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Abstract

The Discontinuous Galerkin in Time Domain
Method (DGTD) is one of the most promis-
ing methods to simulate multiscale phenomena.
It combines high order precision (p) with flex-
ible geometries (h) resulting in inhomogeneous
hp-approximation spaces. In a cartesian frame-
work we show that some parts of the numerical
scheme, namely heterogeneous flux terms, can
lead to an outburst of computational cost on
nonconforming meshes. A new scheme devoid
of this bottleneck and proved to be stable is
presented along with numerical results.

Keywords: Discontinuous Galerkin, noncon-
forming approximation, computational cost

1 Introduction

DG methods build an approximate solution whi-
ch is piecewise polynomial (p) over the mesh
(h). It shows various attractive properties, es-
pecially flexibility to multiscale geometries, al-
lowing high precision modelling. However, DG-
TD solvers have performance bottlenecks which
limit its use for industrial purpose, compared to
Finite Difference in Time Domain for instance.

One can notice that, in a hp-conforming con-
text, increasing correlatively the approximation
order and the mesh size is a powerful strategy
to reduce numerical cost. However, in complex
geometries, the presence of low-scale inner el-
ements can constrain the mesh, leading to hp-
nonconforming configurations (Fig. 1). As sho-
wn in the sequel, the latter create extra com-
putational costs, due to nonconforming fluxes,
which can invalidate the interest of hp—expans-
ion strategies.

We present here a new numerically efficient
DGTD scheme based on lumped fluxes for non-
conforming cartesian grids. A stability result
is provided, as well as a numerical example on
electromagnetic wave propagation.

Figure 1: Usual h—
nonconforming mesh.
The front part is re-
fined to fit with a
drilled dielectric plate,
the back one is re-
lazed.

2 DG Scheme and Performance Issues

We consider 3D time-dependent Maxwell’s equa-
tions on a cavity €2, with metallic boundary con-
ditions on O€:
U+ AU =0 in (0,7)xQ,
B(np)U =0 in (0,7T) x 01,
U(O,) = U() in Q,

where U = (E, H)" is the electromagnetic field,
A(0): (E,H) — (-=VAH,VAE)T the Maxwell
differential operator, B(ny) : (E, H)T ~ (0, —npA
E)T the boundary condition operator, n; the
unit outward normal, and Uy the initial data.
This problem is well-posed in 4 = CO((O, T);
chrl(Q)2). Denoting by T}, the mesh, Fj,; and
Fyoung the sets of interior and boundary faces,
and 4y, the approximation space of 4, DG usual
variational formulation holds:

For allt € (0,T), find (u(t,-),) € (ilhp)% such as:
Z (Opu, ) e + (A(D)u, )y + Z (B(ns)u, ¢>f +

KeTy fCOK
f€Fpoung Pound. flux

> A[Mng)uly,67) = (IM(=np)uls, 67, | =0,
J{ECFd’Li{f int. fluxes

mass stiffness

(1)
where M (ny) = A(ng)—BN(ny), is the flux ma-
trix accross a given face f with arbitrary unit
normal ny, A(ny) and N(ny) the centered and
upwind parts, and § € [0,1] an upwinding pa-
rameter. ¢+ stands for the trace of ¢ on both
sides of f, [-] is the jump accross f and (-, )k
is the usual £2(K)® scalar product. Discretiza-
tion of (1) is led using Line-Based method [1]
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in space and Leapfrog integration in time. This
DGTD scheme uses Gauss-Lobatto basis func-
tions with a lumping method to compute mass,
stiffness and conforming flux terms. Table 1
shows the numerical costs for three different
configurations giving the same level of accuracy:

Config. || CPU-time (w.r.t. Q') | Dofs (x10%)
Q! 1.0 93
Q? 0.13 10
Q'/Q? 52 47

Table 1: Comput. costs on 123 mesh with Q' func-
tions, 4% with Q%, and related Q' /Q? hybrid config.

One can notice that CPU-time on hybrid
configuration (¢) is about 50 times more impor-
tant than on the Q! refined mesh (tref), while

expected to be trTef <t <ter. A cost tracking
led on this computation revealed this is due to
nonconforming fluxes involved in Q'/Q? cou-
pling, computed with standard exact surface
quadratures. Thus, a new handling of these
terms is developped, so-called flux-lumping, to
recover a satisfactory level of performance.

3 The Flux-Lumped (FL) DG Approach

The idea is to consider the flux term across a
nonconforming surface Sy, as one global quan-
tity, instead of several local fluxes. Each in-
terior flux in (1) is splitted into 4 terms, cor-
responding to homogeneous (4.+) and hetero-
geneous (+.F) centered and upwind parts. Ho-
mogeneous terms are treated as before, noncon-
forming heterogeneous ones can be lumped but
have to be rebalanced to ensure scheme stabil-
ity. Given I'f, the trace spaces of u on Si,
we define two reconstruction operators Hfgm :

I'T — I'F, by: .
dof

ng (A7) = 37 7 () 256 (AL ) 1y,
j=1

where AT = A(Fn), %\]i(u:F) € R, f(j) is the

sub-face containing dof j, Py(; is the (Heurt)?
surface-conforming transformation, A and (f]) j
are the matrix A and basis functions expressed
in the reference element [—1,1]3. Finally, the
heterogeneous nonconforming flux-lumping holds:

+
Nquad

(I, (A%u7),¢%) 5 = wilIE (A%u7) (0F).0* (o),

j=1
(2)

where (w;.c, af) ; are surface quadrature weights

and points, fulfilling the following conditions:

e (C1) Consistency: Yu® e T'F,

(I, (Atut),u)g = (IE (A7u),u’)g
and either

(A7 Amu)g = (I (A7) I, (A7u7))g
or the same identity switching signs + and —.
o (C2) Positivity:

+

s =0.

nc/c

Vut e ', <Aiui,Aiui>
We thus proved the following stability result:

Theorem 1 Given u € Uy, if (w]j-[, Uf)j in (2)
are satisfying (C1) and (C2), then the semi-
discrete energy associated to the Gauss-Lobatto
Fluz-Lumped DG approach decreases: ¥t € (0,T),

de 1 Z (1, )

KeTy

4 Numerical Example

Computing propagation of 1-modes using flux-
lumping approach on the hybrid configuration,
the expected numerical efficiency is reached, see
Fig. 2 and Table 2.

Config. | CPU-time (w.r.t. Q') | Dofs (x103)
FL Q'/Q? 0.86 47
Table 2: Computational costs with FLDGTD

scheme on the hybrid configuration (same accuracy).
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Figure 2: Left: Nonconforming surfaces and re-
construction operators used in the example. Right:
L2-space/Lt-time
refinment factor.
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