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Abstract

The Discontinuous Galerkin in Time Domain
Method (DGTD) is one of the most promis-
ing methods to simulate multiscale phenomena.
It combines high order precision (p) with flex-
ible geometries (h) resulting in inhomogeneous
hp-approximation spaces. In a cartesian frame-
work we show that some parts of the numerical
scheme, namely heterogeneous flux terms, can
lead to an outburst of computational cost on
nonconforming meshes. A new scheme devoid
of this bottleneck and proved to be stable is
presented along with numerical results.

Keywords: Discontinuous Galerkin, noncon-
forming approximation, computational cost

1 Introduction

DG methods build an approximate solution whi-
ch is piecewise polynomial (p) over the mesh
(h). It shows various attractive properties, es-
pecially flexibility to multiscale geometries, al-
lowing high precision modelling. However, DG-
TD solvers have performance bottlenecks which
limit its use for industrial purpose, compared to
Finite Difference in Time Domain for instance.

One can notice that, in a hp-conforming con-
text, increasing correlatively the approximation
order and the mesh size is a powerful strategy
to reduce numerical cost. However, in complex
geometries, the presence of low-scale inner el-
ements can constrain the mesh, leading to hp-
nonconforming configurations (Fig. 1). As sho-
wn in the sequel, the latter create extra com-
putational costs, due to nonconforming fluxes,
which can invalidate the interest of hp−expans-
ion strategies.

We present here a new numerically efficient
DGTD scheme based on lumped fluxes for non-
conforming cartesian grids. A stability result
is provided, as well as a numerical example on
electromagnetic wave propagation.

Figure 1: Usual h−
nonconforming mesh.
The front part is re-
fined to fit with a
drilled dielectric plate,
the back one is re-
laxed.

2 DG Scheme and Performance Issues

We consider 3D time-dependent Maxwell’s equa-
tions on a cavity Ω, with metallic boundary con-
ditions on ∂Ω:

∂tU +A(∂)U = 0 in (0, T )× Ω,

B(nb)U = 0 in (0, T )× ∂Ω,

U(0, ·) = U0 in Ω,

where U = (E,H)T is the electromagnetic field,
A(∂) : (E,H) 7→ (−∇∧H,∇∧E)T the Maxwell
differential operator, B(nb) : (E,H)T 7→ (0,−nb∧
E)T the boundary condition operator, nb the
unit outward normal, and U0 the initial data.
This problem is well-posed in U = C0

(
(0, T );

Hcurl(Ω)2
)
. Denoting by Th the mesh, Fint and

Fbound the sets of interior and boundary faces,
and Uhp the approximation space of U, DG usual
variational formulation holds:

For all t ∈ (0, T ), find
(
u(t, ·), φ

)
∈
(
Uhp

)2
, such as:∑

K∈Th

[
〈∂tu, φ〉K︸ ︷︷ ︸

mass

+ 〈A(∂)u, φ〉K︸ ︷︷ ︸
stiffness

+
∑

f⊂∂K
f∈Fbound

〈B(nb)u, φ〉f︸ ︷︷ ︸
bound. flux

+

∑
f⊂∂K
f∈Fint

〈
JM(nf )uKf , φ−

〉
f
−
〈
JM(−nf )uKf , φ+

〉
f︸ ︷︷ ︸

int. fluxes

]
= 0,

(1)

where M(nf ) = A(nf )−βN(nf ), is the flux ma-
trix accross a given face f with arbitrary unit
normal nf , A(nf ) and N(nf ) the centered and
upwind parts, and β ∈ [0, 1] an upwinding pa-
rameter. φ± stands for the trace of φ on both
sides of f , J·K is the jump accross f and 〈·, ·〉K
is the usual L2(K)6 scalar product. Discretiza-
tion of (1) is led using Line-Based method [1]
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in space and Leapfrog integration in time. This
DGTD scheme uses Gauss-Lobatto basis func-
tions with a lumping method to compute mass,
stiffness and conforming flux terms. Table 1
shows the numerical costs for three different
configurations giving the same level of accuracy:

Config. CPU-time (w.r.t. Q1) Dofs (×103)

Q1 1.0 93

Q2 0.13 10

Q1/Q2 52 47

Table 1: Comput. costs on 123 mesh with Q1 func-

tions, 43 with Q2, and related Q1/Q2 hybrid config.

One can notice that CPU-time on hybrid
configuration (t) is about 50 times more impor-
tant than on the Q1 refined mesh (tref ), while

expected to be
tref
2 ≤ t ≤ tref . A cost tracking

led on this computation revealed this is due to
nonconforming fluxes involved in Q1/Q2 cou-
pling, computed with standard exact surface
quadratures. Thus, a new handling of these
terms is developped, so-called flux-lumping, to
recover a satisfactory level of performance.

3 The Flux-Lumped (FL) DG Approach

The idea is to consider the flux term across a
nonconforming surface Snc as one global quan-
tity, instead of several local fluxes. Each in-
terior flux in (1) is splitted into 4 terms, cor-
responding to homogeneous (±.±) and hetero-
geneous (±.∓) centered and upwind parts. Ho-
mogeneous terms are treated as before, noncon-
forming heterogeneous ones can be lumped but
have to be rebalanced to ensure scheme stabil-
ity. Given Γ±, the trace spaces of u on S±nc,
we define two reconstruction operators Π±Snc

:

Γ∓ −→ Γ±, by:

Π±Snc

(
A∓u∓

)
=

N±
dof∑

j=1

π̂±j
(
u∓
)
Pf(j)

(
Â±L̂±j

)
1f(j),

where A± = A(∓n), π̂±j
(
u∓
)
∈ R, f(j) is the

sub-face containing dof j, Pf(j) is the (Hcurl)
2

surface-conforming transformation, Â and (L̂j)j
are the matrix A and basis functions expressed
in the reference element [−1, 1]3. Finally, the
heterogeneous nonconforming flux-lumping holds:

〈
Π±Snc

(
A±u∓

)
, φ±

〉±
Snc

=

N±
quad∑
j=1

ω±j Π±Snc

(
A±u∓

)(
σ±j
)
.φ±
(
σ±j
)
,

(2)

where (ω±j , σ
±
j )j are surface quadrature weights

and points, fulfilling the following conditions:

• (C1) Consistency: ∀u± ∈ Γ±,〈
Π−Snc

(
A+u+

)
, u−

〉−
Snc

=
〈
Π+

Snc

(
A−u−

)
, u+

〉+
Snc
,

and either〈
A−u−, A−u−

〉−
Snc

=
〈
Π+

Snc

(
A−u−

)
,Π+

Snc

(
A−u−

)〉+
Snc
,

or the same identity switching signs + and −.

• (C2) Positivity:

∀u± ∈ Γ±,
〈
A±u±, A±u±

〉±
Snc/c

≥ 0 .

We thus proved the following stability result:

Theorem 1 Given u ∈ Uhp, if (ω±j , σ
±
j )j in (2)

are satisfying (C1) and (C2), then the semi-
discrete energy associated to the Gauss-Lobatto
Flux-Lumped DG approach decreases: ∀t ∈ (0, T ),

de

dt
(t) ≤ 0, with e(t) =

1

2

∑
K∈Th

〈u, u〉K .

4 Numerical Example

Computing propagation of 1-modes using flux-
lumping approach on the hybrid configuration,
the expected numerical efficiency is reached, see
Fig. 2 and Table 2.

Config. CPU-time (w.r.t. Q1) Dofs (×103)

FL Q1/Q2 0.86 47

Table 2: Computational costs with FLDGTD

scheme on the hybrid configuration (same accuracy).

Figure 2: Left: Nonconforming surfaces and re-

construction operators used in the example. Right:

L2-space/L1-time error w.r.t mesh isotropic

refinment factor.
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