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Abstract

We prove that the KLR algebra associated with the cyclic quiver of
length e is a subquotient of the KLR algebra associated with the cyclic
quiver of length e + 1. We also give a geometric interpretation of this
fact. This result has an important application in the theory of categorical
representations. We prove that a category with an action of slc+1 contains
a subcategory with an action of sl.. We also give generalizations of these
results to more general quivers and Lie types.
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1 Introduction

Consider the complex affine Lie algebra sl, = sl, [t,t~1] @ C1. In this paper, we
study categorical representations of ;[e. Our goal is to relate the notion of a
categorical representation of ;[e with the notion of a categorical representation
of ;[eﬂ.

The Lie algebra sl, has generators e;, f; for i € [0,e — 1]. Let ag, -+, e—1
be the simple roots of sl.. Fix k € [0, e — 1]. Consider the following inclusion of
Lie algebras f?[e C ;[@+1

e, ifrel0,k—1],
er =< lepsery1] ifr=k, (1)
erp1 ifrefk+1e—1],

fr ifrel0,k—1],
fr= o [frers fi]  ifr =k,
fo ifrefk+le—1).

It is clear that each ;[eﬂ—module can be restricted to the subalgebra ;[e of
5~[6+1. So it is natural to ask if we can do the same with categorical representa-
tions.

First, we recall the notion of a categorical representation. Let k be a field.
Let C be an abelian Hom-finite k-linear category that admits a direct sum
decomposition C = EB#GZQ C,.. A categorical representation of sl in C is a
pair of biadjoint functors E;, F;:C — C for i € [0,e — 1] satisfying a list of



axioms. The main axiom is that for each positive integer d there is an algebra
homomorphism Ry(A"Y,) — End(F%)°P, where F = @, F; and Ry(AM)) is
the KLR algebra of rank d associated with the quiver Aél_)l (i.e., with the cyclic

quiver of length e). _ _
Let C be an abelian Hom-finite k-linear category. Assume that C = €9 pezet Cu

has a structure of a categorical representation of 5~[6+1 with respect to functors
E;, F; fori € [0,e]. We want to restrict the action of 5~[e+1 on C to sl,. The most
obvious way to do this is to define new functors E;, F;:C — C, i € [0,e—1] from
the functors E;, F;:C — C, i € [0, €] by the same formulas as in (1). Of course,
this makes no sense because the notion of a commutator of two functors does
not exist. However, we are able to get a structure of a categorical representation
on a subcategory C C C (and not on the category C itself). We do this in the
following way.

Assume additionally that the category éu is zero whenever p has a negative
entry. For each e-tuple pu = (u1,--+,te) € Z¢ we consider the (e + 1)-tuple

n= (va'"aﬂk,ovﬂk+la"',ue) and we set Cu :Cﬁa

c=c.

HELE

Next, consider the endofunctors of C given by

Eil, if 0 <i <k,
E;, = EEM\C ifi =k,
7i+1|c ifk<i<€7
Fil, if 0 <i <k,
Fi=q FrpFi|, ifi=k,
Fi+1|c ifk<i<e.

The following theorem holds.

Theorem 1.1. The category C has the structure of a categorical representation
of sl with respect to the functors Eg, -+, E._1, Fo, -+, Fe_1. O

Let us explain our motivation for proving Theorem 1.1 (see [4] for more
details). Let O _ be the parabolic category O for QT[N =gly[t,t7 @ Cl® Co
with parabolic type v at level —e—N. By [9], there is a categorical representation
of sl, in OV ,. Now we apply Theorem 1.1 to C = OZ(CH). It happens that in
this case the subcategory C C C defined as above is equivalent to OV . This
allows us to compare the categorical representations in the category O for é\[N
for two different (negative) levels.

A result similar to Theorem 1.1 has also recently appeared in [7]. It is applied
in [7] in the following way. It is known from [1] that there is a categorical rep-

resentation of sl, in the category Rep(GLy,(IF,)) of finite dimensional algebraic



representations of GL,(FF,). The paper [7] uses this fact to construct a categor-
ical representation of the Hecke category on the principal block Rep,(GL,(F,))
of Rep(GL,(F,)) for p > n. Their proof is in two steps. First they show
that the action of 5[ on Rep(GL,(F,)) induces an action of sl,, on some full
subcategory of Rep(GLn (Fp)). The second step is to show that the action of
5~[n constructed on the first step induces an action of the Hecke category on
Repo(GL,(Fp)). The first step of their proof is essentially p — n consecutive
applications of Theorem 1.1.

The main difficulty in proving Theorem 1.1 is showing that the action of the

KLR algebra Rd(Agl)) on Fd, where F' = @;_, F, yields an action of the KLR
algebra Rd(Agljl) on F4. So, to prove the theorem, we need to compare the

KLR algebra Rd(Agl)) with the KLR algebra Rd(Agljl). This is done in Section
2.

We introduce the abbreviations I' = Agljl and T = AW Let o = Zf;(} dia;
be a dimension vector of the quiver I'. We consider the dimension vector @ of

T defined by
k
:Z + Z dz 10
1=0 1=k+1

_ Let Ry (") and Rx(T) be the KLR algebras associated with the quivers I and
I and the dimension vectors o and @. The algebra Rz(I') contains idempotents
e(i) parameterized by certain sequences i of vertices of I. In Section 2D we

consider some sets of such sequences T4 and I - Sete=73 ;= e(i) € R5(T)
ord
and B B B B
S#(T) = eRz(T)e/ E eRz(T)e(i)Rz(D)e.

I

un

The main result of Section 2 is the following theorem.

Theorem 1.2. There is an algebra isomorphism R, (T') ~ Sz(T). O

The paper has the following structure. In Section 2 we study KLR algebras.
In particular, we prove Theorem 1.2. In Section 3 we study categorical represen-
tations. We prove our main result about categorical representations (Theorem
1.1). We also generalize this theorem to arbitrary symmetric Kac-Moody Lie
algebras. In Appendix A we give a geometric construction of the isomorphism
in Theorem 1.2. In Appendix B, we give some versions of Theorems 1.1 and 1.2
in type A over a local ring.

It is important to emphasize the relation between the present paper and [4].
That preprint contains (an earlier version of) the results of the present paper
and an application of these results to the category O for EIN. The preprint [4]
is expected to be published as two different papers. The present paper is the
first of them. It contains the results of the preprint [4] about KLR algebras and
categorical representations. The second paper will give an application of the
results of the first paper to the affine category O.



2 KLR algebras

For a noetherian ring A we denote by mod(A) the abelian category of left finitely
generated A-modules. We denote by N the set of non-negative integers.

2A Kac-Moody algebras associated with a quiver

Let T' = (I, H) be a quiver without 1-loops with the set of vertices I and the set
of arrows H. For i,j € I let h; ; be the number of arrows from ¢ to j and set
also a; j = 20; j—h; j —h; ;. Let gr be the Kac-Moody algebra over C associated
with the matrix (a; ;). Denote by e;, f; for ¢ € I the Serre generators of g;.
Remark 2.1. By the Kac-Moody Lie algebra associated with the Cartan matrix
(@i ;) we understand the Lie algebra with the set of generators e;, f;, hi, i € I,
modulo the following defining relations

[hiv hj] = Oa

[hise;] = aijej,

[hi, 3] = —aijej,

lei, fi] = dijhi,
(ad(e;)) '~ (e;) = 0, i # 7,
(ad(fi))'=*wi(f;) = 0, i # ]

In particular, if (a, ;) is the affine Cartan matrix of type A‘(zl_)l, then we get

the Lie algebra sl, (C) = sl,(C)®C[t,t~1]®C1 (not sl (C)®C[t, t~]BC1&CH).

For each i € I, let a; be the simple root corresponding to e;. Set

Qr =P Zai, Qf =P Na.

i€l iel
Fora =Y. ;dia; € Qf denote by |a] its height, i.e., we have || = Y, d;.
Set I = {i = (i1, ija) € Il Y1 @y, = a}.

2B Doubled quiver

Let " = (I, H) be a quiver without 1-loops. Fix a decomposition I = IyLII; such
that there are no arrows between the vertices in I;. In this section we define a
doubled quiver T = (I, H) associated with (I, Iy, I;). The idea is to "double"
each vertex in the set I (we do not touch the vertices from Iy). We replace
each vertex i € I; by a couple of vertices i! and i? with an arrow i' — 2. Each
arrow entering i should be replaced by an arrow entering i', each arrow coming
from 4 should be replaced by an arrow coming from 72.

Now we describe the construction of I' = (I, H) formally. Let Iy be a set
that is in bijection with Iy. Let ¢® be the element of I, associated with an
element i € Iy. Similarly, let I; and I, be sets that are in bijection with I;.
Denote by ' and i? the elements of I; and I, respectively that correspond to
an element i € I;. Put I = IoUI; UJTy. We define H in the following way. The
set H contains 4 types of arrows:



e an arrow ¥ — ;O for each arrow i — j in H with i,j € Iy,

e an arrow " — j! for each arrow i — j in H with i € Iy,j € I,
e an arrow i2 — j° for each arrow i — j in H with i € I, € Iy,
e an arrow i1 — i2 for each vertex i € I.

o0}

- —d —d .
Set I = [],en 17 = [Hgen I where I?, T" are the cartesian products.

The concatenation yields a monoid structure on I*° and T7°. Let ¢: [ — I~
be the unique morphism of monoids such that for i € I C I°° we have

‘ 0 if i € Io,
o) = { (it,i2) ifieT,.
There is a unique Z-linear map ¢: Q; — Q7 such that ¢(I%) C Tb(a) for each
a € QF. It is given by
Q0 if1 € Io,

(a;) = { ap +oyz ifiel.

2C KLR algebras

Let k be a field. Let T' = (I, H) be a quiver without 1-loops. For r € [1,d — 1]
let s, be the transposition (r,7 + 1) € &4. For i = (i1, -,iq) € I set s,.(i) =
(ih e >ir71a ir+1a ir7i1“+27 e 7id)- For 27.7 € I we set

o if ¢ = 7,
Qi (u,v) = { (v— U)hi‘j (u— U)h.m else.

Definition 2.2. Assume that the quiver I is finite. The KLR-algebra Ryx(T')
is the k-algebra with the set of generators 7y,--,74-1,21, ", %4, e(i) where
i € I, modulo the following defining relations

o c(i)e(j) = d;5e(i),

* Derae(i) =1,

o z.¢(i) =e(i)z,,

o 7.e(i) = e(s,(i))7,

® L,Ts = Xy,

o nxrp1e(i) = (7 + 05,4, )e(d),
o v 17re(i) = (T, + 65,4, Je(i),
o Ty =TsTp, if sET T+,

® T.Ts = TsTy, if |1 —s| > 1,



0 if i, =i
Ze(i r = gl
o To¢(i) = )
el { Qiyipir (Try Trp1)e(i)  else,
hd (7—7‘Tr+17'7- — Tr+17'r7'r+1)€(i) —

{ T xr)il(QihiNﬂ (@742, Tr41) = Qimivdrl (T, xpq1))e(i) if ip = iryo,
0 else,

for each i, j, r and s. We may write Rqx = Ryx(I"). The algebra Ry admits
a Z-grading such that dege(i) = 0, degz, = 2 and deg7se(i) = —a,, i, ,, for
eachl <r<d,1<s<dandielIl®

For each a € QF such that |a| = d set e(a) = Y ae(i) € Ryk. It
is a homogeneous central idempotent of degree zero. We have the following
decomposition into a sum of unitary k-algebras Rgx = EB|a|:d Rq x, where
Ra,k = e(oz)R,Lk.

Let kEiI) be the direct sum of copies of the ring kq[z] := k[z1, - - -, z4] labelled

by I¢. We write
I .
kY = @ kalele(i), 2)
icrd

where e(i) is the idempotent of the ring kfil) projecting to the component i.

A polynomial in k4[z] can be considered as an element of kfll) via the diago-
nal inclusion. For each i,j € I fix a polynomial P, ;(u,v) such that we have

QiJ (uv U) = P@j (u7 'U)PJJ (U7 ’LL)
Denote by 0, the Demazure operator on ky[z], i.e., we have

8r(f) = (wr - $T+1)_1(Sr(f) - f)
The following is proved in [8, Sec. 3.2].

Proposition 2.3. The algebra R;x has a faithful representation in the vec-

tor space kg) such that the element e(i) acts by the projection to kg)e(i), the
element x, acts by multiplication by x, and such that for f € ky[x] we have

- feli) :{ 0r(F)e(i) if ir = i1, 3)

P; i (@rg1,20)s,.(fe(sr (i)  otherwise.
We will always choose P; ; in the following way:

P j(u,v) = (u —v)".

Remark 2.4. There is an explicit construction of a basis of a KLR algebra (see
[3, Thm. 2.5]). Assume i,j € I*. Set &;; = {w € &q; w(i) = j}. For
each permutation w € &; j fix a reduced expression w = s, - - - 5p, and set 7, =
Tpy -+ - Tp,.. Then the vector space e(j) Rq,ke(i) has a basis {r,27" - - - z5%e(i); w €
Sij,a1, - -,aq € N}. Note that the element 7,, depends on the reduced ex-
pression of w. Moreover, if we change the reduced expression of w, then the



element 7,e(i) is changed only by a linear combination of monomials of the

form 7, - - 7,2} - 2bte(i) with t < £(w). Note also that if s, - - sp, is not a
reduced expression, then the element 7,, --- 7, e(i) may be written as a linear
combination of monomials of the form 7,, - - - 75,25 - - - 2%e(i) with ¢ < 7. More-
over, in both situations above, the linear combination can be chosen in such a

way that for each monomial 7, ~-~thxl{1 --~mfide(i) in the linear combination,

the expression sg, - - - s, is reduced.

Remark 2.5. The algebra Rgk in Definition 2.2 is well-defined only for a finite
quiver because of the second relation. However, the algebra R, k is well-defined
even if the quiver is infinite because each « uses a finite set of vertices. Thus,
for an infinite quiver we can define Ry as Ryx = @Ia\: 4 Rax. Hovewer, in
this case the algebra R,y is not unitary.

2D Balanced KLR algebras

From now on the quiver I is assumed to be finite. Fix a decomposition I = ILI;
as in Section 2B and consider the quiver ' = (I, H) as in Section 2B. Recall the
decomposition I = Iy L T; U Ty. In this section we work with the KLR algebra
associated with the quiver T.

We say that a sequence i = (i1,42,--,%q) € T% is unordered if there is
an index r € [1,d] such that the number of elements from I, in the sequence
(iy,42,---,i,) is strictly greater than the number of elements from I;. We say
that it is well-ordered if for each index a such that i, = i' for some i € I, we
have a < d and i, 41 = i?>. We denote by Tjrd and Tzn the subsets of well-ordered
and unordered sequences in I” respectively.

The map ¢ from Section 2B yields a bijection

¢:Qf = {a=> di; € QF; dp =dp, Vie L}, a—a.
iel

Fix a € QF. Sete=3" e(i) € Rz x(T).

icToy

Definition 2.6. For a € Q}r, the balanced KLR algebra is the algebra
Szx(T) = eRzx(T)e/ > eRai(T)e(i) Rax(T)e.

ielo,

We may write Sz i (T) = Sz k.

Remark 2.7. Assume that i = (i1, --,iq) € Tzd. Let a be an index such that
io € I1. We have the relation 72¢(i) = (2411 — z4)e(i) in Rgx. Moreover, we
have 72e(i) = 7,e(s4(i))7ae(i) and s4(i) is unordered. Thus we have zqe(i) =

$a+1€(i) in Sa,k-



2E The polynomial representation of Sz x

dio; € QF. Let i = (iy,---,iq) € Topg. Denote by J(i)
the ideal of the polynomial ring k4[x]e(i) C k((il) generated by the set

We assume o = ),

{(xy —xpp1)e(); i € 11}

Lemma 2.8. Assume that i € T(O;rd and j € an. Then each element of
e(i)Rae(j) maps kalzle(j) to J(i).

Proof. We will prove by induction on k that for all i € T,4 and j € T,,, and all
p1,-- -, Pk such that the permutation w = s,, - - - sp, € &4 satisfies w(j) =i, the
monomial 7,, - - -7, maps kq[z]e(j) to J(i).

Assume k = 1. Write p = p;. Let us write i = (41,---,44) and j =
(J1,- -+, Ja). Then we have i = s,(j). By assumptions on i and j we know that
there exists i € I; such that i, = j,+1 = i' and ip1 = j, =%, In this case the
statement is obvious because 7, maps fe(j) € kq[z]e(j) to (xp+1 — xp)sp(f)e(i)
by (3).

Now consider a monomial 7,, - - - 7, such that the permutation w = s, - - - sp,
satisfies w(j) = i and assume that the statement is true for all such monomials
of smaller length. By assumptions on i and j there is an index r € [1,d] such
that 4, = it for some i € I; and w™(r + 1) < w™(r). Thus w has a reduced
expression of the form w = s,s,, ---s,,. This implies that 7,, --- 7, e(j) is
equal to a monomial of the form 7,7, - - - 74, €(j) modulo monomials of the form
Tgr -+ Tt - xlte(j) with ¢ < k, see Remark 2.4. As the sequence s,.(i) is un-
ordered, the case k = 1 and the induction hypothesis imply the statement. [
Lemma 2.9. Assume that i,j € Torq. Then each element of e(i) Ry xe(j) maps
J(j) into J(i).

Proof. Take y € e(i)Rgxe(j). We must prove that for each r € [1,d] such that
jr = i! for some i € I and each f € ky[z] we have y((z, — z,41) fe(§)) € J(i).
We have (z, — z,41)fe(j) = —72(fe(i)) (see Remark 2.7). This implies

y((zr — 2r11) fe(j)) = —yTTQ(fe(j)) = —y1re(s:(§))(1(fe(d)))-

Thus Lemma 2.8 implies the statement because the sequence s, (j) is unordered.
O

The representation of Rg k on
I .
kY = P Kjalzle(d)
iel™
yields a representation of eRz ke on

KD = @D Kalale().

ielo,



Set Jz.ord = @.efa J(i). From Lemmas 2.8 and 2.9 we deduce the follow-
1&lora
ing.
Lemma 2.10. The representation of Rgx on kg) factors through a represen-

tation of Sgx on k(al lrd /Ja.ora- This representation is faithful.

Proof. The faithfulness is proved in the proof of Theorem 2.12. O

2F The comparison of the polynomial representations

Fix @ € QF. Set d = |a| and d = |a|. For each sequence i = (i, --,i4) € I*
and r € [1,d] we denote by r’ or r{ the positive integer such that 7" — 1 is the
length of the sequence ¢(iy,---,ir_1) € 1 .

For r € [1,d] (resp. r € [1,d — 1]) consider the element z} € Sk (resp.
T¥ € Sz x) such that for each i € I* we have

zre(op(i)) = zpe(o(i)),

7',»/6((]5(1)), if i?"a 7:7'-&-1 S IOa

TT/TT/_,_le(d)(i)) if i, € Il,ir_g_l € Iy,
T:e(d)(i)) = TrurlTT/e((;S(i)) if i, € IQ,Z.T+1 e,

T’r"+1Tr’+27—r’7—r’+1€(¢(i)) if iru Z.'r‘+1 € —[17 7;7" # i’l"+17

_T’I"-‘rlTr’+2TT’TT’+1e(¢(i)) lf i’r‘ = iT+l S 11.

For each i € I we have the algebra isomorphism
kq[zle(i) ~ kglzle(¢(i))/J(¢(1), wre(i) = zme(d(i)).
We will always identify kg) with kg lrd /Jz ora via this isomorphism.

Lemma 2.11. The action of the elements e(i), xzre(i) and Tre(i) of Rox on
k) is the same as the action of the elements e(¢(1)), zye(d(i)) and 77e(¢(i))
of Sax on k(aj,gjrd/*]&ord-

Proof. The proof is based on the observation that by construction for each i € I
and j € Iy we have

P jo(u,v) Py jo(u,v) = P j(u,v), (4)

Pjo i1 (u,v)Pjo i2(u,v) = Pj,(u,v).

For each i € I%, we write ¢(i) = (i1,45,---,i5). The only difficult part
concerns the operator 7,.e(i) when at least one of the elements 4, or 4,41 is in
I;. Assume that i, € I and 4,41 € Iy. In this case we have

ity = (ip) €T1, ilvyy = (ir)®> € Tay iy = (ir41)° € Tp.

10



In particular, the element i), , is different from ¢/, and 4], ;. Then, by (3),
for each f € kg[z] the element 7¥e(¢(i)) = 77 41e(P(i)) maps fe(d(i)) €

kglrd/t]a,ord to

o
Pi;,,i;/+2 (xr’+17 .%‘T/)S»,J (Pilr’+1’ilr’+2 (xr'+23 x'r"Jrl)ST"Fl(f)) 6(8w8w+1(¢(i)))
Pi:., 7i;v/+2 (x’l"-‘r17 Lyt )Pi;.,+1,i;.,+2 (xT'-‘rQa .TT')ST/ST/+1 (f)e(¢(8r(i)))

= PiT,iwrl (xT’+17 xr’)sT’ST’-H(f)e(¢(87'(i)))7

where the last equality holds by (4). Thus we see that the action of 7Fe(¢(i))
on the polynomial representation is the same as the action of 7.e(i). The case
when 4, € Iy and 4,41 € I} can be done similarly.

Assume now that i, # 4,41 are both in I;. By the assumption on the quiver
I (see Section 2B), there are no arrows in I' between i, and 4,11. Thus there
are no arrows in I' between any of the vertices (i,)! =i/, or (i,)? = il,, and
any of the vertices (i,11)" = il 5 or (ir41)® = il 5. Then, by (3), for each
[ € kg[z] the element 7,*e(i) = 7417 o7 T 1€(¢(1)) maps fe(o(i)) to

Sp/418p/4+28r' Sp/ 41 (f)e((b(sr(l)))

Thus we see that the action of 7,°e(¢(i)) on the polynomial representation is the
same as that of 7.e(i).
Finally, assume that 4, = 7,41 € I;. In this case we have

(ir)l = i;" = (ir+1)1 = i/r'+27 (ir)Q = ilr’+1 = (ir+1)2 = i;"+3'

Then, by (3), for each f € kg[z] the element 7 e(¢(i)) = =717 2T T 1€(0(1))
maps fe(o(i)) to

Spr410p420p (Trr 41 — Tpry2) 841 (f)e(@(s,(1))),

where 0, is the Demazure operator (see the definition before Proposition 2.3).
To prove that this gives the same result as for 7,.e(i), it is enough to check this
on monomials z7'z]" je(i). Assume for simplicity that n > m. The situation
n < m can be treated similarly. The element 7.e(i) maps this monomial to

n—1
O, (xy g )e(i) = — Y afaf (i)
a=m

y
Here the symbol Y means 0 when y = x — 1. The element 7,e(¢(i)) maps

a=x
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Ty 1200 2e(B(1)) t0 S 10r 420 [x:ffiixf,ﬁ —xﬂ?ﬂxf,fz]e(qb(i)), which equals

a=0

M n—1 m—1
= [ (Sabaart) v (2 x%)} e(6(3)
a=

[

M n—1 m—
_b —1— .
= |—al, (Zo z?, 1T +12 > + ol ( Zo xff,+1:z:fﬁ+21 “)} e(p(i))
a=

- ( = xg,Hz;'}ig—l—a) e(o(i)).
a=m

Here the first equality follows from the following property of the Demazure
operator

n—1
O (z74q) = —0r(27)) = Zxﬁxf;llfﬂ
a=0

the fourth equality follows from Remark 2.7. Other equalities are obtained by
elementary manipulations with sums. U

2G Isomorphism ¢

Theorem 2.12. For each o € Q}", there is an algebra isomorphism @, x: Rox —
Sax such that

e(i) = e(o(i)),
wre(i) = zre(o(i)),
“e(o(1)).

Proof. By Proposition 2.3, the representation kg) of Rk is faithful. Now, in
view of Lemma 2.11, it is enough to prove the following two facts:

Tre(i) — 7

o the elements e(¢(i)), x5, 7 generate Sz k,

e the representation kg Z)rd /Ja,0ra Of Sz is faithful.

Fixi,je€ I% Seti = (i, --,15) = ¢(i),J' = ¢(j). Let B and B’ be the bases
of e(j)Ra xe(i) and e(j')Rzxe(i’), respectively, as in Remark 2.4. These bases
depend on some choices of reduced expressions. We will make some special
choices later. For each element b = 7,27"---z3%e(i) € B we construct an
element b* € e(j')Szke(i’) that acts by the same operator on the polynomial
representation. We set

b =15 o7y (@) (2) e(i) € (i) Saxe(l),

where w = s, -+ - Sp, is a reduced expression (as we said above, some special
choice of reduced expressions will be fixed later).

12

b
+3

m n—1 n
- b —b .
Sril | T <ZO$?'337}+11) (2:()$T/+2xn/+13 ) ( Z T '+1 ) <bz:0 xlr’,+2xf/+3>} e(o(i))
a= =

[ m
_ n—1—b m—1—a b n—
- - Z T ’xr +2) (Z xr’+1xr +3 ) + ( Z: T ’xr +2 ) <bz:0 Ly 4 1L

e(o(i))



Let us call the permutation w € &y j balanced if we have w(a+1) = w(a)+1
for each a such that i, = i' for some i € I (and thus i/, = i?). Otherwise we
say that w is unbalanced. There exists a unique map u: &; ; — &y 5 such that
for each w € G;; the permutation u(w) is balanced and w(r) < w(t) if and only
if u(w)(r') < u(w)(t') for each r,t € [1,d], where v’ = r{ and t' = ¢{ are as in
Section 2F. The image of u is exactly the set of all balanced permutations in
Gi/,jr.

Assume that w € Gy j is unbalanced. We claim that there exists an index
a such that i/, € I; and w(a) > w(a + 1). Indeed, let J be the set of indices
a € [1,d] such that @, € I;. Asj is well-ordered, we have Y, (w(a+ 1) —
w(a)) = #J. As w is unbalanced, not all summands in this sum are equal to
1. Then one of the summands must be negative. Let a € J be an index such
that w(a) > w(a+1). We can assume that the reduced expression of w is of the
form w = sp,, - - - 8p, Sq. In this case the element 7,e(i’) is zero in Sk because
the sequence s, (i) is unordered.

Assume that w € Gy j is balanced. Thus, there exists some w € &;; such
that u(w) = w. We choose an arbitrary reduced expression w = sy, - - - §p, and
we choose the reduced expression w = sq, - - - 54, of w obtained from the reduced
expression of @ in the following way. For t € {1,---,k} set i' = sp,,, -+ sp, (i)
(in particular, we have i* = i). We write i’ = (i}, --,i}). We construct the
reduced expression of w as w = 8, - - - §p,, where for a = p; we have

Sa’ if iz,iZJrl € Iy,

” Sa’+1Sa’ if ZZ S IQ,’L'Z+1 e,
Sa’Sa’+1 if Z(tl S 1171.2-&-1 € Iy,
Sq'415a’Sa’+28a/+1  if ita? ’L'Z_,,_l € Iy,

where o' = af, is as in Section 2F. Let us explain why the obtained expression of

w is reduced. The fact that the expression w = sy, - - - sp, is reduced means the

following. When we apply the transpositions s, , sp,_,, - - *,5p, consecutively to

the d-tuple (1,2,---,d), if two elements of the set {1,2,---,d} are exchanged
once by some s, then these two elements are never exchanged again by another

s later. It is clear that the expression w = sq, - -+ 84, = 8y, - - - 5p, inherits the

same property from w = s, - - - sp, because for each a,b € {1,2,---,d}, a # b

we have the following (we set o’ = af, b’ = b}).

o Ifi,, iy, € Iy, then if the reduced expression of w exchanges a and b exactly
once or never exchanges them then the expression of w exchanges a’ and
b’ exactly once or never exchanges them, respectively.

o If i, € Iy and i, € Iy, then if the reduced expression of w exchanges
a and b exactly once or never exchanges them then the expression of w
exchanges a’ and b’ exactly once or never exchanges them, respectively,
and it also exchanges a’ with b’ + 1 exactly once or, respectively, never
exchanges them.

o If i, € I, and i, € Iy, then if the reduced expression of w exchanges
a and b exactly once or never exchanges them then the expression of w

13



exchanges o’ and b’ exactly once or never exchanges them, respectively,
and it also exchanges a’ + 1 with b’ exactly once or, respectively, never
exchanges them.

o Ifi,, i, € I, then if the reduced expression of w exchanges a and b exactly
once or never exchanges them then the expression of w exchanges a’ and
b’ exactly once or never exchanges them, respectively, and the same thing
for ' and b’ + 1, for a’ + 1 and V', and for @’ +1 and &’ + 1.

If the reduced expressions are chosen as above, then the element 7,e(i’) =
Tgy -+ Tgn€(i) € Sax is equal to (7, - - - Tp, e(i))*.

The discussion above shows that the image of an element ¥’ € B’ in e(j') Sz ke(i’)
is either zero or of the form +b* for some b € B. Moreover, each b* for b € B
can be obtained in such a way. Now we get the following.

o The elements e(¢(i)), z} and 7;° generate Sz i because the image of each
element of B in e(j') Sz ke(i’) is either zero or a monomial in e(4(i)), =,
.

e The representation k(al lrd /Jz.ora of Sz is faithful because the spanning
set {b*; b€ B} of e(j') Sz ke(i’) acts on the polynomial representation by
linearly independent operators (because the polynomial representation of

R, x in Proposition 2.3 is faithful).
O

Remark 2.13. (a)Note that Theorem 2.12 also remains true for an infinite quiver
I' because « is supported on a finite number of vertices (see also Remark 2.5).

(b)The formulas that define the isomorphism ®, x become more natural if
we look at them from the point of view of Khovanov-Lauda diagrams (see [3]).
Diagrammatically, the isomorphism ®, x looks in the following way. It sends
a diagram representing an element of R, x to the diagram (sometimes with a
sign) obtained by replacing each strand with label k& € I; by two parallel strands
with labels k' and k? (if there is a dot on the strand with label &, it should be
moved to the strand with label k!). For example, if i,j € Iy and k € I, we
have

i ko J i k'k?J

14



3 Categorical representations

3A The standard representation of 5~[e

Consider the affine Lie algebra (over C) sl, = s, ®Clt,t 1@ C1. Let e, fi, hs,
1=0,1,...,e—1, be the standard generators of sl, (see Remark 2.1). Let V; be
a C-vector space with canonical basis {v1,---,v.} and set U, = V, ® Clz, 27 }].
The vector space U, has a basis {u,; 7 € Z} where u, o = v,z fora € [1,¢],
b € Z. 1t has a structure of an g[e—module such that

fz(ur) = §izrur+1 and ei(ur) = Oj=r—1Ur_1-

Let {v},---,v.,,} and {u,;r € Z} denote the bases of V.4 and Ue;.
Fix an integer 0 < k < e. Consider the following inclusion of vector spaces

vl if r <k,
Ve C Vet or { vy ifr >k
It yields an inclusion sl. C sl.4; such that
e, ifrellk—1],
er =1 e eps1] fr=k,
ery1 ifrefk+1,e—1],
fr ifrellk—1],
fr'_) [fk+1afk] if’l":k/’,
frp1 ifrefk+1e—1],
h, ifrell,k—1],
h, — hy + hger  ifr =k,
hr+1 ifTG[k‘"‘L@—l].

This inclusion lifts uniquely to an inclusion ;[e C 5~[6+1 such that

€0 if £ # 0,
o { [eo,e1]  else,

fo if k 7é 07
fO ~ { [fth] else7

ho ifk#0,
ho = { ho + hy  else.

Consider the inclusion U, C U.41 such that u, — u’T(

in (8).

where T is defined

r)’

Lemma 3.1. The embeddings V. C V.41 and U, C Ugq1 are compatible with
the actions of sl, C sl.y1 and sl C sl.1q respectively. O
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3B Type A quivers

Let Too = (Ino, Hoo) be the quiver with the set of vertices I, = Z and the set
of arrows Ho, = {i — i+ 1; i € Io}. Assume that e > 1 is an integer. Let T'. =
(I, He) be the quiver with the set of vertices I, = Z/eZ and the set of arrows
H.={i—i+1; i € I}. Then g, is the Lie algebra sl, = sl, @ C[t,t~] & C1
(see Remark 2.1).

Assume that I' = (I, H) is a quiver whose connected components are of the
form I'., with e € N, e > 1 or e = co. For ¢ € I denote by i + 1 and ¢« — 1 the
(unique) vertices in I such that there are arrows i =i+ 1 and i — 1 — 4.

Let X1 be the free abelian group with basis {g;; ¢ € I'}. Set also

X =PNe,. (5)
icl
Let us also consider the following additive map
LZQ]*)X], Q; = &€ — &4 1-

We may omit the symbol ¢ and write « instead of ¢(a). Let ¢ denote also the
unique additive embedding

¢: X] — Xj, Ei > €4y (6)
where

g [ iticl,
1t ifiel.

3C Categorical representations

Let I = (I, H) be a quiver as in Section 3B. Let k be a field. Assume that C is
a Hom-finite k-linear abelian category.

Definition 3.2. A gj-categorical representation (E, F,z,7) in C is the following
data:

(1) a decomposition C =€ ¢ x, Cus
(

2)
(3) morphisms of functors x: F — F and 7: F? — F?2,
4)

(

satisfying the following conditions.

(a) We have E;(C,) C Cyya,, Fi(Ch) C Cpuza,.

a pair of biadjoint exact endofunctors (E, F') of C,

decompositions £ = @, ; E; and F = @, Fi,

iel

(b) For each d € N there is an algebra homomorphism 14: Rq1 — End(F4)°P
such that ¢g(e(i)) is the projector to F;, - - - F;,, where i = (i1, - ,iq) and

Ya(z,) = F7aF™h g(ry) = PO R
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(c) For each M € C the endomorphism of F(M) induced by z is nilpotent.

Remark 3.3. (a) For a pair of adjoint functors (F, F') we have an isomorphism
End(E?) ~ End(F%)°P. In particular, the algebra homomorphism Rgy —
End(F4)°P in Definition 3.2 yields an algebra homomorphism Ry x — End(E?).

(b)If the quiver I is infinite, the direct sums in (4) should be understood in
the following way. For each object M € C, there is only a finite number of i €
such that E;(M) and F;(M) are nonzero.

3D From sl. ;-categorical representations to sl.-categorical
representations
As in Section 3A, we fix 0 < k£ < e. Only in Section 3D, we assume that
I'=(I,H)and T = (I, H) are fixed as in as in Section B2 (i.e., we have I' = T,
I, = {k} and we idenfity T with .4 1).
Let C be a Hom-finite abelian k-linear category. Let

E=FE®FE, ¢ ---0F,, F=FyoF,®---0F,
be endofunctors defining a ;[eﬂ—categorical representation in C. Let v, Rax —
End(F”)°P be the corresponding algebra homomorphism. We set F; = F; Ly
for any tuple i = (i1,---,i4) € Td and Fg = @iga F; for any element @ € Q}r
If |a| = d let ¢5: Rgx — End(Fz)°P be the a-component of 1,,.
Now, recall the notation X;’ from (5). Assume that we have
C.=0, Vue X \XT. (7)
For pu € X} set C, = Cy(,), where the map ¢ is as in (6). Let C = ®M€XI+ Cy.

Remark 3.4. (a) C is stable by F;, E; for each i # k,k + 1,

(b) C is stable by Fk—klfk; EkEk‘—‘r17

(¢) Fi,Fi, , - Fi,(M)=0foreach M € C whenever the sequence (i1, - ,%q)
is unordered (see Section 2D).

Consider the following endofunctors of C:

Eil, if0<i<k,
Ei={ EyEpn|, ifi=k,
Ei+1|c if k<i<e,
Fil, if 0 <i <k,
Fi=q FrpFi|, ifi=k,
Fi+1‘c ifk<i<e.
Similarly to the notations above we set F; = F;,---F;, for any tuple i =

(i1, 1q) Gld and F, = @;c;o Fi for any element o € Q7. Note that
we have F; = Fya) c for each 1 € 1.
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Let o € QF and @ = ¢(a). Note that we have

Fo= P Fil..
ielgy
The homomorphism 15 yields a homomorphism eRgz ke — End(F,)°P, where
e =) . = e(i). By (c), the homomorphism eRzxe — End(F,)" factors
1€506ra ’

through a homomorphism Szx — End(F,)°?. Let us call it @IE Then we
can define an algebra homomorphism 9,: Ro x — End(Fy,)°P by setting ¢, =

@IE o (ba,k-
Now, Theorem 2.12 implies the following result.

Theorem 3.5. For each category C, defined as above, that satisfies (7), we have

a categorical representation of sl. in the subcategory C of C given by functors F;
and E; and the algebra homomorphisms 1q: Ra x — End(F,,)°P. O

Now, we describe the example that motivated us to prove Theorem 3.5. See
[4] for details.

Example 3.6. Let U,, V. be as in Section 3A. Fix v = (vy,---,1;) € N and put
N=Y'_v. Set U, = \"U, @ --- @ \"UL.

Let O, be the parabolic category O for §[N with parabolic type v at level
—e— N. The categorical representation of sl, in O”, (constructed in [9]) yields
an sl,-module structure on the (complexified) Grothendieck group [0 ] of O .
This module is isomorphic to A¥U,.

Let us apply Theorem 1.1 to C = Oi(e+1)'
subcategory C C C defined as above is equivalent to O”,. The embedding of
categories 0¥, C O¥ ) categorifies the embedding A"U, C A"Uey1 (see also
Lemma 3.1).

It happens that in this case the

(e+1

3E Reduction of the number of idempotents

In this section we show that it is possible to reduce the number of idempotents
in the quotient in Definition 2.6. This is necessary to generalise Theorem 3.5.
Here we assume the quivers I' = (I, H) and I" = (I, H) are as in Section 2B.

We fix a € Q}r and put @ = ¢(«). We say that the sequence i € 7% is almost

ordered if there exists a well-ordered sequence j € T such that there exists an
index r such that j, € I; and i = s, (j). It is clear from the definition that each
almost ordered sequence is unordered because the subsequence (i1, 2, -, 4,) of
i contains more elements from I, than from I;. The following lemma reduces
the number of generators of the kernel of eRg ke — Sz x (see Definition 2.6).

Lemma 3.7. The kernel of the homomorphism eRgxe — Szx is equal to
Zi eRg ke(i) Rg ke, where i runs over the set of all almost ordered sequences in

O
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Proof. Denote by J the ideal Zi eRg ke(i) R ke of eRg ke, where i runs over

the set of all almost ordered sequences in - .

By definition, each element of the kernel of eRz ke — Sk is a linear com-
bination of elements of the form eae(j)be, where a and b are in Rz and the
sequence j is unordered. By Remark 2.4, it is enough to prove that for each
icTl. jeTo, be Ry and indices py, - - -, py the element e(i)mp, - - - Tpe(j)be
is in J. We will prove this statement by induction on k.

Assume that k = 1. Write p = p;. The element e(i)7,e(j)be may be nonzero
only if i = s,(j). This is possible only if the sequence j is almost ordered. Thus
the element e(i)7,e(j)be is in J.

Now, assume that & > 1 and that the statement is true for each value
< k. Set w = sp, ---5p,. We may assume that i = w(j), otherwise the ele-
ment e(i)7,, - - - 7, e(j)be is zero. By assumptions on i and j there is an index
r € [1,d] such that i, € I; and w™(r + 1) < w™(r). Thus w has a re-
duced expression of the form w = s,8;, - - s5,. This implies that 7,, - - - 7, €(j)
is equal to a monomial of the form 7,7, --- 7, e(j) modulo monomials of the
form 7,, - - - 742 - --:rgde(j) with ¢ < k, see Remark 2.4. Thus the element
e(i)r - - - mre(j)be is equal to e(i)7.7, - - - 7, €(j)be modulo the elements of the
same form e(i)7,, - - - 7p, €(j)be with smaller k. The element e(i)7,7,, - - - 7, €(j)be
is in J because the sequence s,.(i) is almost ordered and the additional terms
are in J by the induction assumption. O

3F Generalization of Theorem 3.5

In this section we modify slightly the definition of a categorical representation
given in Definition 3.2. The only difference is that we use the lattice @ instead
of X;. This new definition is not equivalent to Definition 3.2. In this section
we work with an arbitrary quiver I' = (I, H) without 1-loops.

Let k be a field. Let C be a k-linear Hom-finite category.

Definition 3.8. A gr-quasi-categorical representation (E, F,z,7) in C is the fol-
lowing data:

(1) a decomposition C = EBa@QI Co,
(2) a pair of biadjoint exact endofunctors (E, F') of C,
(3

(4) decompositions E = P,.; E;, F = @, Fi,

)
)
) morphisms of functors z: F' — F, 7: F? — F2
)
satisfying the following conditions.

(a) We have E;(Cs) C Co—a,;s Fi(Co) C Cota;-

(b) For each d € N there is an algebra homomorphism 14: R4y — End(F?)°P
such that 1g(e(i)) is the projector to F;, - - - F;,, where i = (i1, -+ ,4q) and

Ya(,) = F7aF™h g(ry) = PO R
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(c) For each M € C the endomorphism of F(M) induced by z is nilpotent.

If the quiver T is infinite, condition (4) should be understood in the same way
as in Remark 3.3 (b).

Now, fix a decomposition I = Iy[[I; as in Section 2B. We consider the
quiver I' = (I, H) and the map ¢ as in Section 2B. To distinguish the elements
of Qr and Q7, we write Q7 = @, 7 Za;. For each a € Q1 we set @ = ¢(a) € Q7.
(See Section 2B for the notation.) However we can sometimes use the symbol
@ for an arbitrary element of ()7 that is not associated with some « in Q.
Let C be a Hom-finite abelian k-linear category. Let E = @,.; E; and F =
Dt F; be endofunctors defining a g7-quasi-categorical representation in C. Let
g Rax(T) — End(Fd)‘)p be the corresponding algebra homomorphism. We set
F;=F,;,---F; for any tuple i = (i1, ,i4) € 7% and Fz= EBieTEFi for any
element @ € Q}' . If [ = d, let ¥z Rz x — End(F5z)°P be the a-component of
Y

Assume that C is an abelian subcategory of C satisfying the following con-
ditions:

(a) C is stable by F; and E; for each i € I,

(b) C is stable by F;2F;1 and E;1 E;» for each i € I,
(c) we have F;2(C) =0 for each i € I,

(d) we have C =P, CN Cq.

By (d), we get a decomposition C = @aeQz Cq, where C, = CNCq. For each
1 € I we consider the following endofunctors F; and F; of C:

FZ': EZ|L ifiEIo,
FiQFi1|C ifiEIl,
B — E2|L if’iefo,
’ EpEpl|, ifiel.
As in the notations above we set F; = F;, - - - I}, for any tuple i = (iq, - ~~7,z'd) €

I¢and F, = @iela F; for any element o € Q}r Note that we have Fj = Fy
for each i € I“.
Let a € Q}". We have

i)|c

F, = @ Fi,-
ielo.,
The homomorphism 15 yields a homomorphism eRgz ke — End(F,)°P, where
e= ZieTzd e(i).
Since the category C satisfies (a), (b) an

( (¢), for each almost ordered se-
quence i = (i1,--+,iq) € I* we have F

d
iy Fi(C) = 0. By Lemma 3.7, this
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implies that the homomorphism eRz ke — End(F,)°P factors through a homo-
morphism Sz x — End(F,)°P. Let us call it @IE Then we can define an algebra
homomorphism 9q: Rq x — End(F,)° by setting ¢, = @la o ®y k.

Now, Theorem 2.12 implies the following result.

Theorem 3.9. For each abelian subcategory C C C as above, that satisfies
(a) = (d), we have a gr-quasi-categorical representation in C given by functors
F; and E; and the algebra homomorphisms 1q: Rq x — End(Fy,)°P. O

Remark 3.10. Assume that the category C is such that we have Cq4 = 0 whenever
a =) . .7dia; € Qf is such that dj1 < d;» for some i € I;. In this case the
subcategory C C C defined by C = D.co, Cx satisfies conditions (a) — (d).

Appendix

A The geometric construction of the isomorphism
o

The goal of this section is to give a geometric construction of the isomorphism
® in Theorem 2.12.

A1l The geometric construction of the KLR algebra

Let k be a field. Let I' = (I, H) be a quiver without 1-loops. See Section 2A for
the notations related to quivers. For an arrow h € H we will write A’ and h”
for its source and target respectively. Fix a =), ; d;ja; € Q7 and set d = |a].
Set also

Eo = @ Hom(Vi, Vi), Vi=C%  v=PV.
heH el

The group G, = [[,c; GL(V;) acts on E, by base changes.
Set

d
I% = {i = (i1, --,iq) € I% Zo‘h = a}.
r=1
We denote by Fj the variety of all flags
p=(V=V'oVo...oVvi={0})

in V' that are homogeneous with respect to the decomposition V' = @,.; V;
and such that the I-graded vector space V"~!/V" has graded dimension i, for
r € [1,d]. We denote by Fj the variety of pairs (z,¢) € E, x F} such that
x preserves ¢, i.e., we have (V") C V" for r € {0,1,---,m}. Let m be the
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natural projection from ﬁi to E,, le., 7y : 15, — Fy, (z,¢) — . For i,j € I*
we denote by Z;; the variety of triples (x, ¢1,¢2) € Eo X Fi x Fj such that z
preserves ¢1 and ¢o (i.e., we have Z; ; = F; x g, Fj). Set

Zo=|] %5, Fu=]] R

ijel> icl>

We have an algebra structure on H&*(Z,,k) such that the multiplication is
the convolution product with respect to the inclusion Z, C ﬁa X ﬁa. Here
HS>(e,k) denotes the G,-equivariant Borel-Moore homology with coefficients
in k. See [2, Sec. 2.7] for the definition of the convolution product.

The following result is proved by Rouquier [8] and by Varagnolo-Vasserot
[10] in the situation char k = 0. See [5] for the proof over an arbitrary field.

Proposition A.1. There is an algebra isomorphism Ry x(T') ~ HS*(Z,, k).
Moreover, for each i,j € I%, the vector subspace e(i)Rax(I)e(j) C Rax(T)
corresponds to the vector subspace HG(Z; 5,k) C HE*(Zy, k).

O

A2 The geometric construction of the isomorphism &

As in Section 2B, fix a decomposition I = Iy[[I; and consider the quiver
T'=(I,H); also fix o € Q] and consider @ = ¢(a) € Q;

We start from the variety Zz defined with respect to the quiver I'. By
Proposition A.1, we have an algebra isomorphism Rz x(T') ~ HE~(Z5,k). We
have an obvious projection p: Zz — Eg defined by (z, ¢1,¢2) — x. For each
i € I; denote by h; the unique arrow in I' that goes from i' to i?>. Consider
the following open subset of Ex: E2 = {x € Eg; x, is invertible Vi € I1}. Set
7% = p=1(EY). The pullback with respect to the inclusion Z2 C Zz yields an
algebra homomorphism HE(Zz, k) — HE=(Z2 k) (see [2, Lem. 2.7.46]).

Remark A.2. If the sequence i € 7% s unordered, then a flag from Fj is never
preserved by an element from E2. This implies that Z;31 22 = 0 if i or j is

unordered. Thus for each i € T,,, the idempotent e(i) is in the kernel of the

homomorphism HE™(Zz, k) — HE(Z2, k).
Let e be the idempotent as in Definition 2.6. Consider the following subset

OfZEI
Z= [ %

o

1j€lgq

The algebra isomorphism Rg x(T') ~ HE(Zg,k) above restricts to an algebra
isomorphism eRz(I")e ~ HE=(ZL, k).

Now, set Z!9 = Z! N ZY. Similarly to the construction above, we have
an algebra homomorphism HS=(ZL, k) — HS=(Z2,k). By Remark A.2, the

kernel of this homomorphism contains the kernel of eRgz k(I')e — Ry k(I") (see
Theorem 2.12). The following result implies that these kernels are the same.
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Lemma A.3. We have the following algebra isomorphism Re x(T') ~ HE=(Z2 k).

Proof. For each ¢ € Iy we identify V; ~ Vjo. For each i € I; we identify
Vi ~ V;1 ~ V2. We have a diagonal inclusion G, C Gg, i.e., the component
GL(V;) of G, with i € Iy goes to GL(V;o) and the component GL(V;) with
i € I goes diagonally to GL(V;1) x GL(V;z).

Set GBI =[], 1, GL(Viz) C Ggz. We have an obvious group isomorphism
(;a/(%fSCiC;Q.

Let us denote by X the choice of isomorphisms V;i1 ~ V;2 mentioned above.
Let Eg be the subset of E5 that contains only x € Fz such that for each ¢ € I;
the component zp, is the isomorphism chosen in X.

The group G2 acts freely on ES such that each orbit intersects EX once.
This implies that we have an isomorphism of algebraic varieties ES /GRS ~ EX.
Now, set Z2X = p~1(EX). The same argument as above yields ZZ2 /Gl ~ Z/X
We get the following chain of algebra isomorphsims

HE= (22 k) ~ HE/ O (220 /Gb k) ~ HO= (72X k).

To complete the proof we have to show that the G,-variety Z’EX is isomorphic
to Z,. Each element of I2 , is of the form ¢(i) for a unique i € I, where ¢ is

as in Section 2B. Let us abbreviate i’ = ¢(i). By definition we have

Z= 11 Zvs

ijel«

Set Zi),fj, = Zy y NZE. We have an obvious isomorphism of G,,-varieties Zi),fj, ~
Zi ;. (Beware, the variety Z;; is defined with respect to the quiver I' and the
variety Zy j is defined with respect to the quiver I'.) Taking the union for all

i,j € I yields an isomorphism of G,-varieties Z2X ~ Z,,. O

Corollary A.4. We have the following commutative diagram.

eRa,k(F)e E— Rmk(F)

| I

HEW(Z%a k) E— H*GE(Z%(% k)

Here the left vertical map is the isomorphism from Proposition A.1, the right
vertical map is the isomorphism from Lemma A.3, the top horizontal map is
obtained from Theorem 2.12 and the bottom horizontal map is the pullback with
respect to the inclusion ZX2 C ZL.

Proof. The result follows directly from Lemma A.3. The commutativity of the
diagram is easy to see on the generators of Ra,k(f).

Indeed, the isomorphism R,y =~ HS(Z,, k) is defined in the following way
(see [5, Sec. 2.9, Thm. 2.4] for more details). The element e(i) corresponds
to the fundamental class [Z;;]. The element z,e(i) corresponds to the first
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Chern class of some line bundle on Z;j ;. The element #,.e(i) corresponds to the
fundamental class of some correspondence in Z; ;) ;. The commutativity of the
diagram in the statement follows from standard properties of Chern classes and
fundamental classes. O

B A local ring version in type A

In this appendix we give some versions of the main results of the paper (Theo-
rems 2.12 and 3.5) over a local ring. These ring versions are interesting because
the study of the category O for gA[N in [4] uses a deformation argument. For
this we need a version of Theorem 1.2 over a local ring.

It is known that the affine Hecke algebra over a field is related with the KLR
algebra (see Propositions B.5, B.6). This allows to reformulate the definition of
a categorical representation (see Definition 3.2) that is given in term of KLR
algebras in an equivalent way in terms of Hecke algebras (see Definition B.14).
The main difficulty is that there is no known relation between Hecke and KLR
algebras over a ring. Over a local ring, we can give a definition of a categorical
representation using the Hecke algebra (see Definition B.17). But we have no
equivalent definition in terms of KLR algebras. That is why, Proposition B.12,
that is a ring analogue of Theorem 2.12, is formulated in terms of Hecke algebras
and not in terms of KLR algebras.

Bl Intertwining operators

The center of the algebra R, x is the ring of symmetric polynomials kq[z]®4, see
[8, Prop. 3.9]. Thus S5y is a kg[x]®?-algebra under the isomorphism O,k in
Section 2G. Let ¥ be the polynomial [T, (za — 25)? € kq[2]®?. Let Ry x[S71]
and Sa’k[Z_l} be the rings of quotients of R, k and Sk obtained by inverting
Y. We can extend the isomorphism @,k from Theorem 2.12 to an algebra
isomorphism

(I)a,ki Rmk[E’l} — Sayk[E’l}.

Assume that the connected components of the quiver I' are of the form I',
fora € N, a > 1 or a = co. (The quiver T, is defined in Section 3B.)
Note that there is an action of the symmetric group &4 on kfiI) permuting the

variables and the components of i. Consider the following element in R, k[Y71]:

((xp — pgp1)m + De(d)  if dpyq =4y,
Uee(i) =< —(z, — 2ry1) trre(i) if ipyq =4, — 1,
7re(i) else.

The element U,e(i) is called intertwining operator. Using the formulas (3)
we can check that W,.e(i) still acts on the polynomial representation and the
corresponding operator is equal to s.e(i). Note also that \flr = (xp — Tp31) ¥,
is an element of R, k.
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Lemma B.1. The images of intertwining operators by @4 x: Rox — Sak can
be described in the following way. For i€ I such that i, — 1 # i1 we have

\IJT’e(¢(i))7 ifir7ir+1 € Iy,
S\ \I/r’\llr’+le(¢(i)) Zf ir € Ily Z-'r+1 € I(),
Qi (Vre(i)) = U, U,e(p(i)) if iy € Ip,ipss € I,

\IIT/+1\II7-/+2\IJ7-/\Ijr/_i'_le(d)(i)) Zf Tpylpy1 € 1.

Forie I such that i, — 1 = 1,41 we have

- ?w@((ﬁ(i)), Zf Ipy bpg1 € I,
Pox(Vre(i)) = § U Wire(d(i)) ifir € In,irt1 € lo,
(¢

\117"+1\I/7"€ (i)) Zf i € IOa Z.7'-"-1 € 1.
Here v’ =r{ is as in Section 2F.

Proof. By construction of @, k, the elements @, x (V,e(i)) and @a,k(\flre(i)) are
the unique elements of Sz k that act on the polynomial representation by the
same operator as W,e(i) and U,e(i), respectively.

The right hand side in the formulas for @, x(¥,e(i)) (or resp. @avk(\ire(i)))
in the statement is an element X in Sz x[S71]. To complete the proof we have
to show that

(1) X acts by the same operator as W,e(i) or W,e(i), respectively, on the
polynomial representation,

(2) X isin Szk.

Part (1) is obvious. Part (2) follows from part (1) and from the faithfulness
of the polynomial representation of Sz x[X~!] (see Lemma 2.10). (In fact, part
(2) is not obvious only in the case i, = i,41 € I7.)

O

B2 Special quivers
From now on we will be interested only in some special types of quivers.

First, consider the quiver I' = I'., where e is an integer > 1. In particular,
from now on we fix I = Z/eZ. Fix k € [0,e — 1] and set I; = {k} and I =
I\{k}. In this case the quiver T is isomorphic to I'c;;. More precisely, the
decomposition I = I U I; U Io is such that Iy = {k} and I, = {k+ 1}. To
avoid confusion, for i € I we will write @; and g; for a; and &; respectively.

Remark B.2. If T is as above, a sequence i = (i1, -,4q) € Td is well-ordered if
for each index a such that i, = k we have a < d and i,+1 = k+ 1. The sequence
i is unordered if there is r < d such that the subsequence (i1, --,4,) contains
more elements equal to k + 1 than elements equal to k.
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Let T:Z — 7Z be the map given for a € Z,b € [0,e — 1] by

[ ale+1)+b if b € [0, k],
T(a€+b){a(e+1)+b+1 ifbek+1e-1] ®

Now, consider the quiver I = (I'w)Y (ice., T is a disjoint union of I copies
of T's). Set I' = (I, H) and write &; and Z; and for a; and e; respectively for
each i € I. We identify an element of I with an element (a,b) € Z x [, [] in
the obvious way. Consider the decomposition I= IO U I; such that (a,b) € I if

and only if a = k mod e. In this case the quiver T is isomorphic to I. We will
often write I instead of T (but sometimes, if confusion is possible, we will use

the notation I to stress that we work with the doubled quiver). More precisely,
in this case we have

To distinguish notations, we will always write 5 for any of the maps ¢7: I~ = foo,
Q7 — Q7, X7 — X5 in Section 2B.

From now on we write ' =T',, I = I',;; and [ = (T'so)"". Recall that
I=1I,=7%/eZ, T=I41=Z/(e+1)Z, I=(Ix)"=27x]1,I].
Consider the quiver homomorphism 7,: I — T such that
Te: I — I, (a,b) — a mod e.
Then 7.1 is a quiver homomorphism 7. 1: r—T. They yield Z-linear maps
Te: Q7 = Qr, T X7 — X1, Ter1:Q7 — QF,  Teq1: X7 — X7

The following diagrams are commutative for « € QF and a € Q;f such that

(@) = «,
Qf L) QT Xf L Xf f& —)¢ ﬁ(&)
ﬂ'el 7Te+1l WEJ« 7Te+1l wﬁl ‘fre+1l
Q —2 Q- X, —2 5 X7 o ¢ 7@

The quiver [ is infinite. We will sometimes use its truncated version. Fix
a positive integer N. Denote by I'SY the full subquiver (i.e., a quiver with a
smaller set of vertices and the same arrows between these vertices) of T' that

=<N
contains only vertices (a, b) such that |a| < eN. Let ' be the doubled quiver
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~ —<N —
associated with I'SY. We can see the quiver I' as a full subquiver of I that

contains only vertices (a, b) such that we have

—(e+1)N<a<(e+1)N if k#0,
—(e+1)N<a<(e+1)N+1 else.

(Attention, it is not true that the isomorphism of quivers [ ~ T takes ISV to
=<N

)

B3 Hecke algebras

Let R be a commutative ring with 1. Fix an element ¢ € R.

Definition B.3. The affine Hecke algebra Hp q(q) is the R-algebra generated
by T3,---,T4—1 and the invertible elements Xi,---, X; modulo the following
defining relations

X, X, = XX, T,X, = X, T, if |r —s| > 1,
T,T, = T,T, if |r — s| > 1, T, T Ty = Ty r ToTys1,
TrXr+1 =X, T, + (q - 1)Xr+17 T.X, = XT+1TT - (q - I)Xr+1a
(Tr —)(T; +1) = 0.

Assume that R = k is a field and ¢ # 0,1. The algebra Hgk(¢) has a
faithful representation (see [6, Prop. 3.11]) in the vector space k[X{', -+ X 3]
such that X! acts by multiplication by X! and T). by

T(P) = qs7(P) + (¢ — ) Xpq1 (X — XT+1)_1(ST(P) —P).

The following operator acts on k[Xlﬂ, e ,Xétl] as the reflection s,
Xr - XrJrl Xr - X'r+1
V,=——"—""T —-¢)+1=T+1) 0757 —
qu - Xr+1 ( q) ( )Xr - qu+1

For a future use, consider the element \T/r € Hyx given by

U, = (X, — Xy )V, = (Xp — X, )T + (g — 1) Xy

B4 The isomorphism between Hecke and KLR algebras

First, we define some localized versions of Hecke algebras and KLR algebras.
Let .% be a finite subset of k*. We view ¥ as the vertex set of a quiver with
an arrow ¢ — j if and only if j = ¢i. Consider the algebra

Ar= @@ KX XN = X)L (X — X) 7Y e # He(d),
iegzd
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where e(i) are orthogonal idempotents and X, commutes with e(i). Let H}fﬁ(q)

be the A;-module given by the extension of scalars from the k[ X! ... ,Xc:ltl]—
module Hgx(q). It has a k-algebra structure such that

Tre(d) = e(s, ()T = (1= ) X1 (X = Xr) " (e(d) — els, (1))

and
Z7\T, =T.Z7",  where Z = H(XT - X;)? H(qXT - X;)2

r<t r#t

In this section the KLR algebras are always defined with respect to the
quiver .#. We consider the algebra

A2 = @ k[x17"'azd][si_1]e(i)7

ieFd

where
Sy ={(@y + 1), (ir(zr + 1) —ie(z + 1)), (qir(z, + 1) —ig(ze +1); 7 #1)}

Consider the following central element in Ry

z=[J@+1 [ Gl +1)—j+1)).

T 1,JEF r#t

The As-module R}iof( = A, @) (%) Rgx has a k-algebra structure because it is a
’ d

subalgebra in Ry [2~], where k() is as in (2).

Remark B.4. We assumed above that the set F is finite. This assumption is
important because it implies that A; contains k[X lil, e ,X;H] and A, contains
k[zy1,---,xq]. However, it is possible to define the algebras above (A;, As,
H¢(q) and R5) for arbitrary F C k*. Indeed, if F; C JF» are finite, then the
algébra defined with respect to Fj is obviously a non-unitary subalgebra of the
algebra defined with respect to F». Then we can define the algebras A;, A,
Hilof((q) and R}io,i with respect to any arbitrary F. For example, we define the

algebra Rb‘fi associated with F as
Ri%(F) = lim R{5(Fo),
FoCF

where the direct limit is taken over all finite subsets Fq of F. Note that if the
set F is infinite, then the algebras A, Ay, H ilof((q) and Rb‘jf{ are not unitary.

From now on we assume that F is an arbitrary subset of k*.

Proposition B.5. There is an isomorphism of k-algebras Rilo)f( ~ Héloﬁ(q) such
that
e(i) — e(i),

zre(i) — (i, ' X, — De(i),
U,e(i) — W e(i).
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Proof. The polynomial representations of Hg x(q) and Rqy yield faithful repre-

sentations of Héoﬁ(q) and Ril‘ff{ on A; and As respectively. Moreover, there is

an isomorphism of k-algebras Ay ~ A; given by z,e(i) — (i1 X, — 1)e(i).
This implies the statement. Indeed, the elements e(i) € Rll‘ff( and e(i) €

Hy%(q) act on Ay =~ A} by the same operators. The elements z,.e(i) € Ry, and

Xy — % 2~ Ay 5. Fi )

(i;71X, — 1e(i) € H}“C((q) act on Ay ~ A; by the same operators. Finally, the
elements ¥,.e(i) € Rb‘ff( and U,e(i) € H}iof((q) also act on Ay ~ A; by the same
operators. The elements above generate the algebras Ril‘jf( and H iloﬁ(q) O

Now, we consider the subalgebra I:Ed_,k of Rbo’f( generated by

o the elements of Ry,
e the elements (z, + 1)~ 1,

e the elements of the form (i,(x, + 1) — iz(z; + 1))~ te(i) such that r # t
and i, # iy,

e the elements of the form (qi,(x, + 1) —is(x; + 1)) Le(i) such that r # ¢
and qi, # iy.

Similarly, consider the subalgebra ﬁdvk(q) of H}fﬁ(q) generated by
o the elements of Hgx(q),
e the elements of the form (X, — X;)~!e(i) such that r # t and i, # iy,

e the elements of the form (¢X, — X;) 'e(i) such that r # ¢t and qi,. # .

Note that the element U,.e(i) € Hiff((q) belongs to ﬁd’k(q) if i # qip41. We
have the following proposition, see also [8, Sec. 3.2].
Proposition B.6. The isomorphism R}i‘fi ~ Hé‘)f{(q) from Proposition B.5 re-

stricts to an isomorphism Ed,k ~ ﬁd)k(q). O

B5 Deformation rings

In this section we introduce some general definitions from [9] for a later use.

We call the deformation ring (R, k, K1, -+, K1) a regular commutative noethe-
rian C-algebra R with 1 equipped with a homomorphism C[x*!, k1, -+, 5] — R.
Let k, k1, - -+, k; also denote the images of k, k1, -+, k; in R. A deformation ring
is in general position if any two elements of the set

{ku —ky+ak+bk—c; a,b€Z,ceQu#v}

have no common non-trivial divisors. A local deformation ring is a deformation
ring which is a local ring such that 1, -, k;, Kk — e belong to the maximal ideal
of R. Note that each C-algebra that is a field has a trivial local deformation
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ring structure, i.e., such that k1 = --- = k; = 0 and k = e. We always consider
C as a local deformation ring with a trivial deformation ring structure.

We will write & = k(e + 1)/e and %, = k.(e + 1)/e. We will abbreviate R
for (R, K, k1, --,/;) and R for (R, R, Ry, ,Kq)-

Let R be a complete local deformation ring with residue field k. Consider the
elements g, = exp(2my/—1/k) and g..1 = exp(2my/—1/%) in R. These elements
specialize to (. = exp(2myv/—1/e) and (.41 = exp(27v/—1/(e + 1)) in k.

B6 The choice of F

From now on we assume that R is a complete local deformation ring in general
position with residue field k and field of fractions K. In this section we define
some special choice of the set F. This choice of parameters is particularly
interesting because it is related with the categorical action on the category O
for gl see [9].

Fix a tuple v = (v1,---,1) € Z'. Put Q, = exp(2my/—1(v, + k,.)/K) for
r € [1,1]. The canonical homomorphism R — k maps ¢g. to (. and Q. to ¢¥.

Now, consider the subset % of R given by

F = U {q:Q¢}-

reZ,te(1,l]

Denote by Fy the image of F in k with respect to the surjection R — k. Recall
from Section B4 that we consider F (and Fy) as a vertex set of a quiver. The
set F is a vertex set of a quiver that is a disjoint union if [ infinite linear quivers.
The set Fy is a vertex set of a cyclic quiver of length e.

Fix k € [0,e — 1]. To this k we associate a map Y:Z — Z as in (8). Now,
consider the tuple

U= (v, --,7)) € L, 7, = Y(v,) Vr € [1,1].

Let R be as in the previous section. Let k and K be the residue : field and
the field of fractions of R respectively. Now, consider Q = (Qy,---,@Q;), where
Q, = exp(2nV/—1(¥, +R,)/RK) and K and %, are defined in Section B5. Consider

the subset .Z of R given by

F = U {QZ+1@t}~

reZ,te(1,l]

Denote by 7§ the image of F in k with respect to the surjection R — k. The
set F is a vertex set of a quiver that is a disjoint union of / infinite linear quivers.
The set F1; is a vertex set of a cyclic quiver of length e + 1.

B7 Algebras f], §ﬁ, R and S
Let T'= (I,H),T = (I,H) and I = (I, H) be as in Section B2.
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We will use the notation F, Fi, F and 7; as in previous section. (In
particular, we fix some v = (vq,--+,1;).)
We have the following isomorphisms of quivers

I~F, i=(ab)— p;:=exp2nv—1(a+r)/k),
I~7Z, i=(a,b)—p;:=exp2rv—1(a+Fp)/F),
I~ %, i—pi=C(,

TE?E, ’LHT?Z IZC;‘_‘_l.

These isomorphisms yield the following commutative diagrams

Te

~ — ~

We will identify
I~ Ix=ZFg I=2F, I~F

as above.

Our goal is to obtain an analogue of Theorem 2.12 over the ring R. First,
consider the algebras Hyx(¢.) and Hy k(ge) defined in the same way as in
Section B4 with respect to the sets Frx C kand % C K. We can consider
the R-algebra Hg r(g.) defined in a similar way with respect to the same set of

idempotents as ﬁd,k(ce) (i.e., with respect to the set Fy, not F).

The algebra ITLL k (¢e) 1s not unitary because the quiver [ is infinite. To avoid
this problem we consider the truncated version of this algebra. Let ﬁdgg (ge) be
the quotient of ﬁd, k(ge) by the two-sided ideal generated by the idempotents
e(j) € I such that j contains a component that is not a vertex of the truncated
quiver I'SY (see Section B2). (In fact, the algebra ﬁi%(qe) is isomorphic to a
direct summand of I?Td,K(qe)).

Similarly, we define the algebras ﬁd’ﬂ(<e+1)7 ﬁd)?(qe_i'_l) and ﬁdﬁ(qeﬂ)
using the sets 7 and F instead of F and Fi. We define a truncation H j%(qeﬂ)
=<N

of ﬁd,?(q@_‘_l) using the quiver I’

For each i € I? we consider the following idempotent in ﬁfg(qe):

e@= > e
jeld m (j)=i

Here we mean that e(j) is zero if j contains a vertex that is not in the truncated
quiver ['SY. The idempotent e(i) is well-defined because only a finite number

. . =d .
of terms in the sum are nonzero. For each i € I we can define an idempotent
. SN . .
e(i) € de(%-s-l) in a similar way.
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Lemma B.7. There is an injective algebra homomorphism ﬁd’R(qe) — ﬁj%(qe)
such that e(i) — e(i), Xre(i) —» X,e(i) and Tre(i) — Tre(i).

Proof. Tt is clear that we have an algebra homomorphism ﬁd, r(ge) — H dgg (ge)
as in the statement. We only have to check the injectivity. 7

For each w € &4 we have an element T, € Hq r(q) defined in the following
way. We have T, = T;, ---T;,., where w = s;, ---s;, is a reduced expression.
It is well-known that T, is independent of the choice of the reduced expres-
sion. Moreover, the algebra Hy r(q) is free over R[Xlil, e ,Xfitl] with a basis
{Tw; w e Gd}.

Set

B = @ R[Xitlﬂ o '7X(:itl][(Xr - Xt)_la (geXr — Xt)_l? r # tle(i),
ieFd

where we invert (X, — X;) only if ¢, # i; and we invert (¢.X, — X;) only if
Celr # it. We have Hy p(ge) = B®R[X111,H_’Xdi1] Hy r(ge). This implies that the

B-module f[d,R(qe) is free with a basis {T,,; w € &4}.

Similarly, we can show that the algebra H dgg(qe) is free (with a basis
{Tw; we &4}) over

B' = P KX{ - XFN(X = X) 7 (qe X0 = Xo) 71 7 # ted),
jeFzd

where we invert (X, — X;) only if j. # j; and we invert (¢.X, — X;) only if
Qejr # Jt, and we take only j that are supported on the vertices of the truncated
quiver 'SV,
Now, the injectivity of the homomorphism follows from the fact that it takes
a B-basis of Hy r(ge) to a B’'-linearly independent set in Hd\K(qe)
O

Now we define the algebra SH H_ (Ce41) that is a Hecke analogue of a local-
ization of the balanced KLR algebra Sazx- To do so, consider the idempotent

e= Ziejord e(i) in Ha,k(geﬂ). We set

@E,E(Ce+1) = eﬁa,ﬁ(<e+1)e/ Z eﬁa,E(CeJrl)e(j) Aa,E(CeJrl)e'

JEI

un

Now, we define a similar algebra over K. To do this, we need to introduce
some additional notation. Denote by Q;qu the subset of Q;I that contains only

a such that for each k € fl, the dimension vector & has the same dimensions at
vertices k' and k2.
Set

~<N ~
HEF(Qe+1) @ H&f(‘]e—&-l)v

7Te+1(a):a
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SH*K(qurl) @ ﬁ&,f(qfﬂﬂrl)v

7T€+1(a):a

where in the sums we take only a € Q'Ii'eq that are supported on the vertices of
=<N _ ’
the truncated quiver I'  and SH; % (ge41) is defined similarly to SHf E(Cet1)-

More precisely, we have

SH7(qe1) = 8aHs 72(qe41)8a/ >, 8aHy 7(qe1)e() Hs 7(ge41)8a,
_]EI

un

where €z =i 7a €(j)-

ord

Remark B.8. Consider the following idempotents in H N (qe+1)

e= Z €a, e= Z e(i),

Tet1(@)=a el
where the first sum is taken only by & € Q}'eq. (Note that H\ (de+1) Was
’ —<N

~x

defined as a quotient of ﬁa % (ges1). So, if & is not supported on I' , then
the idempotent €z is zero by definition. In particular, the sum has a ﬁnlte

number of nonzero terms.) Set also 17 = Hﬂe+1(a) IO‘, where the sum is

taken only by a € QJI . By definition, the algebra SHa?(qu) is a quo-
tient of eH < (qe+1)e But we can see this algebra as the same quotient of

eH\ (qeﬂ) (we do the quotient with respect to the same idempotents). In-
deed theN idempotent e is a sum of a bigger number of standard idempotents
e(j), j € I than the idempotent &. More precisely, the idempotent € is the sum
all e(j) such that j is well-ordered while e is the sum of all e(j) such that 7.1 (j)
is well-ordered. But each j € I® such that w1 (j) is well-ordered and j is not
well-ordered must be unordered. Then such e(j) becomes zero after taking the
quotient.

<N
Finally, we define the R-algebra SHa 7 (get1) as the image in SHE % (Qes+1)

of the following composition of homomorphlsms

~

el 7(Ges1)e — eH (qe+1)e — SHf K(qe+1)

—N
The lemma below shows that the algebra SHz 7(ge+1) is independent of N

for N large enough. So, we can write simply @a)ﬁ(qe+l) instead of SHf F(Ger1)
for N large enough.

—N
Lemma B.9. Assume N > 2d. Then the algebra SHy (qet1) is independent
of N.
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Proof. Denote by Jy the kernel of ef[aﬁ(qe“)e — SHf K(qu) Take M >
N. It is clear that we have Jy; C Jy.

Let us show that we also have an opposite inclusion if N > 2d. We want
to show that each element = € Jy is also in Jy;. It is enough to show this for
z of the form = = Xe(i), where i € IZ, and X is composed of the elements

of the form T, and X,. Then Xe(i) € Jy means that the element Xe(j) €
<N ~ =<N
SHz % (get1) is zero for each j € I supported on I such that m.y1(j)

=1
To show that we have Xe(i) € Jy; we must check that the element Xe(j) €
—<M

SHf K(qu) is zero for each j € I¥ supported onT  such that meyq(j) = i.

Let a € Q}feq be such that j € I8 Tt is clear that we can find & €

’ —<2d
Q;I’eq supported on T’ such that we have an isomorphism H~ K(qu) ~
Hg, 7(ge+1) that induces an isomorphism SHa’F(qe_H) ~ SHa,f(qe.H) and

such that this isomorphism preserves the generators X, and 7T, and sends the
—<2d
idempotent e(j) to some idempotent e(j’) such that j’ 1s supported onI' and

Ter1(j) = 7re+1(3'). Then the element Xe(j) € SH—K(qu) is zero because

Xe(j) € SHfK(qe_,_l) is zero. This implies z € Jy.
O

Now we define the KLR versions of the algebras SHf &(Ce+1) and SHf K(qe+1)

As for the Hecke version, we denote by e the idempotent >, 7= (i) in Ra’k(l").
ord
Set

n

Szx(T) = eRzx(T)e/ > eRzx(T)e(i)Rax(De.
ieTo,

For each a € Q%Cq we consider the idempotent ez = Zjefgrd e(j) in E&K(I’).
Set B B
Sax@ )= P Sax(@),
F€+1(a):a

where we take only a € Q}'eq that are supported on the vertices of the truncated

—<N
quiver ' and

§&,K(f) a e(x/ Z e(x a, K )R& K(i)

JGI

un

Remark B.10. By Proposition B.6 we have algebra isomorphisms

Ea,k(r) = ﬁa,k(ce)a EQ,K(ng) HgN (Qe)

Rz x(T) = Hyz(Cet1), Rax( )~ Hé%(‘]cﬁl)v



from which we deduce the isomorphisms
- . =<N
Sax(l') = SH;g(Cet1), Sawx(l )= SH*K(qe-i-l)

We may use these isomorphisms without mentioning them explicitly. Using
the identifications above between KLR algebras and Hecke algebras, a localiza-
tion of the isomorphism in Theorem 2.12 yields an isomorphism

(I)a,k: Ha,k(ge) — SHE,K(CEJH)'
In the same way we also obtain an algebra isomorphism
(I)&,K: H&K(Qe) - SH(E(&)’?(%H)
for each a € Q}f. Taking the sum over all & € Q}' such that m.(@) = a and

such that a is supported on the vertices of the truncated quiver I

isomorphism

yields an

Do,k H\K(qe) — SH*K(qu)

Lemma B.11. The homomorphism eﬁaﬁ(qeﬂ)e — efIEE(CeH)e factors
through a homomorphism @aﬁ(qeﬂ) — §I\{a§(§e+1),

Proof. In Section 2E we constructed a faithful polynomial representation of
Sax. Let us call it Poly. It is constructed as a quotient of the standard polyno-
mial representation of eRy ke. After localization we get a faithful representatlon

Polk of Sa k. Thus the kernel of the algebra homomorphism eRa xe — Sa Kk is

the annihilator of the representation ’Polk We can transfer this to the Hecke
side (because the isomorphism in Proposition B.6 comes from the identifica-
tion of the polynomial representations) and we obtain that the kernel of the

algebra homomorphism eﬁaE(CeH)e — 5/'1‘\[&?(@4_1) is the annihilator of the
representation 750\11( Similarly, we can characterize the kernel of the algebra

homomorphism eH\ (qe+1)e — SH—K(qurl) as the annihilator of a similar

N
representation Pol K -

The Ii—vector space ﬁaf(N has an/i%—subrno\dule Pol r stable by the ac-
tion of eH 7(qe+1)e such that k ®g Polgr = Poly and it is compatible with
the algebra homomorphism eﬁaﬁ(qeﬂ)e — efIE’E(CeH)e. By definition of
ﬁa R(q€+1) and the discussion above, the kernel of the algebra homomor-
phism eH F(Getr1)e — SHHR(qu) is formed by the elements that act by

Bagy
zero on Poly (we assume that N is big enough). Thus each element of

this kernel acts by zero on Pol r. This implies, that an element of the ker-
nel of eHa R(q€+1)e — SHa %(Get1) specializes to an element of the kernel of

eHa w(Ceq1)e — SHa (Ces1). This proves the statement. O
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B8 The deformation of the isomorphism &

Proposition B.12. There is a unique algebra homomorphism ® g: ﬁmR(qe) —
SHg r(qet1) such that the following diagram is commutative

~ Bk o
Ha,k(Ce) — SH@E(C@-H)

I I

—~ D, —
HQ’R(qe) - SHE,E(QeJrl)

! I

SN D, —<N
HS3(ge) —= SHy(qet1)-

Proof. First we consider the algebras H%% (Ce), H%(ge) and HlOC “<N(ge) ob-
tained from H, x(Ce)s Ho r(ge) and H;K(qe) by inverting

o (X, —X;)and (¢ X, — X;) with r # ¢,

o (X, — X3) and (¢ X, — Xy) with r #£ ¢,

o (X, —X;)and (g X, — Xy) withr #£ ¢
respectively Let SHE’E(CeH) and SHECLgN(qe_H) be the localizations of @EE(<6+1)

and S’Hf K(qu) such that the isomorphisms ®, x and ®,, x above induce iso-
morphlsms

Do HYk(Ce) = SHEL(Cer)
CI)a . Hloc,§N<qe> — SH;%gN@eJrl)‘

Let SH;)%(qu) be the image in SHIOC’gN(qu) of the following composition
of homomorphisms

eHg%(qu)e — eH;jCF’gN(qu)e — SHlOC SN (Get1)-

(We assume N > 2d. Then, similarly to Lemma B.9, the algebra SH;’% is

independent of N under this assumption.)
Next, we want to prove that there exists an algebra homomorphism ®, r: H, éﬁ%(qe) —
SH loc (qu) such that the following diagram is commutative:

H(lxo,f((Ce) —> SHlOC (CE-‘rl)

I I

H};ﬁ%(‘]e) —> SHIOC (QG+1) (9)

| |

HSN(g,) 2oty SHEYSN(gesn).
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We just need to check that the map ®, x takes an element of H}f%(qe) to
an element of SH;%(qe_H) and that it specializes to the map ®, k: Hif"f((ce) —
SH;’CE(@H). We will check this on the generators e(i), X,e(i) and ¥,e(i) of
HI%, ().

This is obvious for the idempotents e(i).

Let us check this for X,e(i). Assume that i € I* and j € I'®! are such that
we have 7.(j) = i. Write i’ = ¢(i) and j’ = ¢(j). Set ' = r{ = r{, see the

J
notation in Section 2F. By Theorem 2.12 and Proposition B.5 we have

Vo, (Xre(j) =Dy pj, Xove (i)

Since, ﬁ‘;lpjr depends only on i and r and e(i) = ) e(j), we deduce that

7"e(j):i
B s (Xre(i)) = 7y, Xove(l).

Thus the element ®, x (X,e(i)) is in SHPG and its image in SHg’f( is ﬁ;/lpirXr/e(i’) =
D, k(Xre(i)).

Next, we consider the generators ¥,.e(i). We must prove that for each j such
that 7. (j) = i and for each r we have

o &, k(¥,e(j)) = Ze(j’), for some element = € H}f,‘j%(qe) that depends only
on r and i,

e the image of Ze(i’) in SHIHOCK(qu) under the specialization R — k is
Do k(Tre(i)).

This follows from Lemma B.1.
Now we obtain the diagram from the claim of Proposition B.12 as the re-
striction of the diagram (9).
O

B9 Alternalive definition of a categorical representation

There is an alternative definition of a categorical representation, where the KLR
algebra is replaced by the affine Hecke algebra.

Let R be a C-algebra. Fix an invertible element ¢ € R, ¢ # 1. Let C be an
R-linear exact category.

Definition B.13. A representation datum in C is a tuple (E,F,X,T) where
(E,F) is a pair of exact biadjoint functors C — C and X € End(F)°P and
T € End(F?)°P are endomorphisms of functors such that for each d € N, there
is an R-algebra homomorphism t4: Hy r(q) — End(F?)°P given by

X, FIrXFr=1 v e1,d,
T, s FAr=1TF=1 e [1,d - 1].
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Now, assume that R = k is a field. Assume that C is a Hom-finite k-linear

abelian category. Let % be a subset of k* (possibly infinite). As in Section
B4, we view .# as the vertex set of a quiver with an arrow ¢ — j if and only if
J=qt.
Definition B.14. A gg-categorical representation in C is the datum of a rep-
resentation datum (E, F, X,T) and a decomposition C = €P ¢, C, satisfying
the conditions (a) and (b) below. For i € %, let E; and F; be endofunctors of
C such that for each M € C the objects E;(M) and F;(M) are the generalized
i-eigenspaces of X acting on F(M) and F(M) respectively, see also Remark 3.3
(a). We assume

(a) F = @ieég FZ and £ = @ieg El',
(b) EZ(C,L) C C/L+04i and Fz(cu) C C/L—a,',-

If the set .# is infinite, condition (a) should be understood in the same way as
in Remark 3.3 (b).

Remark B.15. (a) By definition, for each object M € C and each d € Zxy,
we have F;, -+ F;, (M) # 0 only for a finite number of sequences (i1, --,i4) €
Fa. (Else, the endomorphism algebra of F'¢(M) is infinite-dimensional.) Then
the homomorphism Hyy(q) — End(F4(M))°P extends to a homomorphism
ﬁd,k(Q) — End(F4(M))°P such that only a finite number of idempotents e(j)
has a nonzero image. (We define the action of e(i) as the projection from F'¢
to F;, ... F;,. Note that the action of (X, — X;) e(i) such that i, # i, is well-
defined because X, and X; have different eigenvalues. Similarly, the action of
(gX, — X;)~te(i) such that r # t and gi, # i; is well-defined.) In particular, we
obtain a homomorphism f[d’k(q) — End(F®)°p.

(b) As in part (a), if we have a categorical representation in the sense of
Definition 3.2, then the homomorphism Ry — End(F%)°P extends to a ho-
momorphism ﬁd,k — End(F?%)°P. Then Proposition B.6 impies that the two
definitions of a categorical representation of gz (Definition 3.2 and Definition
B.14) are equivalent.

B10 Categorical representations over R

We assume that the ring R is as in Section B6. We are going to obtain an
analogue of Theorem 3.5 over R.

Let Cr, Cx and Cx be R-, k- and K-linear categories, respectively. Assume
that Cx and Cx are Hom-finite k-linear and K-linear abelian categories, respec-
tively. Assume that the category Cg is exact. Fix R-linear functors Qy:Cr — Ci
and QK:CR — Ck.

Remark B.16. The first example of a situation as above that we should imagine
is the following. Let A be an R-algebra that is finitely generated as an R-module.
We set Cr = mod(A), Cx = mod(k®gr A), Cxk = mod(K ®@r A), Qx = k®e and
Q=K Re.
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Another interesting situation (that in fact motivated the result of this sec-
tion) is when Cp, for B € {R,k, H}, is the category O for g[N over B at a
negative level. We do not want to assume in this section that the category Cp is
abelian because [9] constructs a categorical representation only in the A-filtered
category O over R (and not in the whole abelian category O over R).

Definition B.17. A categorical representation of (s, sI2') in (Cg, Ci, Cx) is the
following data:

(1) a categorical representation of g; = sl, in Cy,

(2) a categorical representation of g7 = sI® in Cp,

(3) a representation datum (E, F) in Cr (with respect to the Hecke algebra
Hy r(ge)) such that the functors E and F' commute with Qy and Qg,

(4) lifts (with respect to Q) of decompositions E = @, ; E;, F' = @,; Fi
and Cx = @XI Cy, from Cx to Cr

such that the following compatibility conditions are satisfied.

e The decomposition Cr = @ . x. Cr,u is compatible with the decomposi-
tion Cx = @ﬁEX; CK,,E (i.e., we have QK(CR,N) - @ﬂ'e(ﬁ)iu CKJ;).

e The decompositions £ = @,.; F; and F = @, ; F; in Cr are com-
patible with the decompositions £ = €, ;E; and F' = @, F; in
Cx with respect to Qi (i.e., the functors E; = @jeiﬂﬁ(j):i E; and
I, = ®jef,we ()=i F; for Cx correspond to the functors E;, F; for Cr).

e The actions of the Hecke algebras Hg r(qe), Hax(Ce) and Hg k(ge) on
End(F?)°P for Cr, Cx and Cx are compatible with Q) and Q.

Proposition B.12 yields the following version of Theorem 3.5 over R.

Let (Cr,Cx,Ck) be a categorical representation of (sley1,512Y). Assume that
for each p € XT\X;r we have Cx, = Cg,, = 0 and the for each p € X;\le
we have EK’,; = 0. Let Cgr, Cx and Cx be the subcategories of Cr, Cx and Cx
defined in the same way as in Section 3D. Then we have the following.

Theorem B.18. There is a categorical representation of (;[e,ﬁlgl) in (Cr,Cx,Cxk).

Proof. We obtain a categorical representation of ;[e in Cx by Theorem 3.5. A
similar argument as in the proof of Theorem 3.5 yields a categorical represen-
tation of 5[(?%[ in Cx (we just have to replace the isomorphism ® from section
2G associated with the quivcer I'c by a similar isomorphism associated with
the quiver I'.) To construct a representation datum in Cg, we use the homo-
morphism ®, r from Proposition B.12. All axioms of a (;[e,s[g)—categorical
representation in (Cgr,Ck,Ck) follow automatically from the axioms of a cate-
gorical representation of (sley1,sI2') in (Cg, Ci,Cx ). O
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