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Abstract

We prove that the KLR algebra associated with the cyclic quiver of
length e is a subquotient of the KLR algebra associated with the cyclic
quiver of length e + 1. We also give a geometric interpretation of this
fact. This result has an important application in the theory of categorical
representations. We prove that a category with an action of s̃le+1 contains
a subcategory with an action of s̃le. We also give generalizations of these
results to more general quivers and Lie types.
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1 Introduction
Consider the complex affine Lie algebra s̃le = sle[t, t

−1]⊕C1. In this paper, we
study categorical representations of s̃le. Our goal is to relate the notion of a
categorical representation of s̃le with the notion of a categorical representation
of s̃le+1.

The Lie algebra s̃le has generators ei, fi for i ∈ [0, e − 1]. Let α0, · · · , αe−1

be the simple roots of s̃le. Fix k ∈ [0, e− 1]. Consider the following inclusion of
Lie algebras s̃le ⊂ s̃le+1

er 7→

 er if r ∈ [0, k − 1],
[ek, ek+1] if r = k,

er+1 if r ∈ [k + 1, e− 1],
(1)

fr 7→

 fr if r ∈ [0, k − 1],
[fk+1, fk] if r = k,

fr+1 if r ∈ [k + 1, e− 1].

It is clear that each s̃le+1-module can be restricted to the subalgebra s̃le of
s̃le+1. So it is natural to ask if we can do the same with categorical representa-
tions.

First, we recall the notion of a categorical representation. Let k be a field.
Let C be an abelian Hom-finite k-linear category that admits a direct sum
decomposition C =

⊕
µ∈Ze Cµ. A categorical representation of s̃le in C is a

pair of biadjoint functors Ei, Fi: C → C for i ∈ [0, e − 1] satisfying a list of
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axioms. The main axiom is that for each positive integer d there is an algebra
homomorphism Rd(A

(1)
e−1)→ End(F d)op, where F =

⊕e−1
i=0 Fi and Rd(A

(1)
e−1) is

the KLR algebra of rank d associated with the quiver A(1)
e−1 (i.e., with the cyclic

quiver of length e).
Let C be an abelian Hom-finite k-linear category. Assume that C =

⊕
µ∈Ze+1 Cµ

has a structure of a categorical representation of s̃le+1 with respect to functors
Ei, F i for i ∈ [0, e]. We want to restrict the action of s̃le+1 on C to s̃le. The most
obvious way to do this is to define new functors Ei, Fi: C → C, i ∈ [0, e−1] from
the functors Ei, F i: C → C, i ∈ [0, e] by the same formulas as in (1). Of course,
this makes no sense because the notion of a commutator of two functors does
not exist. However, we are able to get a structure of a categorical representation
on a subcategory C ⊂ C (and not on the category C itself). We do this in the
following way.

Assume additionally that the category Cµ is zero whenever µ has a negative
entry. For each e-tuple µ = (µ1, · · · , µe) ∈ Ze we consider the (e + 1)-tuple
µ = (µ1, · · · , µk, 0, µk+1, · · · , µe) and we set Cµ = Cµ,

C =
⊕
µ∈Ze

Cµ.

Next, consider the endofunctors of C given by

Ei =


Ei
∣∣
C if 0 6 i < k,

EkEk+1

∣∣
C if i = k,

Ei+1

∣∣
C if k < i < e,

Fi =


F i
∣∣
C if 0 6 i < k,

F k+1F k
∣∣
C if i = k,

F i+1

∣∣
C if k < i < e.

The following theorem holds.

Theorem 1.1. The category C has the structure of a categorical representation
of s̃le with respect to the functors E0, · · · , Ee−1, F0, · · · , Fe−1.

Let us explain our motivation for proving Theorem 1.1 (see [4] for more
details). Let Oν−e be the parabolic category O for ĝlN = glN [t, t−1]⊕ C1⊕ C∂
with parabolic type ν at level−e−N . By [9], there is a categorical representation
of s̃le in Oν−e. Now we apply Theorem 1.1 to C = Oν−(e+1). It happens that in
this case the subcategory C ⊂ C defined as above is equivalent to Oν−e. This
allows us to compare the categorical representations in the category O for ĝlN
for two different (negative) levels.

A result similar to Theorem 1.1 has also recently appeared in [7]. It is applied
in [7] in the following way. It is known from [1] that there is a categorical rep-
resentation of s̃lp in the category Rep(GLn(Fp)) of finite dimensional algebraic
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representations of GLn(Fp). The paper [7] uses this fact to construct a categor-
ical representation of the Hecke category on the principal block Rep0(GLn(Fp))
of Rep(GLn(Fp)) for p > n. Their proof is in two steps. First they show
that the action of s̃lp on Rep(GLn(Fp)) induces an action of s̃ln on some full
subcategory of Rep(GLn(Fp)). The second step is to show that the action of
s̃ln constructed on the first step induces an action of the Hecke category on
Rep0(GLn(Fp)). The first step of their proof is essentially p − n consecutive
applications of Theorem 1.1.

The main difficulty in proving Theorem 1.1 is showing that the action of the
KLR algebra Rd(A

(1)
e ) on F

d
, where F =

⊕e
i=0 F i, yields an action of the KLR

algebra Rd(A
(1)
e−1) on F d. So, to prove the theorem, we need to compare the

KLR algebra Rd(A
(1)
e ) with the KLR algebra Rd(A

(1)
e−1). This is done in Section

2.
We introduce the abbreviations Γ = A

(1)
e−1 and Γ = A

(1)
e . Let α =

∑e−1
i=0 diαi

be a dimension vector of the quiver Γ. We consider the dimension vector α of
Γ defined by

α =

k∑
i=0

diαi +

e∑
i=k+1

di−1αi.

Let Rα(Γ) and Rα(Γ) be the KLR algebras associated with the quivers Γ and
Γ and the dimension vectors α and α. The algebra Rα(Γ) contains idempotents
e(i) parameterized by certain sequences i of vertices of Γ. In Section 2D we
consider some sets of such sequences I

α

ord and I
α

un. Set e =
∑

i∈Iαord
e(i) ∈ Rα(Γ)

and
Sα(Γ) = eRα(Γ)e/

∑
i∈Iαun

eRα(Γ)e(i)Rα(Γ)e.

The main result of Section 2 is the following theorem.

Theorem 1.2. There is an algebra isomorphism Rα(Γ) ' Sα(Γ).

The paper has the following structure. In Section 2 we study KLR algebras.
In particular, we prove Theorem 1.2. In Section 3 we study categorical represen-
tations. We prove our main result about categorical representations (Theorem
1.1). We also generalize this theorem to arbitrary symmetric Kac-Moody Lie
algebras. In Appendix A we give a geometric construction of the isomorphism
in Theorem 1.2. In Appendix B, we give some versions of Theorems 1.1 and 1.2
in type A over a local ring.

It is important to emphasize the relation between the present paper and [4].
That preprint contains (an earlier version of) the results of the present paper
and an application of these results to the category O for ĝlN . The preprint [4]
is expected to be published as two different papers. The present paper is the
first of them. It contains the results of the preprint [4] about KLR algebras and
categorical representations. The second paper will give an application of the
results of the first paper to the affine category O.
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2 KLR algebras
For a noetherian ring A we denote by mod(A) the abelian category of left finitely
generated A-modules. We denote by N the set of non-negative integers.

2A Kac-Moody algebras associated with a quiver
Let Γ = (I,H) be a quiver without 1-loops with the set of vertices I and the set
of arrows H. For i, j ∈ I let hi,j be the number of arrows from i to j and set
also ai,j = 2δi,j−hi,j−hj,i. Let gI be the Kac-Moody algebra over C associated
with the matrix (ai,j). Denote by ei, fi for i ∈ I the Serre generators of gI .
Remark 2.1. By the Kac-Moody Lie algebra associated with the Cartan matrix
(ai,j) we understand the Lie algebra with the set of generators ei, fi, hi, i ∈ I,
modulo the following defining relations

[hi, hj ] = 0,
[hi, ej ] = ai,jej ,
[hi, fj ] = −ai,jej ,
[ei, fj ] = δi,jhi,

(ad(ei))
1−ai,j (ej) = 0, i 6= j,

(ad(fi))
1−ai,j (fj) = 0, i 6= j.

In particular, if (ai,j) is the affine Cartan matrix of type A(1)
e−1, then we get

the Lie algebra s̃le(C) = sle(C)⊗C[t, t−1]⊕C1 (not sle(C)⊗C[t, t−1]⊕C1⊕C∂).

For each i ∈ I, let αi be the simple root corresponding to ei. Set

QI =
⊕
i∈I

Zαi, Q+
I =

⊕
i∈I

Nαi.

For α =
∑
i∈I diαi ∈ Q

+
I denote by |α| its height, i.e., we have |α| =

∑
i∈I di.

Set Iα = {i = (i1, · · · , i|α|) ∈ I |α|;
∑|α|
r=1 αir = α}.

2B Doubled quiver
Let Γ = (I,H) be a quiver without 1-loops. Fix a decomposition I = I0tI1 such
that there are no arrows between the vertices in I1. In this section we define a
doubled quiver Γ = (I,H) associated with (Γ, I0, I1). The idea is to "double"
each vertex in the set I1 (we do not touch the vertices from I0). We replace
each vertex i ∈ I1 by a couple of vertices i1 and i2 with an arrow i1 → i2. Each
arrow entering i should be replaced by an arrow entering i1, each arrow coming
from i should be replaced by an arrow coming from i2.

Now we describe the construction of Γ = (I,H) formally. Let I0 be a set
that is in bijection with I0. Let i0 be the element of I0 associated with an
element i ∈ I0. Similarly, let I1 and I2 be sets that are in bijection with I1.
Denote by i1 and i2 the elements of I1 and I2 respectively that correspond to
an element i ∈ I1. Put I = I0 t I1 t I2. We define H in the following way. The
set H contains 4 types of arrows:
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• an arrow i0 → j0 for each arrow i→ j in H with i, j ∈ I0,

• an arrow i0 → j1 for each arrow i→ j in H with i ∈ I0, j ∈ I1,

• an arrow i2 → j0 for each arrow i→ j in H with i ∈ I1, j ∈ I0,

• an arrow i1 → i2 for each vertex i ∈ I1.

Set I∞ =
∐
d∈N I

d, I
∞

=
∐
d∈N I

d
, where Id, I

d
are the cartesian products.

The concatenation yields a monoid structure on I∞ and I
∞
. Let φ: I∞ → I

∞

be the unique morphism of monoids such that for i ∈ I ⊂ I∞ we have

φ(i) =

{
i0 if i ∈ I0,
(i1, i2) if i ∈ I1.

There is a unique Z-linear map φ:QI → QI such that φ(Iα) ⊂ Iφ(α)
for each

α ∈ Q+
I . It is given by

φ(αi) =

{
αi0 if i ∈ I0,
αi1 + αi2 if i ∈ I1.

2C KLR algebras
Let k be a field. Let Γ = (I,H) be a quiver without 1-loops. For r ∈ [1, d− 1]
let sr be the transposition (r, r + 1) ∈ Sd. For i = (i1, · · · , id) ∈ Id set sr(i) =
(i1, · · · , ir−1, ir+1, ir, ir+2, · · · , id). For i, j ∈ I we set

Qi,j(u, v) =

{
0 if i = j,
(v − u)hi,j (u− v)hj,i else.

Definition 2.2. Assume that the quiver Γ is finite. The KLR-algebra Rd,k(Γ)
is the k-algebra with the set of generators τ1, · · · , τd−1, x1, · · · , xd, e(i) where
i ∈ Id, modulo the following defining relations

• e(i)e(j) = δi,je(i),

•
∑

i∈Id e(i) = 1,

• xre(i) = e(i)xr,

• τre(i) = e(sr(i))τr,

• xrxs = xsxr,

• τrxr+1e(i) = (xrτr + δir,ir+1)e(i),

• xr+1τre(i) = (τrxr + δir,ir+1)e(i),

• τrxs = xsτr, if s 6= r, r + 1,

• τrτs = τsτr, if |r − s| > 1,
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• τ2
r e(i) =

{
0 if ir = ir+1,
Qir,ir+1

(xr, xr+1)e(i) else,

• (τrτr+1τr − τr+1τrτr+1)e(i) ={
(xr+2 − xr)−1(Qir,ir+1

(xr+2, xr+1)−Qir,ir+1
(xr, xr+1))e(i) if ir = ir+2,

0 else,

for each i, j, r and s. We may write Rd,k = Rd,k(Γ). The algebra Rd,k admits
a Z-grading such that deg e(i) = 0, deg xr = 2 and deg τse(i) = −ais,is+1 , for
each 1 6 r 6 d, 1 6 s < d and i ∈ Id.

For each α ∈ Q+
I such that |α| = d set e(α) =

∑
i∈Iα e(i) ∈ Rd,k. It

is a homogeneous central idempotent of degree zero. We have the following
decomposition into a sum of unitary k-algebras Rd,k =

⊕
|α|=dRα,k, where

Rα,k = e(α)Rd,k.
Let k(I)

d be the direct sum of copies of the ring kd[x] := k[x1, · · · , xd] labelled
by Id. We write

k
(I)
d =

⊕
i∈Id

kd[x]e(i), (2)

where e(i) is the idempotent of the ring k
(I)
d projecting to the component i.

A polynomial in kd[x] can be considered as an element of k(I)
d via the diago-

nal inclusion. For each i, j ∈ I fix a polynomial Pi,j(u, v) such that we have
Qi,j(u, v) = Pi,j(u, v)Pj,i(v, u).

Denote by ∂r the Demazure operator on kd[x], i.e., we have

∂r(f) = (xr − xr+1)−1(sr(f)− f).

The following is proved in [8, Sec. 3.2].

Proposition 2.3. The algebra Rd,k has a faithful representation in the vec-
tor space k

(I)
d such that the element e(i) acts by the projection to k

(I)
d e(i), the

element xr acts by multiplication by xr and such that for f ∈ kd[x] we have

τr · fe(i) =

{
∂r(f)e(i) if ir = ir+1,
Pir,ir+1(xr+1, xr)sr(f)e(sr(i)) otherwise. (3)

We will always choose Pi,j in the following way:

Pi,j(u, v) = (u− v)hj,i .

Remark 2.4. There is an explicit construction of a basis of a KLR algebra (see
[3, Thm. 2.5]). Assume i, j ∈ Iα. Set Si,j = {w ∈ Sd; w(i) = j}. For
each permutation w ∈ Si,j fix a reduced expression w = sp1 · · · spr and set τw =
τp1 · · · τpr . Then the vector space e(j)Rα,ke(i) has a basis {τwxa11 · · ·x

ad
d e(i); w ∈

Si,j, a1, · · · , ad ∈ N}. Note that the element τw depends on the reduced ex-
pression of w. Moreover, if we change the reduced expression of w, then the

7



element τwe(i) is changed only by a linear combination of monomials of the
form τq1 · · · τqtx

b1
1 · · ·x

bd
d e(i) with t < `(w). Note also that if sp1 · · · spr is not a

reduced expression, then the element τp1 · · · τpre(i) may be written as a linear
combination of monomials of the form τq1 · · · τqtx

b1
1 · · ·x

bd
d e(i) with t < r. More-

over, in both situations above, the linear combination can be chosen in such a
way that for each monomial τq1 · · · τqtx

b1
1 · · ·x

bd
d e(i) in the linear combination,

the expression sq1 · · · sqt is reduced.
Remark 2.5. The algebra Rd,k in Definition 2.2 is well-defined only for a finite
quiver because of the second relation. However, the algebra Rα,k is well-defined
even if the quiver is infinite because each α uses a finite set of vertices. Thus,
for an infinite quiver we can define Rd,k as Rd,k =

⊕
|α|=dRα,k. Hovewer, in

this case the algebra Rd,k is not unitary.

2D Balanced KLR algebras
From now on the quiver Γ is assumed to be finite. Fix a decomposition I = I0tI1
as in Section 2B and consider the quiver Γ = (I,H) as in Section 2B. Recall the
decomposition I = I0 t I1 t I2. In this section we work with the KLR algebra
associated with the quiver Γ.

We say that a sequence i = (i1, i2, · · · , id) ∈ I
d
is unordered if there is

an index r ∈ [1, d] such that the number of elements from I2 in the sequence
(i1, i2, · · · , ir) is strictly greater than the number of elements from I1. We say
that it is well-ordered if for each index a such that ia = i1 for some i ∈ I1, we
have a < d and ia+1 = i2. We denote by I

α

ord and I
α

un the subsets of well-ordered
and unordered sequences in I

α
respectively.

The map φ from Section 2B yields a bijection

φ:Q+
I → {α =

∑
i∈I

diαi ∈ Q+

I
; di1 = di2 , ∀i ∈ I1}, α 7→ α.

Fix α ∈ Q+
I . Set e =

∑
i∈Iαord

e(i) ∈ Rα,k(Γ).

Definition 2.6. For α ∈ Q+
I , the balanced KLR algebra is the algebra

Sα,k(Γ) = eRα,k(Γ)e/
∑
i∈Iαun

eRα,k(Γ)e(i)Rα,k(Γ)e.

We may write Sα,k(Γ) = Sα,k.

Remark 2.7. Assume that i = (i1, · · · , id) ∈ I
α

ord. Let a be an index such that
ia ∈ I1. We have the relation τ2

ae(i) = (xa+1 − xa)e(i) in Rα,k. Moreover, we
have τ2

ae(i) = τae(sa(i))τae(i) and sa(i) is unordered. Thus we have xae(i) =
xa+1e(i) in Sα,k.
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2E The polynomial representation of Sα,k

We assume α =
∑
i∈I diαi ∈ Q

+
I . Let i = (i1, · · · , id) ∈ I

α

ord. Denote by J(i)

the ideal of the polynomial ring kd[x]e(i) ⊂ k
(I)
d generated by the set

{(xr − xr+1)e(i); ir ∈ I1}.

Lemma 2.8. Assume that i ∈ I
α

ord and j ∈ I
α

un. Then each element of
e(i)Rα,ke(j) maps kd[x]e(j) to J(i).

Proof. We will prove by induction on k that for all i ∈ Iαord and j ∈ Iαun and all
p1, · · · , pk such that the permutation w = sp1 · · · spk ∈ Sd satisfies w(j) = i, the
monomial τp1 · · · τpk maps kd[x]e(j) to J(i).

Assume k = 1. Write p = p1. Let us write i = (i1, · · · , id) and j =
(j1, · · · , jd). Then we have i = sp(j). By assumptions on i and j we know that
there exists i ∈ I1 such that ip = jp+1 = i1 and ip+1 = jp = i2. In this case the
statement is obvious because τp maps fe(j) ∈ kd[x]e(j) to (xp+1 − xp)sp(f)e(i)
by (3).

Now consider a monomial τp1 · · · τpk such that the permutation w = sp1 · · · spk
satisfies w(j) = i and assume that the statement is true for all such monomials
of smaller length. By assumptions on i and j there is an index r ∈ [1, d] such
that ir = i1 for some i ∈ I1 and w−1(r + 1) < w−1(r). Thus w has a reduced
expression of the form w = srsr1 · · · srh . This implies that τp1 · · · τpke(j) is
equal to a monomial of the form τrτr1 · · · τrhe(j) modulo monomials of the form
τq1 · · · τqtx

b1
1 · · ·x

bd
d e(j) with t < k, see Remark 2.4. As the sequence sr(i) is un-

ordered, the case k = 1 and the induction hypothesis imply the statement.

Lemma 2.9. Assume that i, j ∈ Iαord. Then each element of e(i)Rα,ke(j) maps
J(j) into J(i).

Proof. Take y ∈ e(i)Rα,ke(j). We must prove that for each r ∈ [1, d] such that
jr = i1 for some i ∈ I1 and each f ∈ kd[x] we have y((xr − xr+1)fe(j)) ∈ J(i).
We have (xr − xr+1)fe(j) = −τ2

r (fe(i)) (see Remark 2.7). This implies

y((xr − xr+1)fe(j)) = −yτ2
r (fe(j)) = −yτre(sr(j))(τr(fe(j))).

Thus Lemma 2.8 implies the statement because the sequence sr(j) is unordered.

The representation of Rα,k on

k
(I)
α :=

⊕
i∈Iα

k|α|[x]e(i)

yields a representation of eRα,ke on

k
(I)
α,ord :=

⊕
i∈Iαord

k|α|[x]e(i).
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Set Jα,ord =
⊕

i∈Iαord
J(i). From Lemmas 2.8 and 2.9 we deduce the follow-

ing.

Lemma 2.10. The representation of Rα,k on k
(I)
α factors through a represen-

tation of Sα,k on k
(I)
α,ord/Jα,ord. This representation is faithful.

Proof. The faithfulness is proved in the proof of Theorem 2.12.

2F The comparison of the polynomial representations
Fix α ∈ Q+

I . Set d = |α| and d = |α|. For each sequence i = (i1, · · · , id) ∈ Iα
and r ∈ [1, d] we denote by r′ or r′i the positive integer such that r′ − 1 is the
length of the sequence φ(i1, · · · , ir−1) ∈ I∞.

For r ∈ [1, d] (resp. r ∈ [1, d − 1]) consider the element x∗r ∈ Sα,k (resp.
τ∗r ∈ Sα,k) such that for each i ∈ Iα we have

x∗re(φ(i)) = xr′e(φ(i)),

τ∗r e(φ(i)) =


τr′e(φ(i)), if ir, ir+1 ∈ I0,
τr′τr′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,
τr′+1τr′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1,
τr′+1τr′+2τr′τr′+1e(φ(i)) if ir, ir+1 ∈ I1, ir 6= ir+1,
−τr′+1τr′+2τr′τr′+1e(φ(i)) if ir = ir+1 ∈ I1.

For each i ∈ Iα we have the algebra isomorphism

kd[x]e(i) ' kd[x]e(φ(i))/J(φ(i)), xre(i) 7→ xr′e(φ(i)).

We will always identify k
(I)
α with k

(I)
α,ord/Jα,ord via this isomorphism.

Lemma 2.11. The action of the elements e(i), xre(i) and τre(i) of Rα,k on
k

(I)
α is the same as the action of the elements e(φ(i)), x∗re(φ(i)) and τ∗r e(φ(i))

of Sα,k on k
(I)
α,ord/Jα,ord.

Proof. The proof is based on the observation that by construction for each i ∈ I1
and j ∈ I0 we have

Pi1,j0(u, v)Pi2,j0(u, v) = Pi,j(u, v), (4)

Pj0,i1(u, v)Pj0,i2(u, v) = Pj,i(u, v).

For each i ∈ Iα, we write φ(i) = (i′1, i
′
2, · · · , i′d). The only difficult part

concerns the operator τre(i) when at least one of the elements ir or ir+1 is in
I1. Assume that ir ∈ I1 and ir+1 ∈ I0. In this case we have

i′r′ = (ir)
1 ∈ I1, i′r′+1 = (ir)

2 ∈ I2, i′r′+2 = (ir+1)0 ∈ I0.

10



In particular, the element i′r′+2 is different from i′r′ and i′r′+1. Then, by (3),
for each f ∈ kd[x] the element τ∗r e(φ(i)) = τr′τr′+1e(φ(i)) maps fe(φ(i)) ∈
k

(I)
α,ord/Jα,ord to

Pi′
r′ ,i
′
r′+2

(xr′+1, xr′)sr′
(
Pi′
r′+1

,i′
r′+2

(xr′+2, xr′+1)sr′+1(f)
)
e(sr′sr′+1(φ(i)))

= Pi′
r′ ,i
′
r′+2

(xr′+1, xr′)Pi′
r′+1

,i′
r′+2

(xr′+2, xr′)sr′sr′+1(f)e(φ(sr(i)))

= Pir,ir+1
(xr′+1, xr′)sr′sr′+1(f)e(φ(sr(i))),

where the last equality holds by (4). Thus we see that the action of τ∗r e(φ(i))
on the polynomial representation is the same as the action of τre(i). The case
when ir ∈ I0 and ir+1 ∈ I1 can be done similarly.

Assume now that ir 6= ir+1 are both in I1. By the assumption on the quiver
Γ (see Section 2B), there are no arrows in Γ between ir and ir+1. Thus there
are no arrows in Γ between any of the vertices (ir)

1 = i′r′ or (ir)
2 = i′r′+1 and

any of the vertices (ir+1)1 = i′r′+2 or (ir+1)2 = i′r′+3. Then, by (3), for each
f ∈ kd[x] the element τ∗r e(i) = τr′+1τr′+2τr′τr′+1e(φ(i)) maps fe(φ(i)) to

sr′+1sr′+2sr′sr′+1(f)e(φ(sr(i))).

Thus we see that the action of τ∗r e(φ(i)) on the polynomial representation is the
same as that of τre(i).

Finally, assume that ir = ir+1 ∈ I1. In this case we have

(ir)
1 = i′r′ = (ir+1)1 = i′r′+2, (ir)

2 = i′r′+1 = (ir+1)2 = i′r′+3.

Then, by (3), for each f ∈ kd[x] the element τ∗r e(φ(i)) = −τr′+1τr′+2τr′τr′+1e(φ(i))
maps fe(φ(i)) to

sr′+1∂r′+2∂r′(xr′+1 − xr′+2)sr′+1(f)e(φ(sr(i))),

where ∂r is the Demazure operator (see the definition before Proposition 2.3).
To prove that this gives the same result as for τre(i), it is enough to check this
on monomials xnr xmr+1e(i). Assume for simplicity that n > m. The situation
n 6 m can be treated similarly. The element τre(i) maps this monomial to

∂r(x
n
r x

m
r+1)e(i) = −

n−1∑
a=m

xarx
n+m−1−a
r+1 e(i).

Here the symbol
y∑

a=x
means 0 when y = x − 1. The element τ∗r e(φ(i)) maps

11



xnr′+1x
m
r′+2e(φ(i)) to sr′+1∂r′+2∂r′ [x

m+1
r′+1x

n
r′+2−xmr′+1x

n+1
r′+2]e(φ(i)), which equals

sr′+1

[
−
(

m∑
a=0

xar′x
m−a
r′+1

)(
n−1∑
b=0

xbr′+2x
n−1−b
r′+3

)
+

(
m−1∑
a=0

xar′x
m−1−a
r′+1

)(
n∑
b=0

xbr′+2x
n−b
r′+3

)]
e(φ(i))

=

[
−
(

m∑
a=0

xar′x
m−a
r′+2

)(
n−1∑
b=0

xbr′+1x
n−1−b
r′+3

)
+

(
m−1∑
a=0

xar′x
m−1−a
r′+2

)(
n∑
b=0

xbr′+1x
n−b
r′+3

)]
e(φ(i))

=

[
−xmr′

(
n−1∑
b=0

xbr′+1x
n−1−b
r′+3

)
+ xnr′+1

(
m−1∑
a=0

xar′x
m−1−a
r′+2

)]
e(φ(i))

=

[
−xmr′+1

(
n−1∑
b=0

xbr′+1x
n−1−b
r′+2

)
+ xnr′+1

(
m−1∑
a=0

xar′+1x
m−1−a
r′+2

)]
e(φ(i))

= −
(
n−1∑
a=m

xar′+1x
m+n−1−a
r′+2

)
e(φ(i)).

Here the first equality follows from the following property of the Demazure
operator

∂r(x
n
r+1) = −∂r(xnr ) =

n−1∑
a=0

xarx
n−1−a
r+1 ,

the fourth equality follows from Remark 2.7. Other equalities are obtained by
elementary manipulations with sums.

2G Isomorphism Φ

Theorem 2.12. For each α ∈ Q+
I , there is an algebra isomorphism Φα,k:Rα,k →

Sα,k such that
e(i) 7→ e(φ(i)),

xre(i) 7→ x∗re(φ(i)),

τre(i) 7→ τ∗r e(φ(i)).

Proof. By Proposition 2.3, the representation k
(I)
α of Rα,k is faithful. Now, in

view of Lemma 2.11, it is enough to prove the following two facts:

• the elements e(φ(i)), x∗r , τ∗r generate Sα,k,

• the representation k
(I)
α,ord/Jα,ord of Sα,k is faithful.

Fix i, j ∈ Iα. Set i′ = (i′1, · · · , i′d) = φ(i), j′ = φ(j). LetB andB′ be the bases
of e(j)Rα,ke(i) and e(j′)Rα,ke(i′), respectively, as in Remark 2.4. These bases
depend on some choices of reduced expressions. We will make some special
choices later. For each element b = τwx

a1
1 · · ·x

ad
d e(i) ∈ B we construct an

element b∗ ∈ e(j′)Sα,ke(i′) that acts by the same operator on the polynomial
representation. We set

b∗ = τ∗p1 · · · τ
∗
pk

(x∗1)a1 · · · (x∗d)ade(i′) ∈ e(j′)Sα,ke(i′),

where w = sp1 · · · spk is a reduced expression (as we said above, some special
choice of reduced expressions will be fixed later).
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Let us call the permutation w ∈ Si′,j′ balanced if we have w(a+1) = w(a)+1
for each a such that i′a = i1 for some i ∈ I (and thus i′a+1 = i2). Otherwise we
say that w is unbalanced. There exists a unique map u:Si,j → Si′,j′ such that
for each w ∈ Si,j the permutation u(w) is balanced and w(r) < w(t) if and only
if u(w)(r′) < u(w)(t′) for each r, t ∈ [1, d], where r′ = r′i and t

′ = t′i are as in
Section 2F. The image of u is exactly the set of all balanced permutations in
Si′,j′ .

Assume that w ∈ Si′,j′ is unbalanced. We claim that there exists an index
a such that i′a ∈ I1 and w(a) > w(a + 1). Indeed, let J be the set of indices
a ∈ [1, d] such that i′a ∈ I1. As j′ is well-ordered, we have

∑
a∈J(w(a + 1) −

w(a)) = #J . As w is unbalanced, not all summands in this sum are equal to
1. Then one of the summands must be negative. Let a ∈ J be an index such
that w(a) > w(a+1). We can assume that the reduced expression of w is of the
form w = sp1 · · · spksa. In this case the element τwe(i′) is zero in Sα,k because
the sequence sa(i′) is unordered.

Assume that w ∈ Si′,j′ is balanced. Thus, there exists some w̃ ∈ Si,j such
that u(w̃) = w. We choose an arbitrary reduced expression w̃ = sp1 · · · spk and
we choose the reduced expression w = sq1 · · · sqr of w obtained from the reduced
expression of w̃ in the following way. For t ∈ {1, · · · , k} set it = spt+1 · · · spk(i)
(in particular, we have ik = i). We write it = (it1, · · · , itd). We construct the
reduced expression of w as w = ŝp1 · · · ŝpk , where for a = pt we have

ŝa =


sa′ if ita, ita+1 ∈ I0,
sa′+1sa′ if ita ∈ I0, ita+1 ∈ I1,
sa′sa′+1 if ita ∈ I1, ita+1 ∈ I0,
sa′+1sa′sa′+2sa′+1 if ita, ita+1 ∈ I1,

where a′ = a′ir is as in Section 2F. Let us explain why the obtained expression of
w is reduced. The fact that the expression w̃ = sp1 · · · spk is reduced means the
following. When we apply the transpositions spk , spk−1

, · · ·,sp1 consecutively to
the d-tuple (1, 2, · · · , d), if two elements of the set {1, 2, · · · , d} are exchanged
once by some s, then these two elements are never exchanged again by another
s later. It is clear that the expression w = sq1 · · · sqr = ŝp1 · · · ŝpk inherits the
same property from w̃ = sp1 · · · spk because for each a, b ∈ {1, 2, · · · , d}, a 6= b
we have the following (we set a′ = a′i, b

′ = b′i).

• If ia, ib ∈ I0, then if the reduced expression of w̃ exchanges a and b exactly
once or never exchanges them then the expression of w exchanges a′ and
b′ exactly once or never exchanges them, respectively.

• If ia ∈ I0 and ib ∈ I1, then if the reduced expression of w̃ exchanges
a and b exactly once or never exchanges them then the expression of w
exchanges a′ and b′ exactly once or never exchanges them, respectively,
and it also exchanges a′ with b′ + 1 exactly once or, respectively, never
exchanges them.

• If ia ∈ I1 and ib ∈ I0, then if the reduced expression of w̃ exchanges
a and b exactly once or never exchanges them then the expression of w
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exchanges a′ and b′ exactly once or never exchanges them, respectively,
and it also exchanges a′ + 1 with b′ exactly once or, respectively, never
exchanges them.

• If ia, ib ∈ I1, then if the reduced expression of w̃ exchanges a and b exactly
once or never exchanges them then the expression of w exchanges a′ and
b′ exactly once or never exchanges them, respectively, and the same thing
for a′ and b′ + 1, for a′ + 1 and b′, and for a′ + 1 and b′ + 1.

If the reduced expressions are chosen as above, then the element τwe(i′) =
τq1 · · · τqre(i′) ∈ Sα,k is equal to ±(τp1 · · · τpke(i))∗.

The discussion above shows that the image of an element b′ ∈ B′ in e(j′)Sα,ke(i′)
is either zero or of the form ±b∗ for some b ∈ B. Moreover, each b∗ for b ∈ B
can be obtained in such a way. Now we get the following.

• The elements e(φ(i)), x∗r and τ∗r generate Sα,k because the image of each
element of B′ in e(j′)Sα,ke(i′) is either zero or a monomial in e(φ(i)), x∗r ,
τ∗r .

• The representation k
(I)
α,ord/Jα,ord of Sα,k is faithful because the spanning

set {b∗; b ∈ B} of e(j′)Sα,ke(i′) acts on the polynomial representation by
linearly independent operators (because the polynomial representation of
Rα,k in Proposition 2.3 is faithful).

Remark 2.13. (a)Note that Theorem 2.12 also remains true for an infinite quiver
Γ because α is supported on a finite number of vertices (see also Remark 2.5).

(b)The formulas that define the isomorphism Φα,k become more natural if
we look at them from the point of view of Khovanov-Lauda diagrams (see [3]).
Diagrammatically, the isomorphism Φα,k looks in the following way. It sends
a diagram representing an element of Rα,k to the diagram (sometimes with a
sign) obtained by replacing each strand with label k ∈ I1 by two parallel strands
with labels k1 and k2 (if there is a dot on the strand with label k, it should be
moved to the strand with label k1). For example, if i, j ∈ I0 and k ∈ I1, we
have

ki j

7→

k1k2i j
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3 Categorical representations

3A The standard representation of s̃le
Consider the affine Lie algebra (over C) s̃le = sle⊗C[t, t−1]⊕C1. Let ei, fi, hi,
i = 0, 1, . . . , e−1, be the standard generators of s̃le (see Remark 2.1). Let Ve be
a C-vector space with canonical basis {v1, · · · , ve} and set Ue = Ve ⊗ C[z, z−1].
The vector space Ue has a basis {ur; r ∈ Z} where ua+eb = va⊗z−b for a ∈ [1, e],
b ∈ Z. It has a structure of an s̃le-module such that

fi(ur) = δi≡rur+1 and ei(ur) = δi≡r−1ur−1.

Let {v′1, · · · , v′e+1} and {u′r; r ∈ Z} denote the bases of Ve+1 and Ue+1.
Fix an integer 0 6 k < e. Consider the following inclusion of vector spaces

Ve ⊂ Ve+1, vr 7→
{
v′r if r 6 k,
v′r+1 if r > k.

It yields an inclusion sle ⊂ sle+1 such that

er 7→

 er if r ∈ [1, k − 1],
[ek, ek+1] if r = k,

er+1 if r ∈ [k + 1, e− 1],

fr 7→

 fr if r ∈ [1, k − 1],
[fk+1, fk] if r = k,

fr+1 if r ∈ [k + 1, e− 1],

hr 7→

 hr if r ∈ [1, k − 1],
hk + hk+1 if r = k,

hr+1 if r ∈ [k + 1, e− 1].

This inclusion lifts uniquely to an inclusion s̃le ⊂ s̃le+1 such that

e0 7→
{

e0 if k 6= 0,
[e0, e1] else,

f0 7→
{

f0 if k 6= 0,
[f1, f0] else,

h0 7→
{

h0 if k 6= 0,
h0 + h1 else.

Consider the inclusion Ue ⊂ Ue+1 such that ur 7→ u′Υ(r), where Υ is defined
in (8).

Lemma 3.1. The embeddings Ve ⊂ Ve+1 and Ue ⊂ Ue+1 are compatible with
the actions of sle ⊂ sle+1 and s̃le ⊂ s̃le+1 respectively.
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3B Type A quivers
Let Γ∞ = (I∞, H∞) be the quiver with the set of vertices I∞ = Z and the set
of arrows H∞ = {i→ i+1; i ∈ I∞}. Assume that e > 1 is an integer. Let Γe =
(Ie, He) be the quiver with the set of vertices Ie = Z/eZ and the set of arrows
He = {i→ i+ 1; i ∈ Ie}. Then gIe is the Lie algebra s̃le = sle ⊗ C[t, t−1]⊕ C1
(see Remark 2.1).

Assume that Γ = (I,H) is a quiver whose connected components are of the
form Γe, with e ∈ N, e > 1 or e = ∞. For i ∈ I denote by i + 1 and i − 1 the
(unique) vertices in I such that there are arrows i→ i+ 1 and i− 1→ i.

Let XI be the free abelian group with basis {εi; i ∈ I}. Set also

X+
I =

⊕
i∈I

Nεi. (5)

Let us also consider the following additive map

ι:QI → XI , αi 7→ εi − εi+1.

We may omit the symbol ι and write α instead of ι(α). Let φ denote also the
unique additive embedding

φ:XI → XI , εi 7→ εi′ , (6)

where
i′ =

{
i0 if i ∈ I0,
i1 if i ∈ I1.

3C Categorical representations

Let Γ = (I,H) be a quiver as in Section 3B. Let k be a field. Assume that C is
a Hom-finite k-linear abelian category.

Definition 3.2. A gI -categorical representation (E,F, x, τ) in C is the following
data:

(1) a decomposition C =
⊕

µ∈XI Cµ,

(2) a pair of biadjoint exact endofunctors (E,F ) of C,

(3) morphisms of functors x:F → F and τ :F 2 → F 2,

(4) decompositions E =
⊕

i∈I Ei and F =
⊕

i∈I Fi,

satisfying the following conditions.

(a) We have Ei(Cµ) ⊂ Cµ+αi , Fi(Cµ) ⊂ Cµ−αi .

(b) For each d ∈ N there is an algebra homomorphism ψd:Rd,k → End(F d)op

such that ψd(e(i)) is the projector to Fid · · ·Fi1 , where i = (i1, · · · , id) and

ψd(xr) = F d−rxF r−1, ψd(τr) = F d−r−1τF r−1.
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(c) For each M ∈ C the endomorphism of F (M) induced by x is nilpotent.

Remark 3.3. (a) For a pair of adjoint functors (E,F ) we have an isomorphism
End(Ed) ' End(F d)op. In particular, the algebra homomorphism Rd,k →
End(F d)op in Definition 3.2 yields an algebra homomorphism Rd,k → End(Ed).

(b)If the quiver Γ is infinite, the direct sums in (4) should be understood in
the following way. For each object M ∈ C, there is only a finite number of i ∈ I
such that Ei(M) and Fi(M) are nonzero.

3D From s̃le+1-categorical representations to s̃le-categorical
representations

As in Section 3A, we fix 0 6 k < e. Only in Section 3D, we assume that
Γ = (I,H) and Γ = (I,H) are fixed as in as in Section B2 (i.e., we have Γ = Γe,
I1 = {k} and we idenfity Γ with Γe+1).

Let C be a Hom-finite abelian k-linear category. Let

E = E0 ⊕ E1 ⊕ · · · ⊕ Ee, F = F 0 ⊕ F 1 ⊕ · · · ⊕ F e

be endofunctors defining a s̃le+1-categorical representation in C. Let ψd:Rd,k →
End(F

d
)op be the corresponding algebra homomorphism. We set F i = F id · · ·F i1

for any tuple i = (i1, · · · , id) ∈ I
d
and Fα =

⊕
i∈Iα F i for any element α ∈ Q+

I
.

If |α| = d let ψα:Rα,k → End(Fα)op be the α-component of ψd.
Now, recall the notation X+

I
from (5). Assume that we have

Cµ = 0, ∀µ ∈ XI\X
+

I
. (7)

For µ ∈ X+
I set Cµ = Cφ(µ), where the map φ is as in (6). Let C =

⊕
µ∈X+

I
Cµ.

Remark 3.4. (a) C is stable by F i, Ei for each i 6= k, k + 1,
(b) C is stable by F k+1F k, EkEk+1,
(c) F idF id−1

· · ·F i1(M) = 0 for eachM ∈ C whenever the sequence (i1, · · · , id)
is unordered (see Section 2D).

Consider the following endofunctors of C:

Ei =


Ei
∣∣
C if 0 6 i < k,

EkEk+1

∣∣
C if i = k,

Ei+1

∣∣
C if k < i < e,

Fi =


F i
∣∣
C if 0 6 i < k,

F k+1F k
∣∣
C if i = k,

F i+1

∣∣
C if k < i < e.

Similarly to the notations above we set Fi = Fid · · ·Fi1 for any tuple i =
(i1, · · · , id) ∈ Id and Fα =

⊕
i∈Iα Fi for any element α ∈ Q+

I . Note that
we have Fi = Fφ(i)

∣∣
C for each i ∈ Iα.
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Let α ∈ Q+
I and α = φ(α). Note that we have

Fα =
⊕

i∈Iαord

F i

∣∣
C .

The homomorphism ψα yields a homomorphism eRα,ke → End(Fα)op, where
e =

∑
i∈Iαord

e(i). By (c), the homomorphism eRα,ke → End(Fα)op factors

through a homomorphism Sα,k → End(Fα)op. Let us call it ψ
′
α. Then we

can define an algebra homomorphism ψα:Rα,k → End(Fα)op by setting ψα =

ψ
′
α ◦ Φα,k.
Now, Theorem 2.12 implies the following result.

Theorem 3.5. For each category C, defined as above, that satisfies (7), we have
a categorical representation of s̃le in the subcategory C of C given by functors Fi
and Ei and the algebra homomorphisms ψα:Rα,k → End(Fα)op.

Now, we describe the example that motivated us to prove Theorem 3.5. See
[4] for details.

Example 3.6. Let Ue, Ve be as in Section 3A. Fix ν = (ν1, · · · , νl) ∈ Nl and put
N =

∑l
r=1 νr. Set ∧νUe = ∧ν1Ue ⊗ · · · ⊗ ∧νlUe.

Let Oν−e be the parabolic category O for ĝlN with parabolic type ν at level
−e−N . The categorical representation of s̃le in Oν−e (constructed in [9]) yields
an s̃le-module structure on the (complexified) Grothendieck group [Oν−e] of Oν−e.
This module is isomorphic to ∧νUe.

Let us apply Theorem 1.1 to C = Oν−(e+1). It happens that in this case the
subcategory C ⊂ C defined as above is equivalent to Oν−e. The embedding of
categories Oν−e ⊂ Oν−(e+1) categorifies the embedding ∧νUe ⊂ ∧νUe+1 (see also
Lemma 3.1).

3E Reduction of the number of idempotents
In this section we show that it is possible to reduce the number of idempotents
in the quotient in Definition 2.6. This is necessary to generalise Theorem 3.5.
Here we assume the quivers Γ = (I,H) and Γ = (I,H) are as in Section 2B.

We fix α ∈ Q+
I and put α = φ(α). We say that the sequence i ∈ Iα is almost

ordered if there exists a well-ordered sequence j ∈ Iα such that there exists an
index r such that jr ∈ I1 and i = sr(j). It is clear from the definition that each
almost ordered sequence is unordered because the subsequence (i1, i2, · · · , ir) of
i contains more elements from I2 than from I1. The following lemma reduces
the number of generators of the kernel of eRα,ke→ Sα,k (see Definition 2.6).

Lemma 3.7. The kernel of the homomorphism eRα,ke → Sα,k is equal to∑
i eRα,ke(i)Rα,ke, where i runs over the set of all almost ordered sequences in

I
α
.
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Proof. Denote by J the ideal
∑

i eRα,ke(i)Rα,ke of eRα,ke, where i runs over
the set of all almost ordered sequences in I

α
.

By definition, each element of the kernel of eRα,ke→ Sα,k is a linear com-
bination of elements of the form eae(j)be, where a and b are in Rα,k and the
sequence j is unordered. By Remark 2.4, it is enough to prove that for each
i ∈ Iαord, j ∈ I

α

un, b ∈ Rα,k and indices p1, · · · , pk the element e(i)τp1 · · · τpke(j)be
is in J . We will prove this statement by induction on k.

Assume that k = 1. Write p = p1. The element e(i)τpe(j)be may be nonzero
only if i = sp(j). This is possible only if the sequence j is almost ordered. Thus
the element e(i)τpe(j)be is in J .

Now, assume that k > 1 and that the statement is true for each value
< k. Set w = sp1 · · · spk . We may assume that i = w(j), otherwise the ele-
ment e(i)τp1 · · · τpke(j)be is zero. By assumptions on i and j there is an index
r ∈ [1, d] such that ir ∈ I1 and w−1(r + 1) < w−1(r). Thus w has a re-
duced expression of the form w = srsr1 · · · srh . This implies that τp1 · · · τpke(j)
is equal to a monomial of the form τrτr1 · · · τrhe(j) modulo monomials of the
form τq1 · · · τqtx

b1
1 · · ·x

bd
d e(j) with t < k, see Remark 2.4. Thus the element

e(i)τ1 · · · τke(j)be is equal to e(i)τrτr1 · · · τrhe(j)be modulo the elements of the
same form e(i)τp1 · · · τpke(j)be with smaller k. The element e(i)τrτr1 · · · τrhe(j)be
is in J because the sequence sr(i) is almost ordered and the additional terms
are in J by the induction assumption.

3F Generalization of Theorem 3.5
In this section we modify slightly the definition of a categorical representation
given in Definition 3.2. The only difference is that we use the lattice QI instead
of XI . This new definition is not equivalent to Definition 3.2. In this section
we work with an arbitrary quiver Γ = (I,H) without 1-loops.

Let k be a field. Let C be a k-linear Hom-finite category.

Definition 3.8. A gI -quasi-categorical representation (E,F, x, τ) in C is the fol-
lowing data:

(1) a decomposition C =
⊕

α∈QI Cα,

(2) a pair of biadjoint exact endofunctors (E,F ) of C,

(3) morphisms of functors x:F → F , τ :F 2 → F 2,

(4) decompositions E =
⊕

i∈I Ei, F =
⊕

i∈I Fi,

satisfying the following conditions.

(a) We have Ei(Cα) ⊂ Cα−αi , Fi(Cα) ⊂ Cα+αi .

(b) For each d ∈ N there is an algebra homomorphism ψd:Rd,k → End(F d)op

such that ψd(e(i)) is the projector to Fid · · ·Fi1 , where i = (i1, · · · , id) and

ψd(xr) = F d−rxF r−1, ψd(τr) = F d−r−1τF r−1.
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(c) For each M ∈ C the endomorphism of F (M) induced by x is nilpotent.

If the quiver Γ is infinite, condition (4) should be understood in the same way
as in Remark 3.3 (b).

Now, fix a decomposition I = I0
∐
I1 as in Section 2B. We consider the

quiver Γ = (I,H) and the map φ as in Section 2B. To distinguish the elements
of QI and QI , we write QI =

⊕
i∈I Zαi. For each α ∈ QI we set α = φ(α) ∈ QI .

(See Section 2B for the notation.) However we can sometimes use the symbol
α for an arbitrary element of QI that is not associated with some α in QI .
Let C be a Hom-finite abelian k-linear category. Let E =

⊕
i∈I Ei and F =⊕

i∈I F i be endofunctors defining a gI -quasi-categorical representation in C. Let
ψd:Rd,k(Γ)→ End(F

d
)op be the corresponding algebra homomorphism. We set

F i = F id · · ·F i1 for any tuple i = (i1, · · · , id) ∈ I
d
and Fα =

⊕
i∈Iα F i for any

element α ∈ Q+

I
. If |α| = d, let ψα:Rα,k → End(Fα)op be the α-component of

ψd.
Assume that C is an abelian subcategory of C satisfying the following con-

ditions:

(a) C is stable by F i and Ei for each i ∈ I0,

(b) C is stable by F i2F i1 and Ei1Ei2 for each i ∈ I1,

(c) we have F i2(C) = 0 for each i ∈ I1,

(d) we have C =
⊕

α∈QI C ∩ Cα.

By (d), we get a decomposition C =
⊕

α∈QI Cα, where Cα = C∩Cα. For each
i ∈ I we consider the following endofunctors Ei and Fi of C:

Fi =

{
F i
∣∣
C if i ∈ I0,

F i2F i1
∣∣
C if i ∈ I1,

Ei =

{
Ei
∣∣
C if i ∈ I0,

Ei1Ei2
∣∣
C if i ∈ I1.

As in the notations above we set Fi = Fid · · ·Fi1 for any tuple i = (i1, · · · , id) ∈
Id and Fα =

⊕
i∈Iα Fi for any element α ∈ Q+

I . Note that we have Fi = Fφ(i)

∣∣
C

for each i ∈ Iα.
Let α ∈ Q+

I . We have
Fα =

⊕
i∈Iαord

F i

∣∣
C .

The homomorphism ψα yields a homomorphism eRα,ke → End(Fα)op, where
e =

∑
i∈Iαord

e(i).
Since the category C satisfies (a), (b) and (c), for each almost ordered se-

quence i = (i1, · · · , id) ∈ Iα we have F id · · ·F i1(C) = 0. By Lemma 3.7, this
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implies that the homomorphism eRα,ke→ End(Fα)op factors through a homo-
morphism Sα,k → End(Fα)op. Let us call it ψ

′
α. Then we can define an algebra

homomorphism ψα:Rα,k → End(Fα)op by setting ψα = ψ
′
α ◦ Φα,k.

Now, Theorem 2.12 implies the following result.

Theorem 3.9. For each abelian subcategory C ⊂ C as above, that satisfies
(a) − (d), we have a gI-quasi-categorical representation in C given by functors
Fi and Ei and the algebra homomorphisms ψα:Rα,k → End(Fα)op.

Remark 3.10. Assume that the category C is such that we have Cα = 0 whenever
α =

∑
i∈I diαi ∈ QI is such that di1 < di2 for some i ∈ I1. In this case the

subcategory C ⊂ C defined by C =
⊕

α∈QI Cα satisfies conditions (a)− (d).

Appendix

A The geometric construction of the isomorphism
Φ

The goal of this section is to give a geometric construction of the isomorphism
Φ in Theorem 2.12.

A1 The geometric construction of the KLR algebra
Let k be a field. Let Γ = (I,H) be a quiver without 1-loops. See Section 2A for
the notations related to quivers. For an arrow h ∈ H we will write h′ and h′′
for its source and target respectively. Fix α =

∑
i∈I diαi ∈ Q

+
I and set d = |α|.

Set also

Eα =
⊕
h∈H

Hom(Vh′ , Vh′′), Vi = Cdi , V =
⊕
i∈I

Vi.

The group Gα =
∏
i∈I GL(Vi) acts on Eα by base changes.

Set

Iα = {i = (i1, · · · , id) ∈ Id;
d∑
r=1

αir = α}.

We denote by Fi the variety of all flags

φ = (V = V 0 ⊃ V 1 ⊃ · · · ⊃ V d = {0})

in V that are homogeneous with respect to the decomposition V =
⊕

i∈I Vi
and such that the I-graded vector space V r−1/V r has graded dimension ir for
r ∈ [1, d]. We denote by F̃i the variety of pairs (x, φ) ∈ Eα × Fi such that
x preserves φ, i.e., we have x(V r) ⊂ V r for r ∈ {0, 1, · · · ,m}. Let πi be the
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natural projection from F̃i to Eα, i.e., πi : F̃i → Eα, (x, φ) 7→ x. For i, j ∈ Iα
we denote by Zi,j the variety of triples (x, φ1, φ2) ∈ Eα × Fi × Fj such that x
preserves φ1 and φ2 (i.e., we have Zi,j = F̃i ×Eα F̃j). Set

Zα =
∐

i,j∈Iα
Zi,j, F̃α =

∐
i∈Iα

F̃i.

We have an algebra structure on HGα
∗ (Zα,k) such that the multiplication is

the convolution product with respect to the inclusion Zα ⊂ F̃α × F̃α. Here
HGα
∗ (•,k) denotes the Gα-equivariant Borel-Moore homology with coefficients

in k. See [2, Sec. 2.7] for the definition of the convolution product.
The following result is proved by Rouquier [8] and by Varagnolo-Vasserot

[10] in the situation char k = 0. See [5] for the proof over an arbitrary field.

Proposition A.1. There is an algebra isomorphism Rα,k(Γ) ' HGα
∗ (Zα,k).

Moreover, for each i, j ∈ Iα, the vector subspace e(i)Rα,k(Γ)e(j) ⊂ Rα,k(Γ)
corresponds to the vector subspace HGα

∗ (Zi,j,k) ⊂ HGα
∗ (Zα,k).

A2 The geometric construction of the isomorphism Φ

As in Section 2B, fix a decomposition I = I0
∐
I1 and consider the quiver

Γ = (I,H); also fix α ∈ Q+
I and consider α = φ(α) ∈ Q+

I
.

We start from the variety Zα defined with respect to the quiver Γ. By
Proposition A.1, we have an algebra isomorphism Rα,k(Γ) ' HGα

∗ (Zα,k). We
have an obvious projection p:Zα → Eα defined by (x, φ1, φ2) 7→ x. For each
i ∈ I1 denote by hi the unique arrow in Γ that goes from i1 to i2. Consider
the following open subset of Eα: E0

α = {x ∈ Eα; xhi is invertible ∀i ∈ I1}. Set
Z0
α = p−1(E0

α). The pullback with respect to the inclusion Z0
α ⊂ Zα yields an

algebra homomorphism HGα
∗ (Zα,k)→ HGα

∗ (Z0
α,k) (see [2, Lem. 2.7.46]).

Remark A.2. If the sequence i ∈ Iα is unordered, then a flag from Fi is never
preserved by an element from E0

α. This implies that Zi,j ∩ Z0
α = ∅ if i or j is

unordered. Thus for each i ∈ Iαun, the idempotent e(i) is in the kernel of the
homomorphism HGα

∗ (Zα,k)→ HGα
∗ (Z0

α,k).

Let e be the idempotent as in Definition 2.6. Consider the following subset
of Zα:

Z ′α =
∐

i,j∈Iαord

Zi,j.

The algebra isomorphism Rα,k(Γ) ' HGα
∗ (Zα,k) above restricts to an algebra

isomorphism eRα(Γ)e ' HGα
∗ (Z ′α,k).

Now, set Z ′0α = Z ′α ∩ Z0
α. Similarly to the construction above, we have

an algebra homomorphism HGα
∗ (Z ′α,k) → HGα

∗ (Z ′0α ,k). By Remark A.2, the
kernel of this homomorphism contains the kernel of eRα,k(Γ)e → Rα,k(Γ) (see
Theorem 2.12). The following result implies that these kernels are the same.
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Lemma A.3. We have the following algebra isomorphism Rα,k(Γ) ' HGα
∗ (Z ′0α ,k).

Proof. For each i ∈ I0 we identify Vi ' Vi0 . For each i ∈ I1 we identify
Vi ' Vi1 ' Vi2 . We have a diagonal inclusion Gα ⊂ Gα, i.e., the component
GL(Vi) of Gα with i ∈ I0 goes to GL(Vi0) and the component GL(Vi) with
i ∈ I1 goes diagonally to GL(Vi1)×GL(Vi2).

Set Gbis
α =

∏
i∈I1 GL(Vi2) ⊂ Gα. We have an obvious group isomorphism

Gα/G
bis
α ' Gα.

Let us denote by X the choice of isomorphisms Vi1 ' Vi2 mentioned above.
Let EXα be the subset of Eα that contains only x ∈ Eα such that for each i ∈ I1
the component xhi is the isomorphism chosen in X.

The group Gbis
α acts freely on E0

α such that each orbit intersects EXα once.
This implies that we have an isomorphism of algebraic varieties E0

α/G
bis
α ' EXα .

Now, set Z ′Xα = p−1(EXα ). The same argument as above yields Z ′0α /G
bis
α ' Z ′Xα .

We get the following chain of algebra isomorphsims

HGα
∗ (Z ′0α ,k) ' HGα/G

bis
α

∗ (Z ′0α /G
bis
α ,k) ' HGα

∗ (Z ′Xα ,k).

To complete the proof we have to show that the Gα-variety Z ′Xα is isomorphic
to Zα. Each element of Iαord is of the form φ(i) for a unique i ∈ Iα, where φ is
as in Section 2B. Let us abbreviate i′ = φ(i). By definition we have

Z ′α =
∐

i,j∈Iα
Zi′,j′ .

Set ZXi′,j′ = Zi′,j′∩Z ′Xα . We have an obvious isomorphism of Gα-varieties ZXi′,j′ '
Zi,j. (Beware, the variety Zi,j is defined with respect to the quiver Γ and the
variety Zi′,j′ is defined with respect to the quiver Γ.) Taking the union for all
i, j ∈ Iα yields an isomorphism of Gα-varieties Z ′Xα ' Zα.

Corollary A.4. We have the following commutative diagram.

eRα,k(Γ)e −−−−→ Rα,k(Γ)y y
HGα
∗ (Z ′α,k) −−−−→ HGα

∗ (Z ′0α ,k).

Here the left vertical map is the isomorphism from Proposition A.1, the right
vertical map is the isomorphism from Lemma A.3, the top horizontal map is
obtained from Theorem 2.12 and the bottom horizontal map is the pullback with
respect to the inclusion Z ′0α ⊂ Z ′α.

Proof. The result follows directly from Lemma A.3. The commutativity of the
diagram is easy to see on the generators of Rα,k(Γ).

Indeed, the isomorphism Rα,k ' HGα
∗ (Zα,k) is defined in the following way

(see [5, Sec. 2.9, Thm. 2.4] for more details). The element e(i) corresponds
to the fundamental class [Zi,i]. The element xre(i) corresponds to the first
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Chern class of some line bundle on Zi,i. The element ψre(i) corresponds to the
fundamental class of some correspondence in Zsr(i),i. The commutativity of the
diagram in the statement follows from standard properties of Chern classes and
fundamental classes.

B A local ring version in type A
In this appendix we give some versions of the main results of the paper (Theo-
rems 2.12 and 3.5) over a local ring. These ring versions are interesting because
the study of the category O for ĝlN in [4] uses a deformation argument. For
this we need a version of Theorem 1.2 over a local ring.

It is known that the affine Hecke algebra over a field is related with the KLR
algebra (see Propositions B.5, B.6). This allows to reformulate the definition of
a categorical representation (see Definition 3.2) that is given in term of KLR
algebras in an equivalent way in terms of Hecke algebras (see Definition B.14).
The main difficulty is that there is no known relation between Hecke and KLR
algebras over a ring. Over a local ring, we can give a definition of a categorical
representation using the Hecke algebra (see Definition B.17). But we have no
equivalent definition in terms of KLR algebras. That is why, Proposition B.12,
that is a ring analogue of Theorem 2.12, is formulated in terms of Hecke algebras
and not in terms of KLR algebras.

B1 Intertwining operators
The center of the algebra Rα,k is the ring of symmetric polynomials kd[x]Sd , see
[8, Prop. 3.9]. Thus Sα,k is a kd[x]Sd -algebra under the isomorphism Φα,k in
Section 2G. Let Σ be the polynomial

∏
a<b(xa−xb)2 ∈ kd[x]Sd . Let Rα,k[Σ−1]

and Sα,k[Σ−1] be the rings of quotients of Rα,k and Sα,k obtained by inverting
Σ. We can extend the isomorphism Φα,k from Theorem 2.12 to an algebra
isomorphism

Φα,k:Rα,k[Σ−1]→ Sα,k[Σ−1].

Assume that the connected components of the quiver Γ are of the form Γa
for a ∈ N, a > 1 or a =∞. (The quiver Γa is defined in Section 3B.)

Note that there is an action of the symmetric groupSd on k
(I)
d permuting the

variables and the components of i. Consider the following element in Rα,k[Σ−1]:

Ψre(i) =

 ((xr − xr+1)τr + 1)e(i) if ir+1 = ir,
−(xr − xr+1)−1τre(i) if ir+1 = ir − 1,
τre(i) else.

The element Ψre(i) is called intertwining operator. Using the formulas (3)
we can check that Ψre(i) still acts on the polynomial representation and the
corresponding operator is equal to sre(i). Note also that Ψ̃r = (xr − xr+1)Ψr

is an element of Rα,k.
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Lemma B.1. The images of intertwining operators by Φα,k:Rα,k → Sα,k can
be described in the following way. For i ∈ Iα such that ir − 1 6= ir+1 we have

Φα,k(Ψre(i)) =


Ψr′e(φ(i)), if ir, ir+1 ∈ I0,
Ψr′Ψr′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,
Ψr′+1Ψr′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1,
Ψr′+1Ψr′+2Ψr′Ψr′+1e(φ(i)) if ir, ir+1 ∈ I1.

For i ∈ Iα such that ir − 1 = ir+1 we have

Φα,k(Ψ̃re(i)) =


Ψ̃r′e(φ(i)), if ir, ir+1 ∈ I0,
Ψ̃r′Ψr′+1e(φ(i)) if ir ∈ I1, ir+1 ∈ I0,
Ψr′+1Ψ̃r′e(φ(i)) if ir ∈ I0, ir+1 ∈ I1.

Here r′ = r′i is as in Section 2F.

Proof. By construction of Φα,k, the elements Φα,k(Ψre(i)) and Φα,k(Ψ̃re(i)) are
the unique elements of Sα,k that act on the polynomial representation by the
same operator as Ψre(i) and Ψ̃re(i), respectively.

The right hand side in the formulas for Φα,k(Ψre(i)) (or resp. Φα,k(Ψ̃re(i)))
in the statement is an element X in Sα,k[Σ−1]. To complete the proof we have
to show that

(1) X acts by the same operator as Ψre(i) or Ψ̃re(i), respectively, on the
polynomial representation,

(2) X is in Sα,k.

Part (1) is obvious. Part (2) follows from part (1) and from the faithfulness
of the polynomial representation of Sα,k[Σ−1] (see Lemma 2.10). (In fact, part
(2) is not obvious only in the case ir = ir+1 ∈ I1.)

B2 Special quivers
From now on we will be interested only in some special types of quivers.

First, consider the quiver Γ = Γe, where e is an integer > 1. In particular,
from now on we fix I = Z/eZ. Fix k ∈ [0, e − 1] and set I1 = {k} and I0 =
I\{k}. In this case the quiver Γ is isomorphic to Γe+1. More precisely, the
decomposition I = I0 t I1 t I2 is such that I1 = {k} and I2 = {k + 1}. To
avoid confusion, for i ∈ I we will write αi and εi for αi and εi respectively.

Remark B.2. If Γ is as above, a sequence i = (i1, · · · , id) ∈ I
d
is well-ordered if

for each index a such that ia = k we have a < d and ia+1 = k+1. The sequence
i is unordered if there is r 6 d such that the subsequence (i1, · · · , ir) contains
more elements equal to k + 1 than elements equal to k.
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Let Υ:Z→ Z be the map given for a ∈ Z, b ∈ [0, e− 1] by

Υ(ae+ b) =

{
a(e+ 1) + b if b ∈ [0, k],
a(e+ 1) + b+ 1 if b ∈ [k + 1, e− 1].

(8)

Now, consider the quiver Γ̃ = (Γ∞)tl (i.e., Γ̃ is a disjoint union of l copies
of Γ∞). Set Γ̃ = (Ĩ , H̃) and write α̃i and ε̃i and for αi and εi respectively for
each i ∈ Ĩ. We identify an element of Ĩ with an element (a, b) ∈ Z × [1, l] in
the obvious way. Consider the decomposition Ĩ = Ĩ0 t Ĩ1 such that (a, b) ∈ Ĩ1 if
and only if a ≡ k mod e. In this case the quiver Γ̃ is isomorphic to Γ̃. We will
often write Γ̃ instead of Γ̃ (but sometimes, if confusion is possible, we will use
the notation Γ̃ to stress that we work with the doubled quiver). More precisely,
in this case we have

(a, b)0 = (Υ(a), b),
(a, b)1 = (Υ(a), b),
(a, b)2 = (Υ(a) + 1, b).

To distinguish notations, we will always write φ̃ for any of the maps φ̃: Ĩ∞ → Ĩ∞,
QĨ → QĨ , XĨ → XĨ in Section 2B.

From now on we write Γ = Γe, Γ = Γe+1 and Γ̃ = (Γ∞)tl. Recall that

I = Ie = Z/eZ, I = Ie+1 = Z/(e+ 1)Z, Ĩ = (I∞)tl = Z× [1, l].

Consider the quiver homomorphism πe: Γ̃→ Γ such that

πe: Ĩ → I, (a, b) 7→ a mod e.

Then πe+1 is a quiver homomorphism πe+1: Γ̃→ Γ. They yield Z-linear maps

πe:QĨ → QI , πe:XĨ → XI , πe+1:QĨ → QI , πe+1:XĨ → XI .

The following diagrams are commutative for α ∈ Q+
I and α̃ ∈ Q+

Ĩ
such that

πe(α̃) = α,

QĨ
φ̃−−−−→ QĨ

πe

y πe+1

y
QI

φ−−−−→ QI

XĨ

φ̃−−−−→ XĨ

πe

y πe+1

y
XI

φ−−−−→ XI

Ĩ α̃
φ̃−−−−→ Ĩ φ̃(α̃)

πe

y πe+1

y
Iα

φ−−−−→ I
φ(α)

The quiver Γ̃ is infinite. We will sometimes use its truncated version. Fix
a positive integer N . Denote by Γ̃6N the full subquiver (i.e., a quiver with a
smaller set of vertices and the same arrows between these vertices) of Γ̃ that

contains only vertices (a, b) such that |a| 6 eN . Let Γ̃
6N

be the doubled quiver
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associated with Γ̃6N . We can see the quiver Γ̃
6N

as a full subquiver of Γ̃ that
contains only vertices (a, b) such that we have{

−(e+ 1)N 6 a 6 (e+ 1)N if k 6= 0,
−(e+ 1)N 6 a 6 (e+ 1)N + 1 else.

(Attention, it is not true that the isomorphism of quivers Γ̃ ' Γ̃ takes Γ̃6N to

Γ̃
6N

.)

B3 Hecke algebras
Let R be a commutative ring with 1. Fix an element q ∈ R.

Definition B.3. The affine Hecke algebra HR,d(q) is the R-algebra generated
by T1, · · · , Td−1 and the invertible elements X1, · · · , Xd modulo the following
defining relations

XrXs = XsXr, TrXr = XrTr if |r − s| > 1,
TrTs = TsTr if |r − s| > 1, TrTr+1Tr = Tr+1TrTr+1,
TrXr+1 = XrTr + (q − 1)Xr+1, TrXr = Xr+1Tr − (q − 1)Xr+1,
(Tr − q)(Tr + 1) = 0.

Assume that R = k is a field and q 6= 0, 1. The algebra Hd,k(q) has a
faithful representation (see [6, Prop. 3.11]) in the vector space k[X±1

1 , · · · , X±1
d ]

such that X±1
r acts by multiplication by X±1

r and Tr by

Tr(P ) = qsr(P ) + (q − 1)Xr+1(Xr −Xr+1)−1(sr(P )− P ).

The following operator acts on k[X±1
1 , · · · , X±1

d ] as the reflection sr

Ψr =
Xr −Xr+1

qXr −Xr+1
(Tr − q) + 1 = (Tr + 1)

Xr −Xr+1

Xr − qXr+1
− 1.

For a future use, consider the element Ψ̃r ∈ Hd,k given by

Ψ̃r = (qXr −Xr+1)Ψr = (Xr −Xr+1)Tr + (q − 1)Xr+1.

B4 The isomorphism between Hecke and KLR algebras
First, we define some localized versions of Hecke algebras and KLR algebras.
Let F be a finite subset of k×. We view F as the vertex set of a quiver with
an arrow i→ j if and only if j = qi. Consider the algebra

A1 =
⊕
i∈Fd

k[X±1
1 , · · · , X±1

d ][(Xr −Xt)
−1, (qXr −Xt)

−1; r 6= t]e(i),
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where e(i) are orthogonal idempotents and Xr commutes with e(i). Let H loc
d,k(q)

be the A1-module given by the extension of scalars from the k[X±1
1 , · · · , X±1

d ]-
module Hd,k(q). It has a k-algebra structure such that

Tre(i)− e(sr(i))Tr = (1− q)Xr+1(Xr −Xr+1)−1(e(i)− e(sr(i)))

and
Z−1Tr = TrZ

−1, where Z =
∏
r<t

(Xr −Xt)
2
∏
r 6=t

(qXr −Xt)
2.

In this section the KLR algebras are always defined with respect to the
quiver F . We consider the algebra

A2 =
⊕
i∈Fd

k[x1, · · · , xd][S−1
i ]e(i),

where

Si = {(xr + 1), (ir(xr + 1)− it(xt + 1)), (qir(xr + 1)− it(xt + 1); r 6= t)}.

Consider the following central element in Rd,k

z =
∏
r

(xr + 1)
∏

i,j∈F ,r 6=t

(i(xr + 1)− j(xt + 1)).

The A2-module Rloc
d,k = A2 ⊗k

(F)
d

Rd,k has a k-algebra structure because it is a

subalgebra in Rd,k[z−1], where k
(F)
d is as in (2).

Remark B.4. We assumed above that the set F is finite. This assumption is
important because it implies that A1 contains k[X±1

1 , · · · , X±1
d ] and A2 contains

k[x1, · · · , xd]. However, it is possible to define the algebras above (A1, A2,
H loc
d,k(q) and Rloc

d,k) for arbitrary F ⊂ k×. Indeed, if F1 ⊂ F2 are finite, then the
algebra defined with respect to F1 is obviously a non-unitary subalgebra of the
algebra defined with respect to F2. Then we can define the algebras A1, A2,
H loc
d,k(q) and Rloc

d,k with respect to any arbitrary F . For example, we define the
algebra Rloc

d,k associated with F as

Rloc
d,k(F) = lim

−→
F0⊂F

Rloc
d,k(F0),

where the direct limit is taken over all finite subsets F0 of F . Note that if the
set F is infinite, then the algebras A1, A2, H loc

d,k(q) and Rloc
d,k are not unitary.

From now on we assume that F is an arbitrary subset of k×.

Proposition B.5. There is an isomorphism of k-algebras Rloc
d,k ' H loc

d,k(q) such
that

e(i) 7→ e(i),

xre(i) 7→ (i−1
r Xr − 1)e(i),

Ψre(i) 7→ Ψre(i).
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Proof. The polynomial representations of Hd,k(q) and Rd,k yield faithful repre-
sentations of H loc

d,k(q) and Rloc
d,k on A1 and A2 respectively. Moreover, there is

an isomorphism of k-algebras A2 ' A1 given by xre(i) 7→ (i−1
r Xr − 1)e(i).

This implies the statement. Indeed, the elements e(i) ∈ Rloc
d,k and e(i) ∈

H loc
d,k(q) act on A2 ' A1 by the same operators. The elements xre(i) ∈ Rloc

d,k and
(i−1
r Xr − 1)e(i) ∈ H loc

d,k(q) act on A2 ' A1 by the same operators. Finally, the
elements Ψre(i) ∈ Rloc

d,k and Ψre(i) ∈ H loc
d,k(q) also act on A2 ' A1 by the same

operators. The elements above generate the algebras Rloc
d,k and H loc

d,k(q).

Now, we consider the subalgebra R̂d,k of Rloc
d,k generated by

• the elements of Rd,k,

• the elements (xr + 1)−1,

• the elements of the form (ir(xr + 1) − it(xt + 1))−1e(i) such that r 6= t
and ir 6= it,

• the elements of the form (qir(xr + 1) − it(xt + 1))−1e(i) such that r 6= t
and qir 6= it.

Similarly, consider the subalgebra Ĥd,k(q) of H loc
d,k(q) generated by

• the elements of Hd,k(q),

• the elements of the form (Xr −Xt)
−1e(i) such that r 6= t and ir 6= it,

• the elements of the form (qXr −Xt)
−1e(i) such that r 6= t and qir 6= it.

Note that the element Ψre(i) ∈ H loc
d,k(q) belongs to Ĥd,k(q) if ir 6= qir+1. We

have the following proposition, see also [8, Sec. 3.2].

Proposition B.6. The isomorphism Rloc
d,k ' H loc

d,k(q) from Proposition B.5 re-
stricts to an isomorphism R̂d,k ' Ĥd,k(q).

B5 Deformation rings
In this section we introduce some general definitions from [9] for a later use.

We call the deformation ring (R, κ, κ1, · · · , κl) a regular commutative noethe-
rian C-algebra R with 1 equipped with a homomorphism C[κ±1, κ1, · · · , κl]→ R.
Let κ, κ1, · · · , κl also denote the images of κ, κ1, · · · , κl in R. A deformation ring
is in general position if any two elements of the set

{κu − κv + aκ+ b, κ− c; a, b ∈ Z, c ∈ Q, u 6= v}

have no common non-trivial divisors. A local deformation ring is a deformation
ring which is a local ring such that κ1, · · · , κl, κ− e belong to the maximal ideal
of R. Note that each C-algebra that is a field has a trivial local deformation
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ring structure, i.e., such that κ1 = · · · = κl = 0 and κ = e. We always consider
C as a local deformation ring with a trivial deformation ring structure.

We will write κ = κ(e + 1)/e and κr = κr(e + 1)/e. We will abbreviate R
for (R, κ, κ1, · · · , κl) and R for (R, κ, κ1, · · · , κl).

Let R be a complete local deformation ring with residue field k. Consider the
elements qe = exp(2π

√
−1/κ) and qe+1 = exp(2π

√
−1/κ) in R. These elements

specialize to ζe = exp(2π
√
−1/e) and ζe+1 = exp(2π

√
−1/(e+ 1)) in k.

B6 The choice of F
From now on we assume that R is a complete local deformation ring in general
position with residue field k and field of fractions K. In this section we define
some special choice of the set F . This choice of parameters is particularly
interesting because it is related with the categorical action on the category O
for ĝlN , see [9].

Fix a tuple ν = (ν1, · · · , νl) ∈ Zl. Put Qr = exp(2π
√
−1(νr + κr)/κ) for

r ∈ [1, l]. The canonical homomorphism R→ k maps qe to ζe and Qr to ζνre .
Now, consider the subset F of R given by

F =
⋃

r∈Z,t∈[1,l]

{qreQt}.

Denote by Fk the image of F in k with respect to the surjection R→ k. Recall
from Section B4 that we consider F (and Fk) as a vertex set of a quiver. The
set F is a vertex set of a quiver that is a disjoint union if l infinite linear quivers.
The set Fk is a vertex set of a cyclic quiver of length e.

Fix k ∈ [0, e − 1]. To this k we associate a map Υ:Z → Z as in (8). Now,
consider the tuple

ν = (ν1, · · · , νl) ∈ Zl, νr = Υ(νr) ∀r ∈ [1, l].

Let R be as in the previous section. Let k and K be the residue field and
the field of fractions of R respectively. Now, consider Q = (Q1, · · · , Ql), where
Qr = exp(2π

√
−1(νr+κr)/κ) and κ and κr are defined in Section B5. Consider

the subset F of R given by

F =
⋃

r∈Z,t∈[1,l]

{qre+1Qt}.

Denote by Fk the image of F in k with respect to the surjection R → k. The
set F is a vertex set of a quiver that is a disjoint union of l infinite linear quivers.
The set Fk is a vertex set of a cyclic quiver of length e+ 1.

B7 Algebras Ĥ, ŜH, R̂ and Ŝ

Let Γ = (I,H), Γ = (I,H) and Γ̃ = (Ĩ , H̃) be as in Section B2.
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We will use the notation F , Fk, F and Fk as in previous section. (In
particular, we fix some ν = (ν1, · · · , νl).)

We have the following isomorphisms of quivers

Ĩ ' F , i = (a, b) 7→ pi := exp(2π
√
−1(a+ κb)/κ),

Ĩ ' F , i = (a, b) 7→ pi := exp(2π
√
−1(a+ κb)/κ),

I ' Fk, i 7→ pi := ζie,

I ' Fk, i 7→ pi := ζie+1.

These isomorphisms yield the following commutative diagrams

Ĩ
∼−−−−→ F

πe

y y
I

∼−−−−→ Fk,

Ĩ
∼−−−−→ F

πe+1

y y
I

∼−−−−→ Fk.

We will identify

I ' Fk, I ' Fk, Ĩ ' F , Ĩ ' F

as above.
Our goal is to obtain an analogue of Theorem 2.12 over the ring R. First,

consider the algebras Ĥd,k(ζe) and Ĥd,K(qe) defined in the same way as in
Section B4 with respect to the sets Fk ⊂ k and F ⊂ K. We can consider
the R-algebra Ĥd,R(qe) defined in a similar way with respect to the same set of
idempotents as Ĥd,k(ζe) (i.e., with respect to the set Fk, not F).

The algebra Ĥd,K(qe) is not unitary because the quiver Γ̃ is infinite. To avoid
this problem we consider the truncated version of this algebra. Let Ĥ6N

d,K (qe) be
the quotient of Ĥd,K(qe) by the two-sided ideal generated by the idempotents
e(j) ∈ Ĩd such that j contains a component that is not a vertex of the truncated
quiver Γ̃6N (see Section B2). (In fact, the algebra Ĥ6N

d,K (qe) is isomorphic to a
direct summand of Ĥd,K(qe)).

Similarly, we define the algebras Ĥd,k(ζe+1), Ĥd,K(qe+1) and Ĥd,R(qe+1)

using the sets F and Fk instead of F and Fk. We define a truncation Ĥ6N
d,K

(qe+1)

of Ĥd,K(qe+1) using the quiver Γ̃
6N

.
For each i ∈ Id we consider the following idempotent in Ĥ6N

d,K (qe):

e(i) =
∑

j∈Ĩd,πe(j)=i

e(j).

Here we mean that e(j) is zero if j contains a vertex that is not in the truncated
quiver Γ̃6N . The idempotent e(i) is well-defined because only a finite number
of terms in the sum are nonzero. For each i ∈ Id we can define an idempotent
e(i) ∈ Ĥ6N

d,K
(qe+1) in a similar way.
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Lemma B.7. There is an injective algebra homomorphism Ĥd,R(qe)→ Ĥ6N
d,K (qe)

such that e(i) 7→ e(i), Xre(i) 7→ Xre(i) and Tre(i) 7→ Tre(i).

Proof. It is clear that we have an algebra homomorphism Ĥd,R(qe)→ Ĥ6N
d,K (qe)

as in the statement. We only have to check the injectivity.
For each w ∈ Sd we have an element Tw ∈ Hd,R(q) defined in the following

way. We have Tw = Ti1 · · ·Tir , where w = si1 · · · sir is a reduced expression.
It is well-known that Tw is independent of the choice of the reduced expres-
sion. Moreover, the algebra Hd,R(q) is free over R[X±1

1 , · · · , X±1
d ] with a basis

{Tw; w ∈ Sd}.
Set

B =
⊕
i∈Fd

k

R[X±1
1 , · · · , X±1

d ][(Xr −Xt)
−1, (qeXr −Xt)

−1; r 6= t]e(i),

where we invert (Xr − Xt) only if ir 6= it and we invert (qeXr − Xt) only if
ζeir 6= it. We have Ĥd,R(qe) = B⊗R[X±1

1 ,···,X±1
d ]Hd,R(qe). This implies that the

B-module Ĥd,R(qe) is free with a basis {Tw; w ∈ Sd}.
Similarly, we can show that the algebra Ĥ6N

d,K (qe) is free (with a basis
{Tw; w ∈ Sd}) over

B′ =
⊕
j∈Fd

K[X±1
1 , · · · , X±1

d ][(Xr −Xt)
−1, (qeXr −Xt)

−1; r 6= t]e(j),

where we invert (Xr − Xt) only if jr 6= jt and we invert (qeXr − Xt) only if
qejr 6= jt, and we take only j that are supported on the vertices of the truncated
quiver Γ6N .

Now, the injectivity of the homomorphism follows from the fact that it takes
a B-basis of Ĥd,R(qe) to a B′-linearly independent set in Ĥ6N

d,K (qe).

Now we define the algebra ŜHα,k(ζe+1) that is a Hecke analogue of a local-
ization of the balanced KLR algebra Sα,k. To do so, consider the idempotent
e =

∑
i∈Iαord

e(i) in Ĥα,k(ζe+1). We set

ŜHα,k(ζe+1) = eĤα,k(ζe+1)e/
∑
j∈Iαun

eĤα,k(ζe+1)e(j)Ĥα,k(ζe+1)e.

Now, we define a similar algebra over K. To do this, we need to introduce
some additional notation. Denote by Q+

Ĩ,eq
the subset of Q+

Ĩ
that contains only

α̃ such that for each k ∈ Ĩ1, the dimension vector α̃ has the same dimensions at
vertices k1 and k2.

Set
Ĥ6N
α,K

(qe+1) =
⊕

πe+1(α̃)=α

Ĥα̃,K(qe+1),
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ŜH
6N

α,K(qe+1) =
⊕

πe+1(α̃)=α

ŜH α̃,K(qe+1),

where in the sums we take only α̃ ∈ Q+

Ĩ,eq
that are supported on the vertices of

the truncated quiver Γ̃
6N

and ŜH α̃,K(qe+1) is defined similarly to ŜHα,k(ζe+1).
More precisely, we have

ŜH α̃,K(qe+1) = ẽα̃Hα̃,K(qe+1)ẽα̃/
∑
j∈Ĩα̃un

ẽα̃Hα̃,K(qe+1)e(j)Hα̃,K(qe+1)ẽα̃,

where ẽα̃ =
∑

j∈Ĩα̃ord
e(j).

Remark B.8. Consider the following idempotents in Ĥ6N
α,K

(qe+1):

ẽ =
∑

πe+1(α̃)=α

ẽα̃, e =
∑

i∈Iαord

e(i),

where the first sum is taken only by α̃ ∈ Q+

Ĩ,eq
. (Note that Ĥ6N

α,K
(qe+1) was

defined as a quotient of Ĥα,K(qe+1). So, if α̃ is not supported on Γ̃
6N

, then
the idempotent ẽα̃ is zero by definition. In particular, the sum has a finite
number of nonzero terms.) Set also Ĩα =

∐
πe+1(α̃)=α Ĩ

α̃, where the sum is

taken only by α̃ ∈ Q+

Ĩ,eq
. By definition, the algebra ŜH

6N

α,K(qe+1) is a quo-

tient of ẽĤ6N
α,K

(qe+1)ẽ. But we can see this algebra as the same quotient of

eĤ6N
α,K

(qe+1)e (we do the quotient with respect to the same idempotents). In-
deed, the idempotent e is a sum of a bigger number of standard idempotents
e(j), j ∈ Ĩα than the idempotent ẽ. More precisely, the idempotent ẽ is the sum
all e(j) such that j is well-ordered while e is the sum of all e(j) such that πe+1(j)

is well-ordered. But each j ∈ Ĩα such that πe+1(j) is well-ordered and j is not
well-ordered must be unordered. Then such e(j) becomes zero after taking the
quotient.

Finally, we define the R-algebra ŜH
N

α,R(qe+1) as the image in ŜH
6N

α,K(qe+1)
of the following composition of homomorphisms

eĤα,R(qe+1)e→ eĤ6N
α,K

(qe+1)e→ ŜH
6N

α,K(qe+1).

The lemma below shows that the algebra ŜH
N

α,R(qe+1) is independent of N

forN large enough. So, we can write simply ŜHα,R(qe+1) instead of ŜH
N

α,R(qe+1)
for N large enough.

Lemma B.9. Assume N > 2d. Then the algebra ŜH
N

α,R(qe+1) is independent
of N .
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Proof. Denote by JN the kernel of eĤα,R(qe+1)e → ŜH
6N

α,K(qe+1). Take M >
N . It is clear that we have JM ⊂ JN .

Let us show that we also have an opposite inclusion if N > 2d. We want
to show that each element x ∈ JN is also in JM . It is enough to show this for
x of the form x = Xe(i), where i ∈ Iαord and X is composed of the elements
of the form Tr and Xr. Then Xe(i) ∈ JN means that the element Xe(j) ∈

ŜH
6N

α,K(qe+1) is zero for each j ∈ Ĩα supported on Γ̃
6N

such that πe+1(j) = i.
To show that we have Xe(i) ∈ JM we must check that the element Xe(j) ∈

ŜH
6M

α,K(qe+1) is zero for each j ∈ Ĩα supported on Γ̃
6M

such that πe+1(j) = i.
Let α̃ ∈ Q+

Ĩ,eq
be such that j ∈ Ĩ α̃. It is clear that we can find α̃′ ∈

Q+

Ĩ,eq
supported on Γ̃

62d

such that we have an isomorphism Ĥα̃,K(qe+1) '

Ĥα̃′,K(qe+1) that induces an isomorphism ŜH α̃,K(qe+1) ' ŜH α̃′,K(qe+1) and
such that this isomorphism preserves the generators Xr and Tr and sends the

idempotent e(j) to some idempotent e(j′) such that j′ is supported on Γ̃
62d

and

πe+1(j) = πe+1(j′). Then the element Xe(j) ∈ ŜH
6M

α,K(qe+1) is zero because

Xe(j′) ∈ ŜH
6M

α,K(qe+1) is zero. This implies x ∈ JM .

Now we define the KLR versions of the algebras ŜHα,k(ζe+1) and ŜH
6N

α,K(qe+1).
As for the Hecke version, we denote by e the idempotent

∑
i∈Iαord

e(i) in R̂α,k(Γ).
Set

Ŝα,k(Γ) = eR̂α,k(Γ)e/
∑
i∈Iαun

eR̂α,k(Γ)e(i)Rα,k(Γ)e.

For each α̃ ∈ Q+

Ĩ,eq
we consider the idempotent ẽα̃ =

∑
j∈Ĩα̃ord

e(j) in R̂α̃,K(Γ̃).
Set

Ŝα,K(Γ̃
6N

) =
⊕

πe+1(α̃)=α

Ŝα̃,K(Γ̃),

where we take only α̃ ∈ Q+

Ĩ,eq
that are supported on the vertices of the truncated

quiver Γ̃
6N

and

Ŝα̃,K(Γ̃) = ẽα̃R̂α̃,K(Γ̃)ẽα̃/
∑
j∈Ĩα̃un

ẽα̃R̂α̃,K(Γ̃)e(j)Rα̃,K(Γ̃)ẽα̃.

Remark B.10. By Proposition B.6 we have algebra isomorphisms

R̂α,k(Γ) ' Ĥα,k(ζe), R̂α,K(Γ̃6N ) ' Ĥ6N
α,K(qe),

R̂α,k(Γ) ' Ĥα,k(ζe+1), R̂α,K(Γ̃
6N

) ' Ĥ6N
α,K

(qe+1),
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from which we deduce the isomorphisms

Ŝα,k(Γ) ' ŜHα,k(ζe+1), Ŝα,K(Γ̃
6N

) ' ŜH
6N

α,K(qe+1).

We may use these isomorphisms without mentioning them explicitly. Using
the identifications above between KLR algebras and Hecke algebras, a localiza-
tion of the isomorphism in Theorem 2.12 yields an isomorphism

Φα,k: Ĥα,k(ζe)→ ŜHα,k(ζe+1).

In the same way we also obtain an algebra isomorphism

Φα̃,K : Ĥα̃,K(qe)→ ŜH φ̃(α̃),K(qe+1)

for each α̃ ∈ Q+

Ĩ
. Taking the sum over all α̃ ∈ Q+

Ĩ
such that πe(α̃) = α and

such that α̃ is supported on the vertices of the truncated quiver Γ̃6N yields an
isomorphism

Φα,K : Ĥ6N
α,K(qe)→ ŜH

6N

α,K(qe+1).

Lemma B.11. The homomorphism eĤα,R(qe+1)e → eĤα,k(ζe+1)e factors
through a homomorphism ŜHα,R(qe+1)→ ŜHα,k(ζe+1).

Proof. In Section 2E we constructed a faithful polynomial representation of
Sα,k. Let us call it Polk. It is constructed as a quotient of the standard polyno-
mial representation of eRα,ke. After localization we get a faithful representation
P̂olk of Ŝα,k. Thus the kernel of the algebra homomorphism eR̂α,ke→ Ŝα,k is
the annihilator of the representation P̂olk. We can transfer this to the Hecke
side (because the isomorphism in Proposition B.6 comes from the identifica-
tion of the polynomial representations) and we obtain that the kernel of the
algebra homomorphism eĤα,k(ζe+1)e → ŜHα,k(ζe+1) is the annihilator of the
representation P̂olk. Similarly, we can characterize the kernel of the algebra
homomorphism eĤ6N

α,K
(qe+1)e → ŜH

6N

α,K(qe+1) as the annihilator of a similar

representation P̂ol
6N

K .

The K-vector space P̂ol
6N

K has an R-submodule P̂olR stable by the ac-
tion of eĤα,R(qe+1)e such that k ⊗R P̂olR = P̂olk and it is compatible with
the algebra homomorphism eĤα,R(qe+1)e → eĤα,k(ζe+1)e. By definition of
ŜHα,R(qe+1) and the discussion above, the kernel of the algebra homomor-
phism eĤα,R(qe+1)e → ŜHα,R(qe+1) is formed by the elements that act by

zero on P̂ol
6N

K (we assume that N is big enough). Thus each element of
this kernel acts by zero on P̂olR. This implies, that an element of the ker-
nel of eĤα,R(qe+1)e → ŜHα,R(qe+1) specializes to an element of the kernel of
eĤα,k(ζe+1)e→ ŜHα,k(ζe+1). This proves the statement.
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B8 The deformation of the isomorphism Φ

Proposition B.12. There is a unique algebra homomorphism Φα,R: Ĥα,R(qe)→
ŜHα,R(qe+1) such that the following diagram is commutative

Ĥα,k(ζe)
Φα,k−−−−→ ŜHα,k(ζe+1)x x

Ĥα,R(qe)
Φα,R−−−−→ ŜHα,R(qe+1)y y

Ĥ6N
α,K(qe)

Φα,K−−−−→ ŜH
6N

α,K(qe+1).

Proof. First we consider the algebras H loc
α,k(ζe), H loc

α,R(qe) and H loc,6N
α,K (qe) ob-

tained from Ĥα,k(ζe), Ĥα,R(qe) and Ĥ6N
α,K(qe) by inverting

• (Xr −Xt) and (ζeXr −Xt) with r 6= t,

• (Xr −Xt) and (qeXr −Xt) with r 6= t,

• (Xr −Xt) and (qeXr −Xt) with r 6= t

respectively. Let SH loc
α,k

(ζe+1) and SH loc,6N

α,K
(qe+1) be the localizations of ŜHα,k(ζe+1)

and ŜH
6N

α,K(qe+1) such that the isomorphisms Φα,k and Φα,K above induce iso-
morphisms

Φα,k:H loc
α,k(ζe)→ SH loc

α,k
(ζe+1)

Φα,K :H loc,6N
α,K (qe)→ SH loc,6N

α,K
(qe+1).

Let SH loc
α,R

(qe+1) be the image in SH loc,6N

α,K
(qe+1) of the following composition

of homomorphisms

eH loc
α,R

(qe+1)e→ eH loc,6N

α,K
(qe+1)e→ SH loc,6N

α,K
(qe+1).

(We assume N > 2d. Then, similarly to Lemma B.9, the algebra SH loc
α,R

is
independent of N under this assumption.)

Next, we want to prove that there exists an algebra homomorphism Φα,R:H loc
α,R(qe)→

SH loc
α,R

(qe+1) such that the following diagram is commutative:

H loc
α,k(ζe)

Φα,k−−−−→ SH loc
α,k

(ζe+1)x x
H loc
α,R(qe)

Φα,R−−−−→ SH loc
α,R

(qe+1)y y
H loc,6N
α,K (qe)

Φα,K−−−−→ SH loc,6N

α,K
(qe+1).

(9)
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We just need to check that the map Φα,K takes an element of H loc
α,R(qe) to

an element of SH loc
α,R

(qe+1) and that it specializes to the map Φα,k:H loc
α,k(ζe)→

SH loc
α,k

(ζe+1). We will check this on the generators e(i), Xre(i) and Ψre(i) of
H loc
α,R(qe).
This is obvious for the idempotents e(i).
Let us check this for Xre(i). Assume that i ∈ Iα and j ∈ Ĩ |α| are such that

we have πe(j) = i. Write i′ = φ(i) and j′ = φ̃(j). Set r′ = r′j = r′i, see the
notation in Section 2F. By Theorem 2.12 and Proposition B.5 we have

Φα,K(Xre(j)) = p−1
j′
r′
pjrXr′e(j

′).

Since, p−1
j′
r′
pjr depends only on i and r and e(i) =

∑
πe(j)=i e(j), we deduce that

Φα,K(Xre(i)) = p−1
j′
r′
pjrXr′e(i

′).

Thus the element Φα,K(Xre(i)) is in SH loc
α,R and its image in SH loc

α,k is p−1
i′
r′
pirXr′e(i

′) =

Φα,k(Xre(i)).
Next, we consider the generators Ψre(i). We must prove that for each j such

that πe(j) = i and for each r we have

• Φα,K(Ψre(j)) = Ξe(j′), for some element Ξ ∈ H loc
α,R(qe) that depends only

on r and i,

• the image of Ξe(i′) in SH loc
α,k

(qe+1) under the specialization R → k is
Φα,k(Ψre(i)).

This follows from Lemma B.1.
Now we obtain the diagram from the claim of Proposition B.12 as the re-

striction of the diagram (9).

B9 Alternalive definition of a categorical representation
There is an alternative definition of a categorical representation, where the KLR
algebra is replaced by the affine Hecke algebra.

Let R be a C-algebra. Fix an invertible element q ∈ R, q 6= 1. Let C be an
R-linear exact category.

Definition B.13. A representation datum in C is a tuple (E,F,X, T ) where
(E,F ) is a pair of exact biadjoint functors C → C and X ∈ End(F )op and
T ∈ End(F 2)op are endomorphisms of functors such that for each d ∈ N, there
is an R-algebra homomorphism ψd:Hd,R(q)→ End(F d)op given by

Xr 7→ F d−rXF r−1 ∀r ∈ [1, d],
Tr 7→ F d−r−1TF r−1 ∀r ∈ [1, d− 1].
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Now, assume that R = k is a field. Assume that C is a Hom-finite k-linear
abelian category. Let F be a subset of k× (possibly infinite). As in Section
B4, we view F as the vertex set of a quiver with an arrow i→ j if and only if
j = qi.

Definition B.14. A gF -categorical representation in C is the datum of a rep-
resentation datum (E,F,X, T ) and a decomposition C =

⊕
µ∈XF

Cµ satisfying
the conditions (a) and (b) below. For i ∈ F , let Ei and Fi be endofunctors of
C such that for each M ∈ C the objects Ei(M) and Fi(M) are the generalized
i-eigenspaces of X acting on E(M) and F (M) respectively, see also Remark 3.3
(a). We assume

(a) F =
⊕

i∈F Fi and E =
⊕

i∈F Ei,

(b) Ei(Cµ) ⊂ Cµ+αi and Fi(Cµ) ⊂ Cµ−αi .

If the set F is infinite, condition (a) should be understood in the same way as
in Remark 3.3 (b).

Remark B.15. (a) By definition, for each object M ∈ C and each d ∈ Z>0,
we have Fid · · ·Fi1(M) 6= 0 only for a finite number of sequences (i1, · · · , id) ∈
Fd. (Else, the endomorphism algebra of F d(M) is infinite-dimensional.) Then
the homomorphism Hd,k(q) → End(F d(M))op extends to a homomorphism
Ĥd,k(q) → End(F d(M))op such that only a finite number of idempotents e(j)
has a nonzero image. (We define the action of e(i) as the projection from F d

to Fid . . . Fi1 . Note that the action of (Xr −Xt)
−1e(i) such that ir 6= it is well-

defined because Xr and Xt have different eigenvalues. Similarly, the action of
(qXr−Xt)

−1e(i) such that r 6= t and qir 6= it is well-defined.) In particular, we
obtain a homomorphism Ĥd,k(q)→ End(F d)op.

(b) As in part (a), if we have a categorical representation in the sense of
Definition 3.2, then the homomorphism Rd,k → End(F d)op extends to a ho-
momorphism R̂d,k → End(F d)op. Then Proposition B.6 impies that the two
definitions of a categorical representation of gF (Definition 3.2 and Definition
B.14) are equivalent.

B10 Categorical representations over R

We assume that the ring R is as in Section B6. We are going to obtain an
analogue of Theorem 3.5 over R.

Let CR, Ck and CK be R-, k- and K-linear categories, respectively. Assume
that Ck and CK are Hom-finite k-linear and K-linear abelian categories, respec-
tively. Assume that the category CR is exact. Fix R-linear functors Ωk: CR → Ck
and ΩK : CR → CK .

Remark B.16. The first example of a situation as above that we should imagine
is the following. Let A be an R-algebra that is finitely generated as an R-module.
We set CR = mod(A), Ck = mod(k⊗RA), CK = mod(K⊗RA), Ωk = k⊗• and
ΩK = K ⊗ •.
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Another interesting situation (that in fact motivated the result of this sec-
tion) is when CB , for B ∈ {R,k, H}, is the category O for ĝlN over B at a
negative level. We do not want to assume in this section that the category CR is
abelian because [9] constructs a categorical representation only in the ∆-filtered
category O over R (and not in the whole abelian category O over R).

Definition B.17. A categorical representation of (s̃le, sl
⊕l
∞ ) in (CR, Ck, CK) is the

following data:

(1) a categorical representation of gI = s̃le in Ck,

(2) a categorical representation of gĨ = sl⊕l∞ in CK ,

(3) a representation datum (E,F ) in CR (with respect to the Hecke algebra
Hd,R(qe)) such that the functors E and F commute with Ωk and ΩK ,

(4) lifts (with respect to Ωk) of decompositions E =
⊕

i∈I Ei, F =
⊕

i∈I Fi
and Ck =

⊕
XI
Ck,µ from Ck to CR

such that the following compatibility conditions are satisfied.

• The decomposition CR =
⊕

µ∈Xe CR,µ is compatible with the decomposi-
tion CK =

⊕
µ̃∈XĨ

CK,µ̃ (i.e., we have ΩK(CR,µ) ⊂
⊕

πe(µ̃)=µ CK,µ̃).

• The decompositions E =
⊕

i∈I Ei and F =
⊕

i∈I Fi in CR are com-
patible with the decompositions E =

⊕
j∈Ĩ Ej and F =

⊕
j∈Ĩ Fj in

CK with respect to ΩK (i.e., the functors Ei =
⊕

j∈Ĩ,πe(j)=iEj and
Fi =

⊕
j∈Ĩ,πe(j)=i Fj for CK correspond to the functors Ei, Fi for CR).

• The actions of the Hecke algebras Hd,R(qe), Hd,k(ζe) and Hd,K(qe) on
End(F d)op for CR, Ck and CK are compatible with Ωk and ΩK .

Proposition B.12 yields the following version of Theorem 3.5 over R.

Let (CR, Ck, CK) be a categorical representation of (s̃le+1, sl
⊕l
∞ ). Assume that

for each µ ∈ XI\X
+

I
we have Ck,µ = CR,µ = 0 and the for each µ̃ ∈ XĨ\X

+

Ĩ

we have CK,µ̃ = 0. Let CR, Ck and CK be the subcategories of CR, Ck and CK
defined in the same way as in Section 3D. Then we have the following.

Theorem B.18. There is a categorical representation of (s̃le, sl
⊕l
∞ ) in (CR, Ck, CK).

Proof. We obtain a categorical representation of s̃le in Ck by Theorem 3.5. A
similar argument as in the proof of Theorem 3.5 yields a categorical represen-
tation of sl⊕l∞ in CK (we just have to replace the isomorphism Φ from section
2G associated with the quivcer Γe by a similar isomorphism associated with
the quiver Γ̃.) To construct a representation datum in CR, we use the homo-
morphism Φα,R from Proposition B.12. All axioms of a (s̃le, sl

⊕l
∞ )-categorical

representation in (CR, Ck, CK) follow automatically from the axioms of a cate-
gorical representation of (s̃le+1, sl

⊕l
∞ ) in (CR, Ck, CK).
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