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f (p i ) = P(p i ) for all i = 1, 2, ..., n.

The hope is that this polynomial will in fact satisfy f (t) = P(t) for any real number t, and hence our discovered formula would allow us to make predictions as well. Fig. 1 The n = 4 points (p i , c i ) are on the parabola y = P(x), with P(x) = x 2 -3x + 1.

The following result was first published by Waring in 1779, rediscovered by Euler in 1783, and published by Lagrange in 1795.

Theorem 1. For any n distinct real numbers p i , i = 1, 2, ..., n, and any given n values c i , i = 1, 2, ..., n, there is a unique polynomial P(x) of degree at most n -1, such that P(p i ) = c i for all i = 1, 2, ..., n.

To give a formula for P(x), consider, for any i = 1, 2, ..., n, the degree n -1 polynomial

Q i (x) = Π j=1,n;j =i (x -p j ) Π j=1,n;j =i (p i -p j ) ,
and note that Q i (p i ) = 1 and Q i (p k ) = 0 for any k = i. With this notation one has

P(x) = ∑ i=1,n c i Q i (x).
Consider the vector space of polynomials of degree at most d, denoted by R[x] ≤d , and the linear map given by evaluation

d : R[x] ≤d → R S = R n , (Q)(p i ) = Q(p i ),
for any i = 1, 2, ..., n, where R S denotes the vector space of all functions S → R. 

Interpolation in dimension 2

Let now p i = (x i , y i ) for i = 1, 2, ..., n be n points in the plane R 2 . Assume each point has an associated value c i ∈ R, thought of as the result of a measurement at the point p i . Let S = {p 1 , p 2 , ..., p n } be the set of these points, consider the associated function f : S → R given by f (p i ) = c i and look for the minimal degree d such that there is a polynomial

Q ∈ R[x, y] of degree d satisfying f (p i ) = Q(x i , y i ) for all i = 1, 2, ..., n.
This is the old question, but the setting is new: the answer now depends on the position of the points p i in the plane.

Example 1 (3 points in the plane). If the 3 points p 1 , p 2 and p 3 are not collinear, then we can take d = 1. Indeed, as above, we can construct 3 polynomials Q 1 , Q 2 and Q 3 , by taking the equations of lines passing through two of the points p i . When the 3 points p 1 , p 2 and p 3 are collinear, then the minimal degree is d = 2. Indeed, there are conics passing through two of these points and avoiding the remaining one.

We discuss now a special type of interpolation node, i.e., a special class of choices for the points p i 's. Consider a finite family of lines L j : j (x, y) = a j x + b j y + c j = 0 in the plane R 2 , for j = 1, 2, ..., m. If these lines are generic, i.e., no two are parallel and no three are concurrent, then we get precisely

N = m 2
intersection points, which will play the role of our points p i .

Theorem 2. For any m generic lines in the plane and any given N values c i associated to their intersection points p i , there is a unique polynomial P(x, y) of degree at most m -2, such that P(p i ) = c i for all i = 1, 2, ..., N. More precisely, the evaluation map Note that the degree of P is much smaller than the number of interpolation points p i , namely m -2 < N = m(m -1)/2. The injectivity claim is easy, using Bezout Theorem about the intersection of two plane curves. The surjectivity is subtle, the proof uses Hodge theory, see [START_REF] Dimca | Koszul complexes and pole order filtrations[END_REF]. The case when C is a Chebyshev curve is particularly interesting, see [START_REF] Dimca | Chebyshev curves, free resolutions and rational curve arrangements[END_REF].

d : R[x, y] ≤d → R S = R N , (Q)(p i ) = Q(x i , y i ), p i = (x i , y i )

Projective Duality and Interpolation

From now on we move from the real field R to the complex field C, and from the affine plane C 2 to the projective plane P 2 , with coordinates (x : y : z). A point p in P 2 is given by 3 homogeneous coordinates

p = (a : b : c),
where a, b, c ∈ C are not all zero. To such a point we can associate a line L p in P 2 , given by the equation

L p : ax + by + cz = 0.
Hence to a set of points S = {p i : i = 1, 2, ..., n} in P 2 , we can associate a line arrangement A S = {L p i : i = 1, 2, ..., n} in P 2 . The multiplicity of a point p in a line arrangement A is the number of lines of the arrangement A passing through p. For more on line arrangements we refer to [START_REF] Dimca | Hyperplane Arrangements: An Introduction[END_REF].

Splitting type of a line arrangement

Why to pass from points to lines ? Because line arrangements have a lot of geometry. In particular, for any line arrangement A in P 2 one can define a rank two vector bundle E = E(A) on the projective plane P 2 , the bundle of logarithmic vector fields along A. If L is a generic line in P 2 , then the restriction E|L splits as a direct sum of two line bundles on L = P 1 , with first Chern classes given by two negative integers, say (-a, -b), with 0 ≤ a ≤ b.

The pair (a, b) is called the splitting type of E and satisfies a + b = |A| -1.

For details, see [START_REF] Abe | On the splitting types of bundles of logarithmic vector fields along plane curves[END_REF][START_REF] Dimca | Syzygies and logarithmic vector fields along plane curves[END_REF].

A new look at the 1-dimensional case: a refinement

The fact that the evaluation map

d : R[x] ≤d → R S = R n , (Q)(p i ) = Q(p i ), is surjective for d ≥ n -1 is equivalent to the claim that dim ker d = dim{Q ∈ R[x] ≤d : Q(p i ) = 0 for any i} = d + 1 -n,
for d ≥ n -1. Now fix an integer k ≥ 1, consider a new point q ∈ R, but q / ∈ S, and define a new evaluation map

d,q,k : R[x] ≤d → R n+k = R n × R[x] ≤k-1 , where (Q)(p i ) = Q(p i ) ∈ R and (Q)(q) = T k-1 Q(q) ∈ R[x] ≤k-1 is the (k - 1)
-st Taylor expansion of the polynomial Q at the point q.

In particular, (Q)(q) = T k-1 Q(q) = 0 if and only if the first (k -1) derivatives of Q vanish at q, namely Q (j) (q) = 0 for all 0 ≤ j ≤ k -1. It is easy to show that this new evaluation map is surjective for d ≥ n + k -1, and hence

dim ker d,q,k = d + 1 -n -k, for d ≥ n + k -1.
The practical interest of this refinement is that, for instance, a zero Taylor expansion of high order means very small values for the polynomial Q in the neighborhood of the given point q.

A new 2-dimensional interpolation problem

Starting with a given set of points S = {p i : i = 1, 2, ..., n} in P 2 , we fix an integer k ≥ 1, and define I(S) d to be the vector space of homogeneous polynomials Q ∈ C[x, y, z] d such that Q(p i ) = 0 for any i = 1, 2, ..., n. Choose then a generic point q ∈ P 2 and consider the vector space V(d, S, k, q) of homogeneous polynomials Q ∈ I(S) d such that T k-1 Q(q) = 0. The expected dimension of this vector space is dim e V(d, S, k, q) := dim

I(S) d - k + 1 2 ,
when this number is positive. An important special case is when d = k, which is also the simplest case to consider. In this setting, we introduce the following notion, see [START_REF] Cook | Line arrangements and configurations of points with an unexpected geometric property[END_REF].

Definition 1. We say that the set S admits an unexpected curve of degree k if dim V(k, S, k, q) > dim e V(k, S, k, q) ≥ 0.

The main result in this direction is the following, see [START_REF] Cook | Line arrangements and configurations of points with an unexpected geometric property[END_REF].

Theorem 3. Let S be a finite set of n points in P 2 and let (a S , b S ) be the splitting type of the dual line arrangement A S . Then S admits an unexpected curve of degree k if and only if the following hold.

• a S + 1 ≤ k ≤ b S -1;
• the multiplicity of any intersection point in A S is at most a S + 1.

An example: the complete polygonal arrangements

Consider a regular polygon with N ≥ 3 edges, and the associated line arrangement A consisting of the following 2N + 1 lines

• the N lines determined by the N edges of the polygon,

• the N symmetry axes of the polygon, and

• the line at infinity. This type of line arrangement occurs in the following result, see [START_REF] Di Marca | Unexpected curves arising from special line arrangements[END_REF].

Theorem 4. For N even, the complete N-polygonal arrangement has an unexpected curve of degree N. The proof uses the theory of supersolvable line arrangements to show that a = N -1 and b = N + 1. As an example, for N = 4 we get a = 3 and b = 5. Hence A admits an unexpected curve of degree 4 by the result in see [START_REF] Cook | Line arrangements and configurations of points with an unexpected geometric property[END_REF].

In the case N = 4, the complete N-polygonal arrangement is the dual arrangement A S , where the set of points S consists of the points (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1), (0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 0), (-1 : 1 : 0), (1 : 1 : 2). This situation was considered first by B. Harbourne in [START_REF] Harbourne | Asymptotics of linear systems, with connections to line arrangements[END_REF].
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 3 Fig. 3 Complete 4-polygonal arrangement; the line at infinity is drawn as the red circle.

  The above results say that d is injective if and only if d ≤ n -1, and d is surjective if and only if d ≥ n -1. Such results are true over any field: R, C or even finite fields.