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Abstract. The reachable workspace of a robot carrying a payload is
usually limited by the maximal value of the torque that each actuator
can deliver. This results in limiting the zones for the robot to operate
with the payload due to a possible division of its static-wrench workspace
into several disconnected aspects.
In order to increase the reachable workspace areas, this paper proposes
to exploit the natural oscillations in dynamics, so that the robot can
carry a payload which is out of its feasible static-wrench workspace, i.e.
to perform motions between two disconnected aspects, while constrain-
ing the torques of the actuators. This is done thanks to the solution of
a boundary value problem, which seeks to smartly exchange the gravity
potential energy and the kinetic energy in order to connect two desired
payload positions, which are placed in two disconnected aspects. Sim-
ulations of the suggested approach on a 2-degree-of-freedom robot are
performed and show the efficiency of the proposed approach.

Keywords: static-wrench workspace, natural dynamics, shooting method

1 Introduction

It is well-known that in several industrial robotic processes, robot manipula-
tors are required to have as large as possible workspace. Nevertheless, when
for some specific tasks, the robots are required to carry heavy payload ob-
jects, the workspace can be limited by the actuator maximum torques. The
remaining workspace, limited by the torque limits, is called feasible static-wrench
workspace, and it is generally defined by the set of all feasible end-effector poses
for which the platform with payload can be reached statically, i.e. taking into
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account only the gravity effects [1][2][3]. As a consequence, if the maximal values
of the actuator torques are not sufficiently high for a given payload, the reachable
robot workspace will be reduced. This will restrict the zones where the robot
can place the payload, and it may lead to disconnect the robot workspace into
several aspects.

Most of the techniques developed for increasing static-wrench workspace fea-
sibility have been applied for cable-driven parallel robots (CDPRs), in which
the cables have been used as passive elements to find dynamic trajectories that
seek to match the free response of the system with the desired payload motions
[4][5][6][7]. The main idea is to replace the CDPR motor-cable arrangements with
linear springs, from which an undamped mass-spring system is approximated.
Then, the natural frequencies from such passive mechanical system are com-
puted, and periodic trajectories are derived. Moreover, the natural frequencies
of the virtual spring-based passive system are used for exploiting the dynamics of
the system in order to find natural free-motion trajectories, thus increasing the
feasible static-wrench workspace. Even if such techniques have shown their effec-
tiveness when working with CDPRs, it is not the same case for rigid-link robots,
in which no elastic element can be considered unless a spring is added in parallel
to the active joints, as it is done in [8][9][10]. In those works, torsional springs
are placed in parallel to the actuators, and they are used as energy storage in
order to exploit the natural oscillations of pick-and-place robots in order to put
the system near resonance, thus considerably decreasing the input torques.

Contrary to what it is done in [8][9][10], in which the spring potential energy
is used to exploit the natural dynamics of the system, in this paper we propose
to keep the robot unmodified, i.e. without any additional elastic element, and
instead, to exploit the natural dynamics by using the payload potential energy.
This will allow to increase the robot feasible static-wrench workspace thanks to
a smart control of the natural oscillations in order to perform large amplitude
motions between two disconnected aspects of the static-wrench workspace, sim-
ilarly to the phenomenon occurring on an oscillating pendulum, in which all the
energy is stored as potential energy when the payload is at the highest position
of its swing, and it is then transferred continuously to kinetic energy.

This paper is divided as follows: Section 2 presents a recall on dynamic
modeling of robot manipulators. Section 3 shows the algorithm formulation for
performing optimal trajectories that connect two aspects of the static-wrench
workspace, divided due to the maximal actuator torques. Finally, in order to
show the effectiveness of the proposed approach, section 4 presents the results
on a 2-DOF serial robot with different payloads and different maximal actuator
torque values.

2 Exploiting natural dynamics for enlarging feasible
static-wrench workspace

It is well-known that near natural frequencies of oscillatory systems, the actuator
torques can be drastically reduced [8][9][10]. For instance, we know that, near
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natural frequencies of a spring-mass system, large oscillatory motions can be
obtained while conserving low torques in the actuator, which leads to lowering
the energy expenditure. This is possible because of a smart exchange of energies
between the kinetic energy and the spring potential energy of the system.

Thus, in similar vein, in this section, we propose a strategy to smartly ex-
ploit the exchange between the gravity potential energy and the kinetic energy
of a robot with payload, so that it can be put in near its free response, thus
decreasing the input torques. In order to do so, we will firstly recall the dynamic
modeling of robot manipulators. On a second stage, we will propose the for-
mulation of a boundary value problem (BVP), which will allow us to compute
the necessary optimal velocity, associated to the kinetic energy required to cross
from one disconnected aspect to another with minimum effort. Then, similarly to
an oscillating pendulum, thanks to the formulation of an optimisation problem,
we will exploit the natural oscillations of the robot with payload to achieve the
optimal velocity that match the system to its free response, obtained from the
solution of the BVP.

2.1 Physical Background

Based on [11], let us briefly recall the dynamic modeling of robot manipulators.
We will assume a kinematic architecture composed of n degrees of freedom and
driven by n active joints. The position and velocity of the robot can be described
by q and q̇ representing the n-dimensional vectors of active joint variables and
of active joint velocities, respectively.

Then, by using the Lagrange formalism, the dynamic model of a robot ma-
nipulator can be written as follows:

τ = M(q)q̈ + h(q, q̇) + gr(q) + fs (1)

where τ is an n-dimensional vector of the robot input efforts, M is an (n × n)
definite positive matrix of inertia depending on the active joints coordinates q.
h is an n-dimensional vector of Coriolis and centrifugal effects and its value
depends on the active joint coordinates q, and their time derivatives q̇. gr is an
n-dimensional vector grouping the gravitational effects. fs is an n-dimensional
vector grouping the active joint friction terms.

Based on the aforementioned computations, it is thus necessary to find a
strategy to exploit the natural dynamics of (1), so that we can find free-motion
trajectories that constrain the input torques grouped in τ while performing large
amplitude oscillations that connect aspects of the static-wrench workspace.

2.2 Shooting method for solving Boundary Value Problems

In the field of numerical analysis, a boundary value problem (BVP) is defined
when, for solving a differential equation, two conditions are given at different
values of the independent variable of the differential equation [12], i.e.:

h′′ = f(t, h, h′), a < t < b (2)
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with the boundary conditions defined by:

h(a) = A, h(b) = B (3)

where (2) is a second order differential equation, t is the independent variable,
A and B are the desired boundary conditions defined at t = a and t = b of the
BVP, respectively.

The classical way to solve the BVP (2)-(3), is by using the so-called shooting
method [12], which treats the BVP as an initial value problem (IVP) [12], with
the initial conditions given by:

h(a) = A, h′(a) = α (4)

where α represents the first derivative of h(t) at t = a, or in other words, the
slope of the solution, and the objective is to choose α, so that the solution of
(2) satisfies the remaining boundary condition h(b) = B from (3). Practically
speaking, the main idea of the shooting method is to numerically integrate (2),
for different values of the slope α, and then to take the solution of the differential
equation that satisfies the boundary condition h(b) = B.

Thus, similarly, we propose to use a BVP formulation in order to find the op-
timal velocity q̇A, or slope, associated to the necessary kinetic energy required to
pass between two different disconnected aspects of the static-wrench workspace
(See Fig. 1a).

2.3 Shooting method applied on robot manipulators with heavy
payloads

To develop the BVP for the robot, we will denote q̇A, as the optimal velocity
at point A in one disconnected aspect of the static-wrench workspace, that will
allow to connect the aspects in point B with null final velocity (See Fig. 1a).

In order to exploit the natural dynamics of the robot with payload to join
two different aspects of the robot disconnected static wrench-workspace, in this
section we propose to formulate a BVP, which can be solved with the shooting
method [12]. The BVP formulation seeks to find the optimal velocity grouped in
q̇A, or slope, and associated to the optimal kinetic energy required to connect two
aspects, that solve (1) for τ = 0, while ensuring to meet the desired boundary
positions defined in two disconnected aspects (A and B in Fig. 1a), i.e.:

q̈ = −M−1(h(q, q̇) + gr(q) + fs) (5)

with the boundary conditions defined as the desired positions in two disconnected
aspects of the feasible static-wrench workspace by q(t0) = q∗A, q(tf ) = q∗B with
the formulation of the following position error vector:

Eq(q̇A) = q(tf , q̇A)− q∗B (6)

where tf is the final time, and q̇ and q are obtained from numerical single
and double integration of q̈, respectively. The shooting method is applied to
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iteratively find the proper joint velocities, grouped in q̇A, such that expression
(6) converge to zero as follows:

while Eq>εn, k ≤ maxk do
Eq(q̇A) = q(tf , q̇A)− q∗B
q̇Ak

: Eq(q̇Ak
) = 0

q̇Ak
= q̇Ak

+ ∆q̇Ak

end

where q̇Ak
= q̇Ak+1

representing the optimal set of joint velocities, maxk is the
maximum number of iterations, and εn is the error threshold.

Since we will consider that all motions of the robot will start from the equilib-
rium position of the system, i.e. lowest end-effector location, at q0 = [−π, 0]T , in
the following section, we develop a strategy to optimally go from the equilibrium
configuration velocity of the robot, to the optimal aspect-connecting velocity q̇A.

2.4 Initial oscillations for achieving optimal aspect-connecting
velocity

In the aforementioned formulation, we have presented a strategy based on a BVP
to compute the optimal velocity q̇A, associated to the kinetic energy required to
join two disconnected aspects. Nevertheless, since we have chosen to start the
motion from the equilibrium configuration of the robot (q̇0 = 0), i.e. null initial
stored potential energy U0 to attain q̇A, it is thus necessary to find a strategy to
reach q̇A from rest state. One could think of planning a classical motion based on
a fifth-degree polynomial which can fix the position, velocity and acceleration at
the trajectory extremities, thus allowing to fix q̇A. Nevertheless, since we seek
to constrain the torques to operate within a range of motor limits, it is thus
necessary to develop an optimal motion planner that integrates the effects of
the dynamics to reach q̇A. That is why, contrary to the aformentioned BVP
formulation, which allows us to compute the kinetic energy required to connect
boundary positions in different aspects, in this part we seek to propose an optimal
strategy to attain that aspect-connecting velocity q̇A. Similar to an oscillating
pendulum, this can be done by exploiting the oscillations of the robot with
payload in order to store the optimal payload potential energy to reach q̇A. Thus,
we propose to find such exciting initial oscillatory motions that accelerates the
robot to reach q̇A, while minimizing the input torques, by defining the following
optimization formulation:

minimize J =

∫ tf′

0

n∑
i=1

τ2i dt

over xDecVar

subject to |τi| ≤ τmax, tmin ≤ t ≤ tmax, |qi| ≤ qmax

(7)

where the decision variable vector xDecVar contains the following parameters:
qik , vik , aik and tik . Similar to the strategy based on the via-point motion planner
of [13], each of these parameters represents the amplitude, velocity, acceleration
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(a) Division of static-wrench workspace in different
aspects

(b) Parameterization of 2R
serial robot

Fig. 1: On the left, the graphical interpretation of the disconnection between
aspects due to actuation limits on a 2R serial robot workspace. A and B represent
the boundary conditions which seek to be joined thanks to the BVP. On the right,
the kinematic structure of the 2-DOF robot with payload is shown

and time of oscillation for the exciting trajectories parameterized by using fifth-
degree order polynomials, respectively (See Fig. 4, exciting oscillations). k is an
integer representing the number of required oscillations (via points) for attaining
q̇A. Finally, tf ′ represents the final time of the optimization, and τi represents
the torque of the actuated joints grouped in q.

3 Case Study

3.1 2-DOF serial robot

In this Section, numerical validations are made thanks to a co-simulation be-
tween Matlab and ADAMS in order to show the effectiveness of our approach.
The proposed strategy for enlarging the feasible static-wrench workspace was
validated on a 2-DOF serial robot with payload, as shown in Fig. 1b. The active
joint coordinates of the robot are parameterized by q = [q1, q2]T . The vector
of payload pose is denoted as x = [x, y]T . The link lengths lAB and lBC are
identical, and the center of mass of each link is located at a distance lAS1

and
lBS2

from the rotation center of the motors q1 and q2, respectively. Moreover,
the gravity field is directed along y0 and is equal to g = [0,−g, 0]T , g > 0, being
equal to 9.81 m/s2. Each link mass is parameterized by m1 and m2, and the
payload mass is denoted by m. Finally, the inertia of each link is given by zz1
and zz2, and it is measured about its center of mass S1 and S2, respectively.

The dynamic and geometric parameters for the simulationes, were defined by
the following numerical values: inertia of the two links zz1 = zz2 = 0.133 kg/m2,
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mass of each link m1 = m2 = 0.1 kg, Coulomb friction terms fs1 = fs2 = 0.3
Nm, link lengths lAB = lBC = 0.25 m and the distance to center of mass for each
link lAS1 = lBS2 = 0.125 m. The dynamic equations for the 2-DOF serial robot
with payload are not given here due to page limitations. However, by using the
Lagrange formalism shown in section 2.1, the expression for the robot can take
the form (1).

3.2 Results

The algorithm proposed in section 2 was tested by defining two desired points
in disconnected aspects of the static-wrench workspaces, as it is shown in the
interpretation from Fig. 1a. The aim is to connect both separated aspects of the
static-wrench workspace by solving the corresponding BVP. Moreover, in order
to show the effectiveness of the proposed approach, four cases corresponding to
different payloads, maximal actuator torques and desired boundary positions (m,
τmax, A, B, respectively) have been studied: Case 1: m = 0.5 kg, τmax = 1 Nm,
A = [0,−0.43], B = [0.05, 0.4]; Case 2: m = 1 kg, τmax = 2 Nm, A = [0.15,−0.4],
B = [0, 0.4]; Case 3: m = 1.25 kg, τmax = 2.25 Nm, A = [0,−0.45], B = [0, 0.45];
Case 4: m = 1.5 kg, τmax = 3 Nm, A = [0,−0.45], B = [0.1, 0.4].

Firstly, in Fig 2, the total static-wrench feasible workspace is computed for
the case 2, i.e. all the configurations of the robot for which statically with the
given payload, respects the actuator limits (only one case is shown due to page
limitations). Moreover, a static torque map based on contours is shown in or-
der to have an idea of the value, that in statics, the actuator torque must be
able to deliver for each robot configuration. It is worth mentioning that a more
accurate contour map could be computed based on [14], however, since for our
case we have a simple system, we can easily compute the static torque at each
position of the workspace. Once that the total static-wrench feasible workspace
is computed, the algorithm proposed in section 2 is tested. The results in input
torques for the four cases, for both BVP and exciting trajectories, are shown Ta-
ble 1. In addition to that, the optimal values q̇A from the BVP, for the different
boundary conditions from the four cases, are shown as well in Table 1. It can be
seen that, based on the maximum value of the input torques, the efforts from the
trajectory based on the shooting method are minimum, while the input efforts
from the exciting trajectories are within the maximal motor torque values, thus
constraining the actuator torques. In addition to that, Fig. 3 presents the input
torques computed along the motion from case 2 in order to show the effectiveness
of the approach to constrain the input efforts within a range of maximal actu-
ator values that allows to join two disconnected aspects from the static-wrench
workspace (only one case is shown due to page limitations). In Fig. 4 the optimal
motions from the shooting method and from the exciting trajectories are shown
in the workspace of the 2-DOF serial robot for case 2. It can be seen that thanks
to the solution of the BVP, two points in different aspects of the divided static-
wrench workspace can be joined while constraining the torques of the actuators.
Furthermore, as it is shown in Table 1 and in Fig. 3, the input torques computed
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(a) Slice XY in which each contour repre-
sents a static torque for the first joint.

(b) Slice XY in which each contour repre-
sents a static torque for the second joint.

Fig. 2: In red, the total static-wrench feasible workspace for case 2 is shown, i.e.
all configurations for which, the static torques are within the range of maximum
torques |τi| ≤ τmax. The center of both figures is empty due to the fact that a
joint limit has been set for the second joint of q2 = 2.2 rad. Each contour in
these figures represent a value for the static torque of the first and second joint,
respectively, for the case 2, i.e. a payload of 1kg and a maximal actuator torque
τ1max

= τ2max
= 2 Nm. Furthermore, the static torques contours are computed

for all robot configurations within the workspace boundaries.

from the BVP are closed to zero, which means a correct optimal dynamics ex-
ploitation since we were seeking to solve (1) for τ = 0. For a visualization of the
results, a video of the co-simulations of the 2-DOF serial robot connecting two
different aspects, can be found in https://bit.ly/2QuLQdb

4 Conclusions and future works

This paper proposes a strategy for increasing the feasible static-wrench workspace
for robots by exploiting the robot dynamics through the solution of a BVP which
seeks to smartly control the free response of the system to perform motions that
connect two different aspects of the static-wrench workspace. This has allowed
to considerably increase the reachability to disconnected areas of the workspace
of a 2-DOF serial robot with different payloads and for multiple desired bound-
ary positions. Simulations led to a successful connection of two different aspects
of the feasible static-wrench workspace for different actuator torque limits and
different payload weights. Future work on this subject includes the design of a
prototype to experimentally validate the approach.
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Table 1: Maximum values of input torques and optimal values for q̇A from the
solution of the BVP.

Max. Torques Max. Torques Optimal Velocity
Shooting method for BVP Exciting trajectories BVP

|τ |max (Nm) |τ |max (Nm) q̇A (rad/s)

Case 1 [0.007, 0.001] [0.597, 0.604] [-7.257, 4.494]

Case 2 [0.007, 0.007] [1.153, 2] [-10.052, 10.179]

Case 3 [0.011, 0.013] [2.062, 2.105] [-10.916, 10.625]

Case 4 [0.032, 0.022] [2.993, 2.999] [-11.802, 12.649]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)
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T
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N

m
)

Torque Joint 1
Torque Joint 2

BVP

Torques

Exciting oscillation

torques

Fig. 3: Torques computed from the exciting-plus-BVP trajectory for the case 2.

Fig. 4: Optimal trajectory for connecting two points by solving the BVP from
boundaries of case 2. A and B represent the boundary conditions of case 2 and
they are joined thanks to the solution of the BVP.
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