y = P(x), with P(x) = x? — 3x + 1.

The following result was first published by Waring in 1779, rediscovered
by Euler in 1783, and published by Lagrange in 1795.

Theorem 1. For any n distinct real numbers p;, i = 1,2,...,n, and any given n
values c;, i =1,2,...,n, there is a unique polynomial P(x) of degree at most n — 1,
such that P(p;) = c; foralli=1,2,...,n.

To give a formula for P(x), consider, for any i = 1,2,...,n, the degree n — 1
polynomial
i1, (X = pj)
iy jzi(pi — pj)’
and note that Q;(p;) =1 and Q;(px) = 0 for any k # i. With this notation one
has

P(x)= ) iQi(x).

i=1n

Qi(x) =

Consider the vector space of polynomials of degree at most d, denoted by
R[x] <4, and the linear map given by evaluation

e1:R[x]<; = R°=R", €(Q)(pi) = Qpi),
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foranyi=1,2,..,n, where RS denotes the vector space of all functions S —
RR. The above results say that €, is injective if and only if d <n — 1, and ¢; is
surjective if and only if d > n — 1. Such results are true over any field: R, C
or even finite fields.

1.2 Interpolation in dimension 2

Let now p; = (x;,y;) for i =1,2,...,n be n points in the plane R?. Assume
each point has an associated value ¢; € R, thought of as the result of a mea-
surement at the point p;. Let S = {p1,p2,...,pn} be the set of these points,
consider the associated function f : S — R given by f(p;) = ¢; and look for
the minimal degree d such that there is a polynomial Q € R[x,y] of degree d
satisfying

f(pi) =Q(x;,y;) foralli=1,2,...,n.

This is the old question, but the setting is new: the answer now depends on
the position of the points p; in the plane.

Example 1 (3 points in the plane). If the 3 points p1, p2 and p3 are not collinear,
then we can take d = 1. Indeed, as above, we can construct 3 polynomials
Q1, Q2 and Qs3, by taking the equations of lines passing through two of the
points p;. When the 3 points p1, p» and p3 are collinear, then the minimal
degree is d = 2. Indeed, there are conics passing through two of these points
and avoiding the remaining one.

We discuss now a special type of interpolation node, i.e., a special class of
choices for the points p;’s. Consider a finite family of lines L; : {;(x,y) =
ajx + b]-y +¢;=0in the plane R?, for j=1,2,...,m.If these lines are generic,
i.e., no two are parallel and no three are concurrent, then we get precisely

v-(2)

intersection points, which will play the role of our points p;.

Theorem 2. For any m generic lines in the plane and any given N values c; associ-
ated to their intersection points p;, there is a unique polynomial P(x,y) of degree at
most m — 2, such that P(p;) =c; foralli=1,2,...,N. More precisely, the evaluation
map

e R[x,yl<g = R =RY, €(Q)(pi) = Qxi,y1),
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Fig. 2 m = 4 generic lines in the plane

is surjective if and only if d > m — 2 and it is injective for d < m — 2. A similar
claim of surjectivity holds when the lines are replaced by any nodal curve C of degree
d and the intersection points by the set of nodes of C.

Note that the degree of P is much smaller than the number of interpolation
points p;, namely m —2 < N = m(m — 1)/2. The injectivity claim is easy,
using Bezout Theorem about the intersection of two plane curves. The sur-
jectivity is subtle, the proof uses Hodge theory, see [7]. The case when C is a
Chebyshev curve is particularly interesting, see [6].

2 Projective Duality and Interpolation

From now on we move from the real field R to the complex field C, and from
the affine plane C? to the projective plane IP?, with coordinates (x:y:z). A
point p in P? is given by 3 homogeneous coordinates

p=(a:b:c),
where a,b,c € C are not all zero. To such a point we can associate a line L, in
IP?, given by the equation

Ly:ax+by+cz=0.

Hence to a set of points S = {p; :i1=1,2,...,n} in P2, we can associate a line
arrangement Ag = {Lp, : i =1,2,..,n} in P2. The multiplicity of a point p in
a line arrangement A is the number of lines of the arrangement .4 passing
through p. For more on line arrangements we refer to [4].
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2.1 Splitting type of a line arrangement

Why to pass from points to lines ? Because line arrangements have a lot of
geometry. In particular, for any line arrangement A in IP? one can define
a rank two vector bundle E = E(.A) on the projective plane P2, the bundle
of logarithmic vector fields along .A. If L is a generic line in IP?, then the
restriction E|L splits as a direct sum of two line bundles on L = IP!, with first
Chern classes given by two negative integers, say (—a,—b), with 0 <a < b.
The pair (a,b) is called the splitting type of E and satisfies a + b = | A| — 1.
For details, see [1,5].

2.2 A new look at the 1-dimensional case: a refinement

The fact that the evaluation map

ea:Rlx]<g » R° =R", €(Q)(pi) = Qp),
is surjective for d > n — 1 is equivalent to the claim that
dimkere; = dim{Q € R[x|<;: Q(p;) =0foranyi} =d+1—n,

for d > n — 1. Now fix an integer k > 1, consider a new pointg € IR, butq & S,
and define a new evaluation map

€ank R[x] <4 — R = R" x R[x]<;_1,

where €(Q)(pi) = Q(pi) € Rand €(Q)(q) = Tr_1Q(q) € R[x]<x_1 is the (k —
1)-st Taylor expansion of the polynomial Q at the point 4.

In particular, €(Q)(q) = Tx_1Q(q) = 0if and only if the first (k — 1) deriva-
tives of Q vanish at g, namely QU)(g) = 0 for all 0 < j < k — 1. It is easy to
show that this new evaluation map is surjective for d > n + k — 1, and hence

dimkerey p=d+1—-n—k,

for d > n 4k — 1. The practical interest of this refinement is that, for in-
stance, a zero Taylor expansion of high order means very small values for
the polynomial Q in the neighborhood of the given point 4.
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2.3 A new 2-dimensional interpolation problem

Starting with a given set of points S = {p; : i = 1,2,...,n} in P2, we fix an
integer k > 1, and define I(S), to be the vector space of homogeneous poly-
nomials Q € Clx,y,z|; such that Q(p;) = 0 for any i = 1,2,...,n. Choose then
a generic point g € IP? and consider the vector space V(d,S,k,q) of homoge-
neous polynomials Q € I(S),; such that Ty_1Q(gq) = 0. The expected dimen-
sion of this vector space is

dim, V(d,S,k,q) := dim(S); — (k ;L 1),

when this number is positive. An important special case is when d =k,
which is also the simplest case to consider. In this setting, we introduce the
following notion, see [2].

Definition 1. We say that the set S admits an unexpected curve of degree k
if
dimV(k,S,k,q) > dim,V(k,S,k,q) > 0.

The main result in this direction is the following, see [2].

Theorem 3. Let S be a finite set of n points in P? and let (as,bs) be the splitting
type of the dual line arrangement Ag. Then S admits an unexpected curve of degree
k if and only if the following hold.

e ag+1<k<bs—1;
e the multiplicity of any intersection point in Ag is at most ag + 1.

2.4 Anexample: the complete polygonal arrangements

Consider a regular polygon with N > 3 edges, and the associated line ar-
rangement A consisting of the following 2N + 1 lines

e the N lines determined by the N edges of the polygon,
e the N symmetry axes of the polygon, and
e the line at infinity.

This type of line arrangement occurs in the following result, see [3].

Theorem 4. For N even, the complete N-polygonal arrangement has an unexpected
curve of degree N.
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Fig. 3 Complete 4-polygonal arrangement; the line at infinity is drawn as the red circle.

The proof uses the theory of supersolvable line arrangements to show that
a=N—1and b= N + 1. As an example, for N =4 we geta =3 and b =5.
Hence A admits an unexpected curve of degree 4 by the result in see [2].

In the case N = 4, the complete N-polygonal arrangement is the dual ar-
rangement Ag, where the set of points S consists of the points (0:0:1),
(0:1:0),(1:0:0),(1:1:1),(0:1:1),(1:0:1),(1:1:0),(-1:1:0),
(1:1:2). This situation was considered first by B. Harbourne in [8].
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